WASHINGTON STATE DEPARTMENT OF Natural Resources

TIMBER NOTICE OF SALE

SALE NAME: DEER FIRE SALVAGE SORTS

AGREEMENT NO: 30-93522 - 30-93530

AUCTION: March 22, 2016 starting at 10:00 a.m. Northeast Region Office, Colville, WA **COUNTY: Stevens**

SALE LOCATION: Sale located approximately 14 miles west of Springdale, WA

PRODUCTS SOLD AND SALE AREA:

All dead and dying timber, except for leave trees as described in Schedule A, in Units 1, 2, 3, 4 and 5 bounded by white timber sale boundary tags meeting the specifications described below; on parts of Sections 6, 7, 8, 10, 16, 22, and 23 all in Township 29 North, Range 38 East W.M., containing 1038 acres, more or less.

MINIMUM BID AND ESTIMATED LOG VOLUMES:

Agreement #	Sort #	Species and Sort Specifications	Average Log Length	e Estimated Volume		Tons Per MBF	Minim Deliver Prices		Total Appraised Value	Bid Deposit
			0	Mbf	Tons		\$/mbf	\$/Ton		
30-093522	01	DF/WL 11"+ dib	N/A	1387	6935	5		\$67.00	\$464,645.00	\$46,464.50
30-093523	02	DF/WL 7-10" dib	N/A	1095	6570	6		\$57.00	\$374,490.00	\$37,449.00
30-093524	03	ES/WH/DF/GF/LP/WL	N/A	1449	9273	6.4		\$42.00	\$389,466.00	\$38,946.60
		5-6" dib								
30-093525	04	PP 11"+ dib	N/A	88	484	5.5		\$43.60	\$21,102.40	\$2,110.24
30-093526	05	PP 7-10" dib	N/A	47	352	7.5		\$30.70	\$10,806.40	\$1,080.64
30-093528	07	ES/WH/GF/ and non- chuck DF/WL 11"+ dib	N/A	1983	10510	5.3		\$55.00	\$578,050.00	\$57,805.00
30-093529	08	ES/WH/GF/LP and non-chuckable DF/WL 7-10" dib	N/A	1557	9654	6.2		\$50.00	\$482,700.00	\$48,270.00
30-093530	09	WRC 5"+ dib	N/A	332	1461	4.4		\$155.00	\$226,455.00	\$22,645.50

Totals:

7938 45239

\$2,547,714.80

CERTIFICATION: This sale is certified under the Sustainable Forestry Initiative® program Standard (cert no: BV-SFIS-US09000572)

 BID METHOD:
 Sealed Bids
 UNIT OF MEASURE: Tonnage Scale

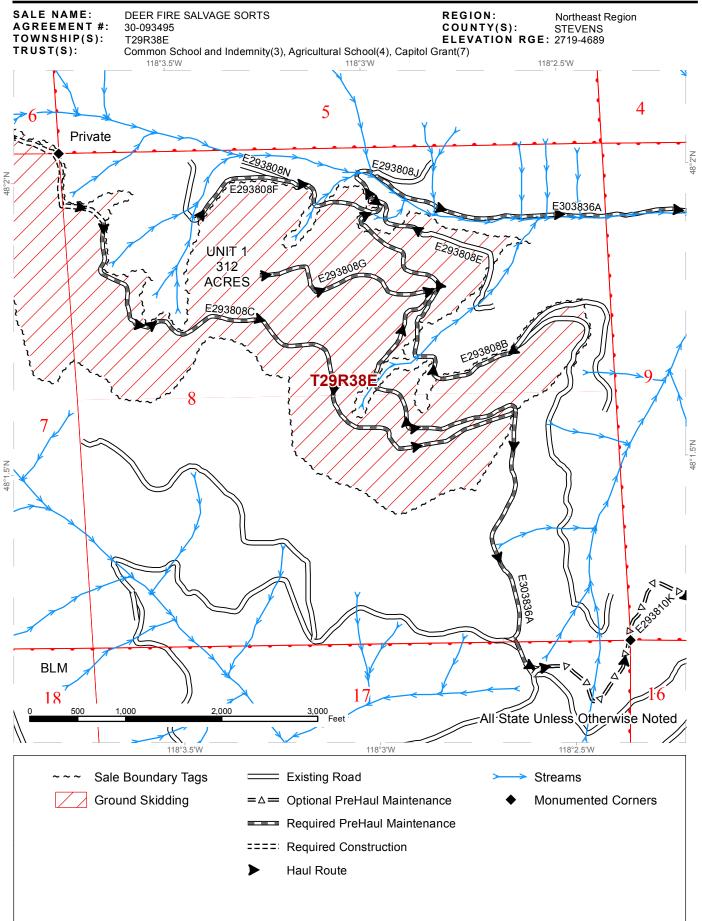
ALLOCATION: Export Restricted

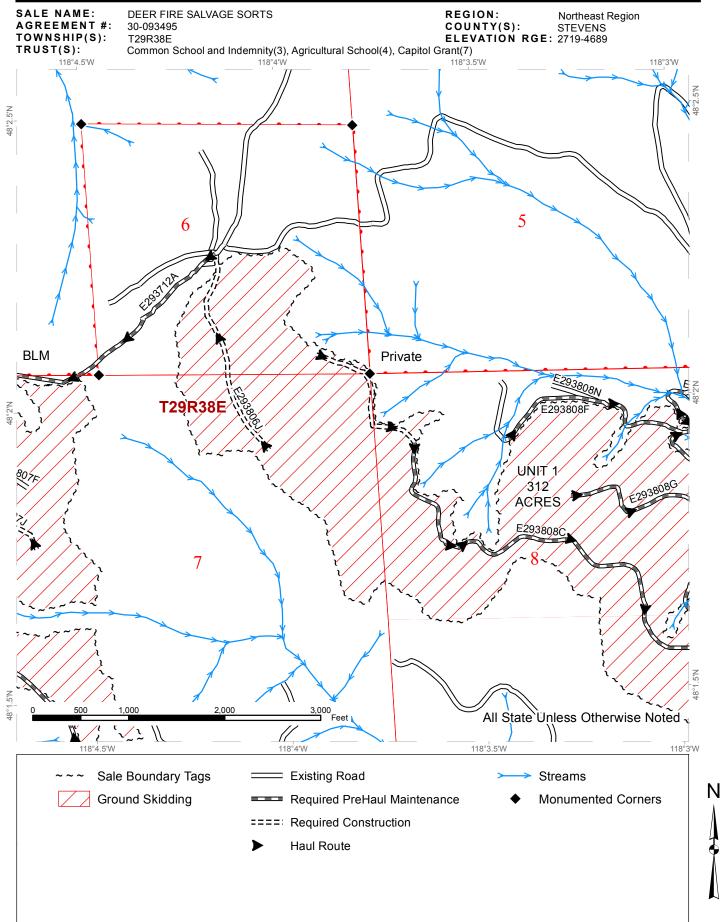
SECURITY: To be determined by the State as described in Clause P-045.2 of the Purchaser's Contract.

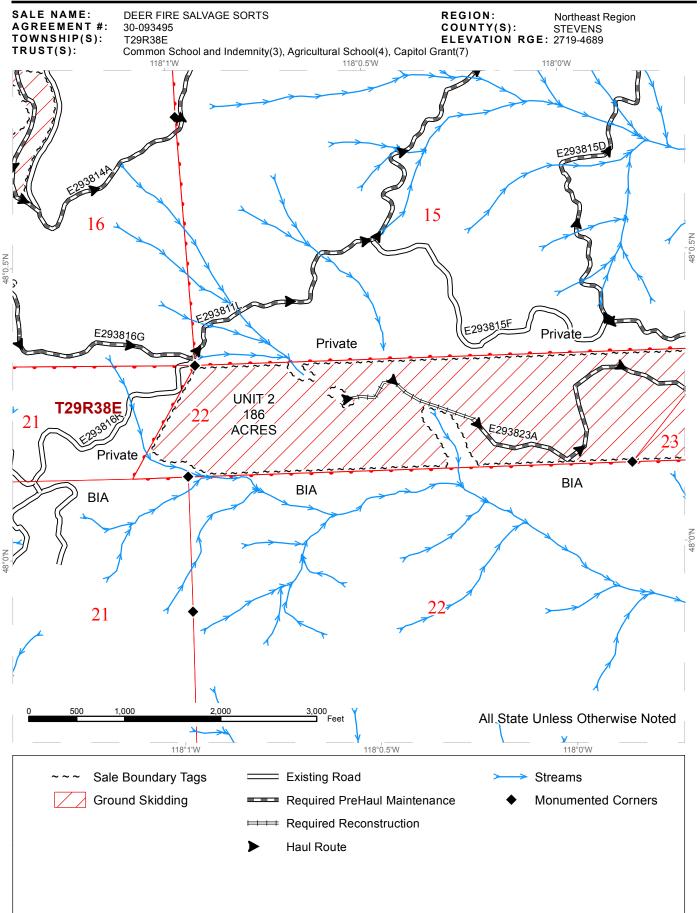
BIDDING PROCEDURES:

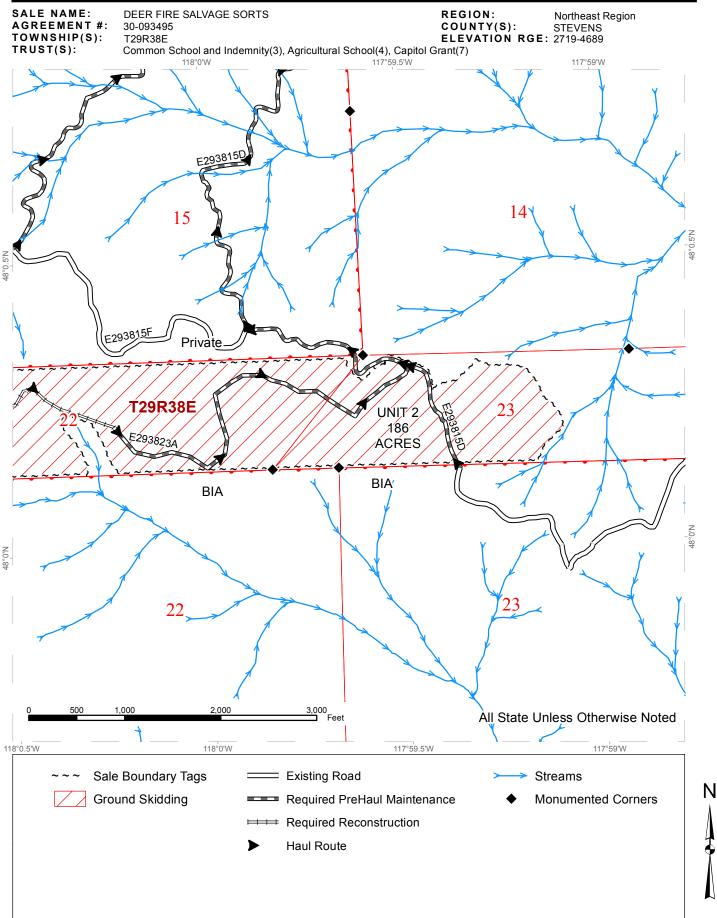
PAYMENT

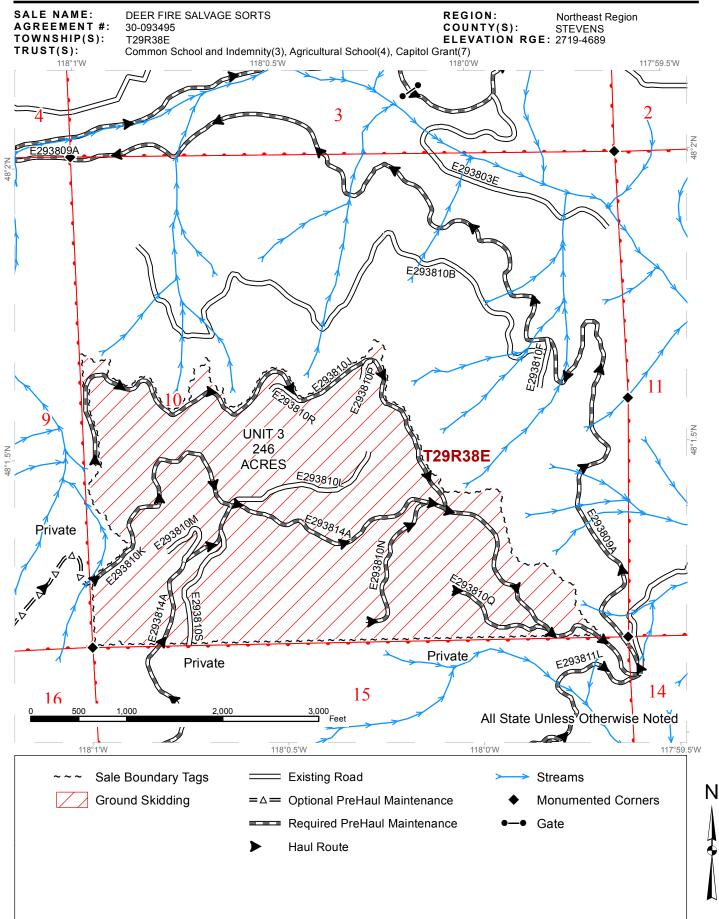
EXPIRATION DATE: November 30, 2016

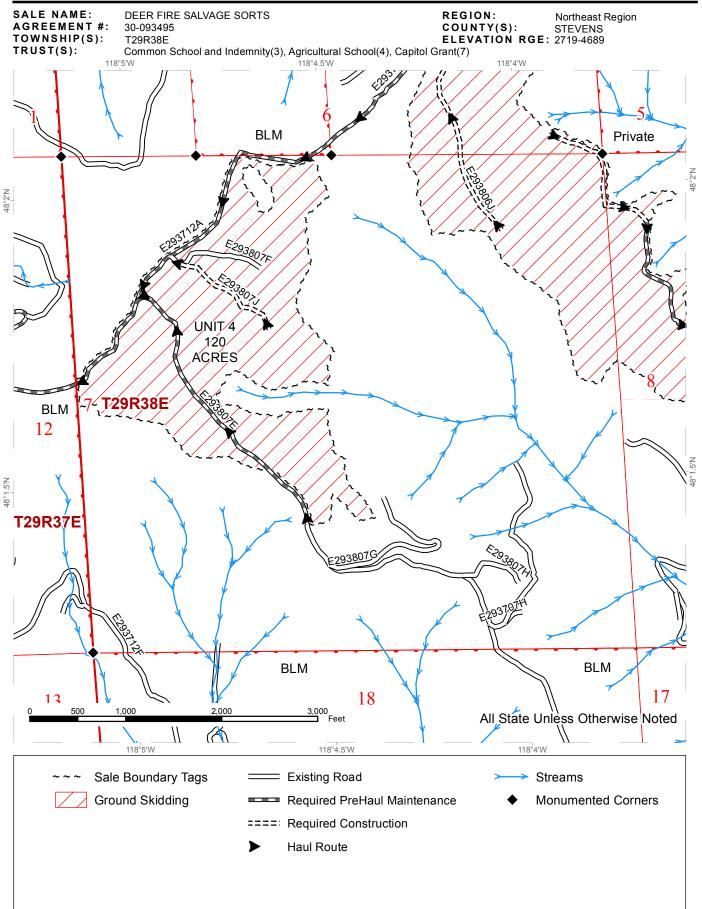

JRES: A separate sealed bid and envelope must be submitted for each log sort. Prospective Purchasers may bid on any or all log sorts. On the day of sale the Purchaser must bring their bid deposit up to 10% of their total bid price. Complete bidding procedures and auction information may be obtained from the Northeast Region Office in Colville WA. Phone number (509)684-7474.

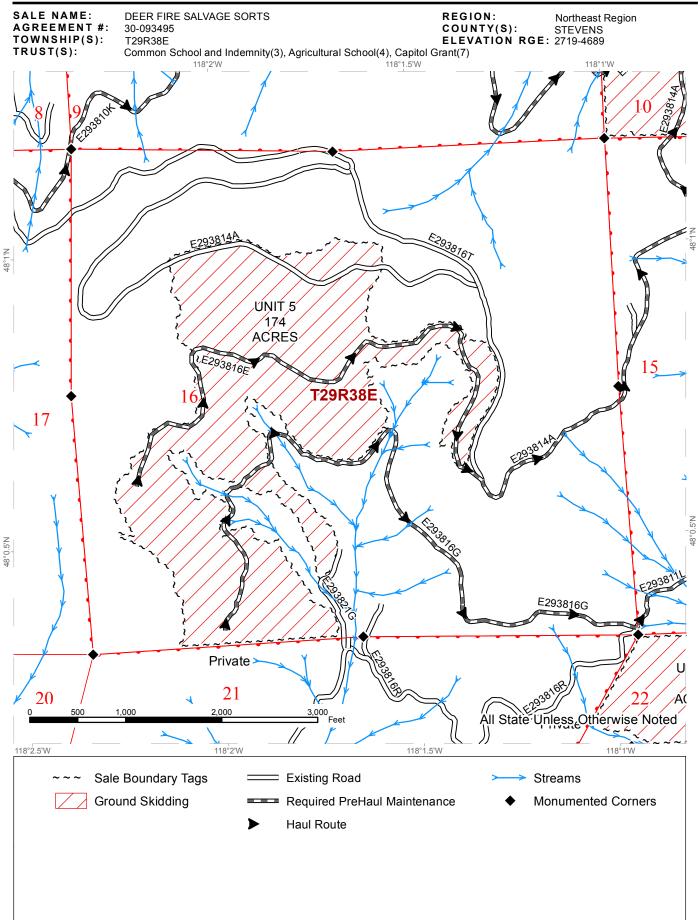

TIMBER EXCISE

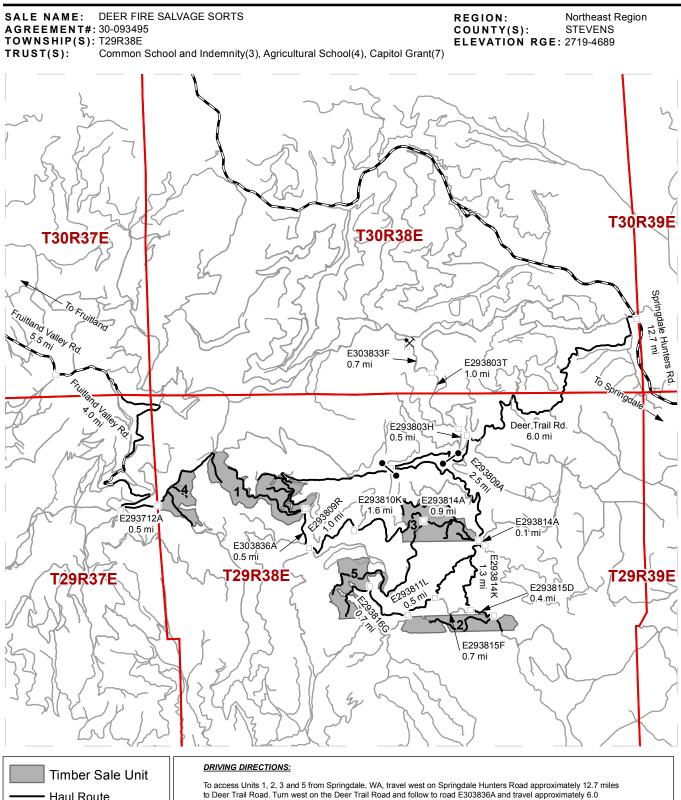

INDED NOTICE OF CALE


TIMBER NOTICE O	Purchaser must pay the forest excise taxes associated with the log sorts delivered to them.
144.	The tax rate for this sale is 4.2 %. Taxable Stumpage = Total Delivered Value – (Harvest Cost + Estimated Haul Cost + ARRF). For more information contact the Department of Revenue, Forest Tax Section at 1-800-548-8829.
	Use the following rates for estimating taxable stumpage:
	Harvest Cost = \$28.00 per Ton for sorts 01, 02, 03, 04, 05, 07, 08 and 09.
	Hauling Services Payment Rate per Ton = (Base Rate + Mileage Rate) x (Contractor's hauling bid factor)
	Base Rate = $$2.35$ per ton
	Mileage Rate = ((\$0.16 x C miles) + (\$0.11 x A miles)) x Fuel Index Factor
	ARRF does not apply.
	Note: To calculate AARF rates per ton use the tons\mbf conversion factor in the table above.
CONFIRMATION:	Each sort is subject to confirmation following auction. Sorts will not be confirmed until at least 10 days after auction. Final contract award is contingent upon the State's haul cost analysis. Actual haul route may vary and is subject to change at the State's discretion.
SPECIAL REMARKS:	The successful Purchaser(s) will be required to purchase logs from the sale area upon delivery to their location specified in the bid submitted. Logs will be delivered to the Purchaser's delivery location by the State's contract harvester. Purchaser is responsible for weighing and scaling costs. All tonnage loads will be weighed and all mbf loads will be scaled at State approved locations. The State reserves the right to determine where logs are authorized to be scaled and weighed.
	Locked gate restricts access. Contact the Northeast Region Office at (509) 684-7474 for access. Fire scars burned through the bark and into the wood fiber will be bucked from the logs prior to delivery.
	For more information regarding this log sort sale visit our web site: http://www.dnr.wa.gov/programs-and-services/product-sales-and-leasing/timber- sales/timber-auction-packets. If you have questions call Matt Ugladea at the Northeast Region Office at (509)684-7474 or Steve Teitzel at the Product Sales and Leasing Division Office in Olympia at (360)902-1741.






Prepared By: jmis490 01/04/2016



DRIVING MAP

miles. Cross the six mile bridge and travel east along road E293809A for 2.5 miles. At the five-way junction, take road E293814A and travel northwest approximately 0.1 miles to access Unit 3. To access Units 2 and 5, at the five-way junction, travel south on road E293814K for 1.3 miles. At the junction of

E293814K and E293815D, travel east on E283814D for 0.4 miles to Unit 2. To access Unit 5, at the junction of E293815K, E293815D and E293815F, turn west on E293815F, travel 0.7 miles to E293811L, travel southwest on E293811L 0.5 miles to E293816G, travel west on E293816G 0.7 miles to Unit 5. To access Unit 1, follow directions to Unit 3. At the junction of E293809A and E293814A, turn northeast on E293814A. Travel for 1.0 mile to the junction of E2938914A and E293810K. Travel west on the E293810K for 1.6 miles to the

junction of E293810K and E293809R. Travel southwest on the E293809R for 1.0 miles to the junction of E293809R and E303836A. Travel north for 0.5 miles on E303836A to Unit 1. To access Unit 4, from the intersection of Hwy 25 and Fruitland Valley Road in the town of Fruitland, WA, turn east on

Fruitland Valley Road off of Hwy 25, continue on Fruitland Valley Road approximately 5.5 miles to the intersection of Fruitland Valley Road and Turk Road. Continue southeast on Fruitland Valley Road for approximately 4.0 miles to the intersection of Fruitland Valley Road and E293712A road. Travel east for 0.5 miles on E293712A to Unit 4.

Haul Route

Other Route

County Road

Gate

×

Milepost Markers

Existing Rock Pit

STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES

LOG SALE AND PURCHASE CONTRACT

AGREEMENT NO. 30-093522

SALE NAME: DEER FIRE SALVAGE SORT 01

THE STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES, HEREINAFTER ACTING SOLELY, IN ITS PROPRIETARY CAPACITY, STATE, AND PURCHASER, AGREE AS FOLLOWS:

Section G: General Terms

G-001.2 Definitions

The following definitions apply throughout this contract;

Contract Administrator: Region Manager's designee responsible for assuring that the contractual obligations of the Purchaser and Contractor are met.

Contractor: State-selected harvester responsible to perform all duties as required by the Harvesting Services Contract, including but not limited to timber harvesting, road construction, debris removal and piling, hauling and delivery of forest products for weighing and/or scaling, to the Purchasers of the timber sales Sorts.

Delivery: Occurs when logs or forest products meeting the sorting specifications arrive at the Purchasers destination, as described in the contract.

Forest Product: Any material derived from the forest for commercial use.

Harvesting: A general term, referring to the Contractor's various obligations under the Harvesting Services Contract.

DRAFT

Harvesting Services Contract: Contract between the Contractor and the State, which sets forth the procedures and obligations of the Contractor for completing the harvesting of timber, and the delivery of various log sorts to the State's purchasers, and the payment obligations of the State, The Harvesting Services Contract will include a Road Plan for any road construction or reconstruction, where applicable.

Log Sale and Purchase Contract: Purchase Agreement between the State and Purchaser(s) of particular log sorts from the timber sale.

Purchaser: The company or individual that has entered a Log Sale Contract with the State for individual log sorts from the timber sale area. The Contractor must deliver the designated log sorts to this company or individual. Contractor will likely be delivering different log sorts to different purchasers under the Harvesting Services Contract.

State: The Washington State Department of Natural Resources, landowner and seller of forest products from the timber sale area. The State is represented by the Region Manager as designated on the contract signature page. Contractual obligations to the State are enforced by the Region Manager or the designated Contract Administrator.

G-010.2 Products Sold and Sale Area

Purchaser was the successful bidder on March 22, 2016 and sale was confirmed on ______. The State, as owner, agrees to sell and deliver to the Purchaser logs meeting the log sort specifications as described in the G-022.2 clause. Logs will be delivered from the DEER FIRE SALVAGE SORTS Timber Sale described as parts of Sections 6, 7, 8, 10, 16, 22, and 23 all in Township 29 North, Range 38 East W.M., in Stevens County.

G-022.2 Sorting Specifications

Purchaser shall accept and pay for delivery of log sorts by a state selected contractor to the designated Purchaser location that meets the following specifications:

Agreement No.	Sort #	Description	Destination
93522	1	DF/WL 11"+ dib	

Unless otherwise specified, no blue stain is allowed in Ponderosa pine.

G-024.2 Manufacturing Standards

All forest products except poles, produced and sold under this contract will be manufactured to maximize the amount of logs meeting preferred log lengths and to achieve the average log length listed.

Agreement	Sort	Scaling
No.	#	Rule
93522	01	ES

Average Log Length	Preferred Log Lengths
N/A	

"WS" indicates that west side scaling rules apply. Minimum trim is 8 inches per scaling segment for west side scaling rules. "ES" indicates that east side scaling rules apply. Minimum trim is 4 inches per scaling segment for east side scaling rules.

Poles produced under this contract will be manufactured to ANSI specifications (American National Standard Specifications and Dimensions for Wood Poles), in force at the time of signing this contract.

- a. Sweep will be limited to within the bole of the log as measured using a tape stretched between the centers of each end of the log.
- b. Logs approved by the state for peelers shall be chuckable with no more than a 2 inch diameter area of rot within a 5 inch diameter circle located at the center of either end of the log.
- c. Limbs and knots shall be cut flush, with no more than 15 percent of a log having limbs or knots over 2 inches in diameter extending more than 2 inches above the surface of the log.
- d. Surface characteristics for a high quality (HQ) "A" log sort will have sound tight knots and not to exceed 1 ½ inch in diameter, numbering not more than an average of one per foot of log length. May include logs with not more than two larger knots. Knots ½ inch and smaller in diameter shall not be a determining factor. Logs will have a growth ring count of 6 or more rings per inch in the outer third top end of the log.

G-025 Schedules

The following attached schedules are hereby incorporated by reference:

Schedule	Title
А	Sort Specifications

G-026.2 Log Delivery Destination

Purchaser shall accept logs delivered to the destination as described in the G-022.2 clause. Purchaser may make a written request to the State for a change in log delivery destination or scaling or weighing location. If agreeable and in the best interest of the State, the State may approve the Purchaser's request. Written approval must be granted by the State prior to log delivery to a new destination or use of a new scaling or weighing facility.

Increased haul distance shall result in an increase in the P-028.2 log delivery payment rate in an amount to be calculated by the State. In no circumstance shall the payment rate for delivered logs be reduced as a result of a state approved delivery destination or scaling or weighing facility change.

Purchaser may refuse loads delivered to the wrong destination.

G-027.2 Log Delivery Schedule and Conditions

- a. Delivery hours Purchaser agrees to accept logs from the Contractor at the Purchaser's delivery location during Purchaser's working hours or at least between the hours of 8:00 a.m. and 5:00 p.m., Monday through Friday, except legal holidays unless otherwise agreed upon by the State.
- b. Improperly loaded trucks It is understood and agreed that the Purchaser incurs no obligation to accept improperly or illegally loaded trucks in its facility. Any truck so loaded may be directed to vacate the yard and shall remain the responsibility of the harvesting contractor. The Purchaser shall notify the State within 24 hours of any load (s) rejected and specify the reasons why.
- c. Log Delivery Interruptions Purchaser may schedule times in which delivery of logs will not be accepted. The Purchaser shall notify the Contract Administrator at least five (5) working days before the scheduled interruption or closure occurs. The duration of the log delivery interruption shall not exceed seven (7) consecutive working days or a total of ten (10) working days over the duration of the contract term. If Purchaser's scheduled delivery interruption exceeds contract requirements and causes the State harm, Purchaser will be in breach of contract and subject to liquidated damages as per the D-026.2 and D-027.2 clauses, unless Purchaser and the State have made a prior agreement in writing to mitigate potential harm to the State.
- d. Required Acceptance of Daily Load Deliveries and Notification If the State is harmed by purchaser's refusal to accept up to 20 truck deliveries of any one sort per day, Purchaser will be in breach of contract and subject to damages as per the D-026.2 and D-027.2 clauses. A truck delivery is all the wood delivered including sorts on super trucks, mule trains and pups brought to the delivery point by a single truck. The Purchaser shall notify the Contract Administrator at least 48 hours in advance if:

1. Purchaser intends to limit the number of truck deliveries accepted on any day to less than that listed above, or

2. Purchaser intends to limit the number of truck deliveries accepted on any day to the number listed above.

- e. State Notification to Purchaser The State will notify the Purchaser when it anticipates or schedules an interruption of deliveries and when it anticipates the number of truck deliveries on any day will exceed the number listed above.
- f. If payments are not received or, the State determines that the payment security has become unsatisfactory or, a demand is made against the payment security

under the P-045.2 clause the State shall suspend deliveries until such time as the violation has been remedied. Any suspension of deliveries due to late payment or inadequate payment security will be considered a Log Delivery Interruption under (c) of this clause.

G-030.2 Contract Term and Expiration Date

Purchaser agrees to accept and pay for forest products delivered through the period ending November 30, 2016.

G-050.2 Contract Term Extension

Contract extensions and any other conditions subject to the extension as agreed to by the Purchaser and State, must be formalized in writing, signed by Purchaser and State.

G-054.2 Early Contract Termination

The State may terminate this contract in whole or in part by giving fifteen (15) days written notice to the Purchaser when it is in the best interests of the State. If this contract is so terminated, the State shall be liable only for the return of that portion of the initial deposit that is not required for payment, and the return of unapplied payments. The State shall not be liable for damages, whether direct or consequential.

G-056.2 Force Majeure

No Party shall be liable for any failure to perform its obligations, other than payments due, where such failure is as a result of Acts of Nature (including fire, flood, earthquake, storm, or other natural disaster), war, act of foreign enemies, hostilities (whether war is declared or not), terrorist activities, government sanction, fire, labor dispute, strike or lockout.

Any Party asserting Force Majeure as an excuse shall have the burden of proving that reasonable steps were taken (under the circumstances) to minimize delay or damages caused by foreseeable events, that all non-excused obligations were substantially fulfilled, and that the other Party was timely notified of the likelihood or actual occurrence which would justify such an assertion, so that other prudent precautions could be contemplated.

In the event of Force Majeure, the State reserves the right to terminate this agreement in accordance with clause G-054.2 'Early Contract Termination'.

G-060.2 Exclusion of Warranties

The PARTIES AGREE that the IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE and ALL OTHER WARRANTIES EXPRESSED OR IMPLIED ARE EXCLUDED from this transaction and shall not apply to the goods to be harvested or sold. For example, THE FOLLOWING SPECIFIC MATTERS ARE NOT WARRANTED, and are EXCLUDED from this transaction:

a. The MERCHANTABILITY of the forest products. The use of the term "merchantable" in any document is not intended to vary the foregoing.

- b. The CONDITION of the forest products. The forest products will be conveyed "AS IS."
- c. THE VOLUME, WEIGHT, QUANITY, OR QUALITY, of the forest products to be harvested. The descriptions of the forest products to be conveyed, are estimates only, made solely for administrative and identification purposes. The timing of forest product deliveries.
- d. Items contained in any other documents prepared for or by the State.

G-065 Regulatory Disclaimer

The State disclaims any responsibility for, or liability relating to, regulatory actions by any government agency, including actions pursuant to the Forest Practices Act, Ch. 76.09 RCW that may affect the operability of the timber sale.

G-070.2 Limitation on Damage

In the event of a breach of any provision of this contract by the State, the liability of the State shall be limited to return of the unused initial deposit and unapplied payments to the Purchaser. The State shall not be liable for any damages, whether direct, incidental, or consequential.

G-112.2 Title

The State hereby warrants that State is the owner of said logs and has the right to sell same, free of liens, encumbrances, or claims, but subject to trade restrictions promulgated in WAC 240-15-015. Purchaser assumes title and all risk and responsibility for said logs upon delivery.

G-116.2 Sustainable Forestry Initiative® (SFI) Certification

Forest products purchased under this contract are certified as being in conformance with the Sustainable Forestry Initiative program Standard under certificate number: BV-SFIS-US09000572.

G-160.2 Agents

The State's rights and duties will be exercised by the Region Manager at Colville, Washington. The Region Manager will notify Purchaser in writing who is responsible for administering the contract. The Region Manager has sole authority to waive, modify, or amend the terms of this contract in the manner prescribed in clause G-180. No agent, employee, or representative of the State has any authority to bind the State to any affirmation, representation, or warranty concerning the logs conveyed beyond the terms of this contract.

The Purchaser agrees to notify the State in writing of their authorized representative at the log delivery destination who will be readily available and who shall be authorized to receive, on behalf of the Purchaser any instructions or notices given by the State in regard to performance under this contract, and any limits to this person's authority.

G-180 Modifications

Waivers, modifications, or amendments of the terms of this contract must be in writing signed by Purchaser and the State.

G-190 Contract Complete

This contract is the final expression of the Parties' agreement. There are no understandings, agreements, or representations, expressed or implied, which are not specified in this contract.

G-200.2 Notice

Notices required to be given under the following clauses shall be in writing and shall be delivered to the State or Purchaser's authorized agent or sent by certified mail to the Purchaser's post office address, so that their receipt may be acknowledged.

G-026.2 Log Delivery Destination G-027.2 Log Delivery and Schedule Conditions G-210.2 Violation of Contract

All other notices required to be given under this contract shall be in writing and delivered to their respective authorized agent or mailed to the Party's post office address. Parties agree to notify the other of any change of mailing address.

G-210.2 Violation of Contract

- a. If Purchaser violates any provision of this contract, the Contract Administrator, by written notice, may suspend delivery of further loads of forest products. If the violation is capable of being remedied, the Purchaser has five (5) days after receipt of suspension notice to remedy the violation. If the violation cannot be remedied (such as violation of WAC 240-15-015) or Purchaser fails to remedy the violation within five (5) days after receipt of a suspension notice, the State may terminate the rights of the Purchaser under this contract and collect damages as described in the damages clause in this contract.
- b. The State has the right to remedy the breach in the absence of any indicated attempt by the Purchaser or if Purchaser is unable, as determined by the State, to remedy the breach. Any expense incurred by the State shall be charged to Purchaser and shall be paid within thirty (30) days of receipt of billing.
- c. If Purchaser's violation is a result of a failure to make payment to the State when due, in addition to (a.) above, interest shall accrue on the unpaid balance at 12 percent per annum, beginning the date payment was due. The State may secure payments from the security provided.

G-240.2 Dispute Resolution

The following procedures apply in the event of a dispute regarding interpretation or administration of this contract and the parties agree that these procedures must be followed before a lawsuit can be initiated.

- a. In the event of a dispute, Purchaser must make a written request to the Region Manager for resolution prior to seeking other relief.
- b. The Region Manager will issue a written decision on Purchaser's request within five business days.
- c. Within five business days of receipt of the Region Manager's decision, the Purchaser may make a written request for resolution to the Deputy Supervisor
 - Uplands of the Department of Natural Resources.
- d. Unless otherwise agreed, the Deputy Supervisor Uplands will hold a conference within 15 calendar days of the receipt of Purchaser's request for review of the Region Manager's written decision. Purchaser and the Region Manager will have an opportunity to present their positions. The Deputy Supervisor Uplands will issue a decision within a reasonable time of being presented with both Parties' positions.

G-252.2 Forest Excise Tax

Purchaser shall be responsible for payment of all forest excise taxes pursuant to chapter 84.33 RCW.

G-253.2 Harvesting Cost Information

The State agrees to supply all harvesting cost information to the Purchaser for their consideration in payment of forest excise taxes.

G-260 Venue

This contract shall be governed by the laws of the State of Washington. In the event of a lawsuit involving this contract, venue shall be proper only in Thurston County Superior Court.

G-330.2 Contract Review

Purchaser may arrange with the Contract Administrator to review the provisions of this contract prior to the delivery of forest products.

Section P: Payments and Securities

P-010 Initial Deposit

Purchaser paid DATA MISSING initial deposit, which will be maintained pursuant to RCW 79.15.100(3). If the operating authority on this contract expires without Purchaser's payment of the full amount specified in the 'Payment for Forest Products' clause, the initial deposit will be immediately forfeited to the State, and will be offset against Purchaser's remaining balance due. Any excess initial deposit funds not needed to ensure full payment of the contract price, or not needed to complete any remaining obligations of the Purchaser existing after contract expiration, will be refunded to the Purchaser.

P-028.2 Payment for Forest Products Delivered

Purchaser agrees to pay the State for delivered forest products at the following rate:

\$0.00/Ton

Purchaser agrees to increase the above delivered payment rate as approved by the State in the event the location of delivery is changed per the G-026.2 clause.

P-036.2 Missorts and Payment Reduction for Delivered Forest Products

Forest Products delivered that do not meet the sorting specifications in G-022.2 where species are incorrect, are scaled over 1" outside the listed diameter specifications, or ponderosa pine with blue stain are considered mis-sorts.

However, when mis-sorted Forest Products amount to more than 3% of the total delivered sort volume, Purchaser may request approval for payment reduction for delivered volume exceeding the mis-sort threshold.

Requests for payment reduction must be submitted to the State in writing prior to contract expiration. Eligibility for mis-sort payment reduction is subject to State approval and shall be determined by the State's delivered product analysis. Forest Products determined by the State eligible for mis-sort price reduction are not eligible for any other price adjustments.

Payment reduction for Forest Products deemed mis-sorted will be calculated as follows:

Payment Reduction = $(B \times M) \times R$ Where:

B = Bid rate from P-028.2 clause

- M = Mis-sorted volume exceeding threshold excluding utility
- R = Reduction factor
 - 0.3 for mis-sort except for blue stain
 - 0.4 for mis-sort related to blue stain

Third party scaling organization information is required to determine Scribner mbf for payment reduction purposes. Value will be derived from the applicable sort value as described in this contract.

Scale information for determining mis-sort payment reduction eligibility must be obtained from roll-out scale. Truck-ramp and/or bundle scaling information is not acceptable for determining eligibility.

Purchaser's exclusive remedy for mis-sorts shall be the payment reduction described in this clause, notwithstanding other provisions in the Uniform Commercial Code

P-037.2 Mismanufacture and Payment Reduction for Delivered Forest Products

Forest Products delivered that do not meet preferred log length specifications or multiples or combinations of preferred lengths and Forest Products delivered not meeting minimum log quality specifications as described in the G-024.2 clause are considered mis-manufactured. Purchaser receiving mis-manufactured Forest Products is required to pay the State at the bid price under this contract.

However, when mis-manufactured Forest Products amount to more than 3% of the total delivered sort volume, Purchaser may request approval for payment reduction for delivered volume exceeding the mis-manufacture threshold.

Requests for payment reduction must be submitted to the State in writing prior to contract expiration. Eligibility for mis-manufacture payment reduction is subject to State approval and shall be determined by the State's delivered product analysis. Forest Products determined by the State eligible for mis-manufacture price reductions are not eligible for any other price adjustments.

Payment reduction for Forest Products deemed mis-manufactured will be calculated as follows:

Payment Reduction = $(B \times M) \times (0.2)$ Where: B = Bid rate from P-028.2 clause

M = Mis-manufactured volume exceeding threshold excluding utility

Third party scaling organization information is required to determine Scribner mbf for payment reduction purposes. Value will be derived from the applicable sort value as described in this contract.

Scale information for determining mis-manufacture payment reduction eligibility must be obtained from roll-out scale. Truck-ramp and/or bundle scaling information is not acceptable for determining eligibility.

Purchaser's exclusive remedy for mis-manufacture shall be the payment reduction described in this clause, notwithstanding other provisions in the Uniform Commercial Code.

P-039.2 Tonnage Sort Payment Reduction Requirements

Purchaser must provide a plan in writing, acceptable to the State, to acquire third party Scribner mbf scaling information in order to be eligible for a payment reduction for a tonnage sort according to clauses P-036.2 or P-037.2. Logs delivered and accepted by the Purchaser prior to the State's acceptance of Purchaser's written payment reduction plan are not eligible for payment reduction.

Failure of Purchaser to provide sample scale data in a timely, accurate and legible basis will void an approved sample scale plan.

An approved payment reduction plan can be voided at the sole discretion of the State.

For the purpose of tonnage sort payment reduction requests, preferred log lengths for tonnage sawlog sorts shall include the following plus any additional lengths identified in clause G-024.2:

Species Type	Preferred Lengths
Conifer Sorts	16', 20', 24', 26', 32', 40'
Hardwood Sorts	18', 20', 26', 28', 30', 36', 38', 40'

P-040.2 Weighing and Scaling Costs

Purchaser agrees to pay for all weighing costs for logs delivered regardless if logs are purchased on a weight or scale basis. In addition, Purchaser agrees to pay for all scaling costs for logs delivered on a scale basis. Purchaser also agrees to pay for all costs associated with the transmission and reporting of scale or weight data.

P-045.2 Guarantee of Payment

Prior to the delivery of forest products and at a date determined by the State, Purchaser shall guarantee payment to the State for products delivered by posting with the State an approved payment security. If the Purchaser has purchased more than one sort, the payment securities may be consolidated for all the sorts. Acceptable payment security includes cash, certificate of deposit assignment, payment bond, savings account assignment, or irrevocable bank letter of credit.

The amount of payment security shall be determined by the State. The amount of payment security shall represent at least 30 days value of forest product deliveries. Payment security for products delivered will be used to guarantee payment to the State for late or non-payments.

If at any time the State determines that the security has become unsatisfactory or a demand is made against the payment security, the Purchaser agrees to increase the amount or replace the security with one acceptable to the state within 5 business days. Failure to increase the amount or replace the security is considered a breach of contract.

P-050.2 Billing and Payment Procedure for Forest Products Delivered

The State will compute and forward to Purchaser a billing statement of charges for forest products delivered during the billing period at the delivered rate shown in P-028.2 clause. After receipt of the billing statement, Purchaser's payment must be received by the Department of Natural Resources on or before the due date shown on the billing statement. Purchaser agrees to make payment, payable to the Department of Natural Resources. Failure to pay on time for forest products delivered is considered a breach of contract.

Included with the billing statement will be a summary report for the billing period compiled by the State or their log and load reporting service.

The State will adjust final billings to account for any State approved payment reductions.

P-080 Payment Account Refund

Advance payments made under P-045 or P-045.2 remaining on account above the value for the charges shall be returned to Purchaser within 30 days following the final report of charges. Refunds not made within the 30 day period will accrue interest at the interest rate, as established by WAC 332-100-030, computed on a daily basis until paid.

Section L: Log Definitions and Accountability

L-010.2 Forest Products Conveyed

Forest products conveyed are logs or parts of logs delivered meeting the sorting criteria defined by clauses G-022.2 and G-024.2 of this contract

L-014.2 Sorts Delivered to Incorrect Destination

Purchaser has agreed to purchase the sort as described in the G-022.2 clause. In the event a load from a different sort is delivered to Purchaser, Purchaser may reject the load. If Purchaser receives an incorrectly delivered load, they shall notify the State within 24 hours. If the Purchaser accepts the load, provisions in the P-035.2 or P-036.2 clause may apply.

L-071.2 Log and Load Reporting Service

This contract may at the States discretion, require the services of a State approved third party log and load reporting service. Purchaser shall ensure log volume measurement, weight, or scale and weight data for each load is received by the log and load reporting service within of logs being measured or weighed.

If during the term of this contract, the State discontinues use of the Log and Load Reporting Service, the State will notify the Purchaser in writing, and will approve an alternative log and load reporting process.

L-090 Scaling Rules

Determination of volume of any forest products shall be conducted by a state approved third party scaling organization and in accordance with the Eastside log scaling and grading rules, Region 6 taper rules, and Scribner Volume Table, revised July 1, 1972, contained in the Northwest Log Rules Eastside and Westside Log Scaling Handbook (developed and produced by the Northwest Log Rules Advisory Group) and in effect on the date of confirmation of this contract.

Special scaling specifications shall be noted on the State's Brand Designation form which is hereby incorporated to this contract by reference.

L-110 State Approval of Log Scaling and Weighing Locations

Forest Product measurement and weighing facilities required by this contract must be approved by the State. Forest products sold under the contract which require log scaling shall be scaled, measured, or counted by a State approved third party log scaling organization. Forest products sold under the contract which require weighing shall be weighed at a location that meets Washington State Department of Agriculture approval.

Prior to forest products being hauled, the Contract Administrator must authorize in writing the use of State approved measurement and/or weighing facilities that are at or en-route to final destinations. Forest products from this sale shall be measured or weighed at facilities, which are currently approved for use by the State and are currently authorized for this sale. The State reserves the right to verify load volume and weights with State employees or contractors at the State's own expense. The State reserves the right to revoke the authorization of previously approved measurement locations.

Section D: Damages

D-010 Liquidated Damages

The clauses in the DAMAGES section of this contract provide for payments by Purchaser to the State for certain breaches of the terms of this contract. These payments are agreed to as liquidated damages and not as penalties. They are reasonable estimates of anticipated harm to the State caused by Purchaser's breach. These liquidated damages provisions are agreed to by the State and Purchaser with the understanding of the difficulty of proving loss and the inconvenience or infeasibility of obtaining an adequate remedy. These liquidated damages provisions provide greater certainty for the Purchaser by allowing the Purchaser to better assess its responsibilities under the contract.

D-026.2 Damages for Delivery Interruptions and Load Non-Acceptance

- a. Purchaser's failure to accept delivery of forest products due to an extended delivery interruption exceeding the limits as described in the G-027.2 (c) clause, results in substantial injury to the State. The Purchaser shall pay the State liquidated damages at a rate of \$1,000.00 per each day of breach, until breach is remedied.
- b. Unless Purchaser and the State have made a prior agreement in writing, Purchaser's failure to accept at least the number of delivered loads as described in the G-027.2 (d) clause, results in substantial injury to the State. The Purchaser shall pay the State liquidated damages at a rate of \$200 per each truck delivery not accepted, until breach is remedied.

D-027.2 Failure to Accept Forest Products Sold

Purchaser's failure to accept all or part of the forest products sold in this agreement prior to expiration or completion of the contract results in substantial injury to the State. Except for reasons other than 'Force Majeure' (G-056.2), either section a. or b. below will apply as determined by the State.

- a. When Purchaser's refusal to accept forest products does not prevent further harvesting operations, or forest products can be re-sold to another buyer acceptable to the State, Purchaser shall be liable for and pay State for actual damages plus costs, as determined by the State associated with the administration and re-sale of forest products not accepted by Purchaser under the terms of this contract.
- b. When Purchaser's refusal to accept forest products causes a stoppage of the State's harvesting operations and prevents the State from further harvest of the sale area, the actual damage to the State and associated costs are difficult to assess. The remaining value of all the forest products left in the sale area once the stoppage occurs is not readily ascertainable. Purchaser's failure to perform disrupts the State's management plans. Therefore, Purchaser agrees to pay the State as liquidated damages, a sum calculated using the following formula:

LD = (.35V-I) + C + A - P

Where:

LD = Liquidated Damages

V = The stumpage value remaining in the sale area at the date of work stoppage. This will be determined by multiplying the contract bid rate contained in the P-028.2 clause for all sorts originating in the sale area, by the State's estimate of the remaining volume, less the cost of harvesting and delivery associated with each sort. I = Initial Deposit

C = Costs associated with required harvesting services and road construction services prior to work stoppage but not amortized or paid.

A = Administrative fee = \$2,500.00

P = Advance payments received exceeding the value of logs delivered under this contract.

The above formula reflects the Purchaser's forfeiture of the initial deposit in accordance with clause P-010 by deducting the initial deposit from the amount owed. In no event shall the liquidated damages be less than zero. Interest on the liquidated damage is owed from the date of the work stoppage until final payment, calculated using the following formula:

Interest = $r \times LD \times N$

Where:

r = daily equivalent of an annual interest at current interest rate as established by WAC 332-100-030.

N = Number of days from work stoppage to time of payment

D-030.2 Inadequate Log Accountability

Failure to provide weighing and third party scaling information result in substantial injury to the State. The potential loss of accountability is not readily ascertainable. These contractual breaches result in an increase in the potential for the delivery of forest products for which the State receives inadequate payment and causes an increase in the State's administration costs associated with this contract. The actual costs of these breaches are difficult to assess.

For these reasons, Purchaser's payments for forest product delivery under this contract will be increased in the following amounts, as liquidated damages, to compensate the State for these breaches: \$250.00 each time a load weight is not provided as required by the contract, and \$250.00 each time load scale data is not determined and provided by a State approved third party scaling organization in accordance with this contract.

IN WITNESS WHEREOF, the Parties hereto have entered into this contract.

STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES

Purchaser

Loren D. Torgerson Northeast Region Manager

Date: _____Address:

Date: _____

DRAFT

CORPORATE ACKNOWLEDGEMENT

STATE OF)			
COUNTY OF)			
On this	day of		, 20,	before me	personally
			_ to me	known to _ of the c	
that executed the	within and foregoing instru	ument and acknow			-
free and voluntar	y act and deed of the corpor d that (he/she was) (they we	ration, for the us	es and purp	oses therein r	

IN WITNESS WHEREOF, I have hereunto set my hand and affixed my official seal the day and year first above written.

Notary Public in and for the State of

My appointment expires _____

<u>Schedule A</u> Sort Specifications

Sort #1: Douglas fir and western larch 11 inches and greater in diameter inside the bark. If Purchaser designates peeler lengths, then chuckability standards apply to the logs. Nonchuckable logs will be delivered to the Purchaser of Sort #7. If the Purchaser designates sawlog lengths, then all Douglas fir and western larch sawlogs will be delivered to the Purchaser of this sort and none will be delivered to the Purchaser of Sort #7.

Sort #2: Douglas fir and western larch 7 inches to 10 inches diameter inside the bark. If Purchaser designates peeler lengths, then chuckability standards apply to the logs. Nonchuckable logs will be delivered to the Purchaser of Sort #8. If the Purchaser designates sawlog lengths, then all Douglas fir and western larch sawlogs will be delivered to the Purchaser of this sort and none will be delivered to the Purchaser of Sort #8.

Sort #3: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 5 inches to 6 inches diameter inside the bark.

Sort #4: Ponderosa pine 11 inches and greater in diameter inside the bark.

Sort #5: Ponderosa pine 7 inches to 10 inches diameter inside the bark.

Sort #6: Blue Stain ponderosa pine 7 inches and greater in diameter inside the bark.

Sort #7: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 11 inches and greater in diameter inside the bark. See Sort #1 description for handling procedures for Douglas fir and western larch.

Sort #8: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 7 inches to 10 inches diameter inside the bark. See Sort #2 description for handling procedures for Douglas fir and western larch.

Sort #9: Western red cedar 5 inches and greater in diameter inside the bark.

STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES

LOG SALE AND PURCHASE CONTRACT

AGREEMENT NO. 30-093523

SALE NAME: DEER FIRE SALVAGE SORT 02

THE STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES, HEREINAFTER ACTING SOLELY, IN ITS PROPRIETARY CAPACITY, STATE, AND PURCHASER, AGREE AS FOLLOWS:

Section G: General Terms

G-001.2 Definitions

The following definitions apply throughout this contract;

Contract Administrator: Region Manager's designee responsible for assuring that the contractual obligations of the Purchaser and Contractor are met.

Contractor: State-selected harvester responsible to perform all duties as required by the Harvesting Services Contract, including but not limited to timber harvesting, road construction, debris removal and piling, hauling and delivery of forest products for weighing and/or scaling, to the Purchasers of the timber sales Sorts.

Delivery: Occurs when logs or forest products meeting the sorting specifications arrive at the Purchasers destination, as described in the contract.

Forest Product: Any material derived from the forest for commercial use.

Harvesting: A general term, referring to the Contractor's various obligations under the Harvesting Services Contract.

DRAFT

Harvesting Services Contract: Contract between the Contractor and the State, which sets forth the procedures and obligations of the Contractor for completing the harvesting of timber, and the delivery of various log sorts to the State's purchasers, and the payment obligations of the State, The Harvesting Services Contract will include a Road Plan for any road construction or reconstruction, where applicable.

Log Sale and Purchase Contract: Purchase Agreement between the State and Purchaser(s) of particular log sorts from the timber sale.

Purchaser: The company or individual that has entered a Log Sale Contract with the State for individual log sorts from the timber sale area. The Contractor must deliver the designated log sorts to this company or individual. Contractor will likely be delivering different log sorts to different purchasers under the Harvesting Services Contract.

State: The Washington State Department of Natural Resources, landowner and seller of forest products from the timber sale area. The State is represented by the Region Manager as designated on the contract signature page. Contractual obligations to the State are enforced by the Region Manager or the designated Contract Administrator.

G-010.2 Products Sold and Sale Area

Purchaser was the successful bidder on March 22, 2016 and sale was confirmed on ______. The State, as owner, agrees to sell and deliver to the Purchaser logs meeting the log sort specifications as described in the G-022.2 clause. Logs will be delivered from the DEER FIRE SALVAGE SORTS Timber Sale described as parts of Sections 6, 7, 8, 10, 16, 22, and 23 all in Township 29 North, Range 38 East W.M., in Stevens County.

G-022.2 Sorting Specifications

Purchaser shall accept and pay for delivery of log sorts by a state selected contractor to the designated Purchaser location that meets the following specifications:

Agreement No.	Sort #	Description	Destination
93523	2	DF/WL 7-10" dib	

Unless otherwise specified, no blue stain is allowed in Ponderosa pine.

G-024.2 Manufacturing Standards

All forest products except poles, produced and sold under this contract will be manufactured to maximize the amount of logs meeting preferred log lengths and to achieve the average log length listed.

Agreement	Sort	Scaling
No.	#	Rule
93523	02	ES

Average Log Length	Preferred Log Lengths
N/A	

"WS" indicates that west side scaling rules apply. Minimum trim is 8 inches per scaling segment for west side scaling rules. "ES" indicates that east side scaling rules apply. Minimum trim is 4 inches per scaling segment for east side scaling rules.

Poles produced under this contract will be manufactured to ANSI specifications (American National Standard Specifications and Dimensions for Wood Poles), in force at the time of signing this contract.

- a. Sweep will be limited to within the bole of the log as measured using a tape stretched between the centers of each end of the log.
- b. Logs approved by the state for peelers shall be chuckable with no more than a 2 inch diameter area of rot within a 5 inch diameter circle located at the center of either end of the log.
- c. Limbs and knots shall be cut flush, with no more than 15 percent of a log having limbs or knots over 2 inches in diameter extending more than 2 inches above the surface of the log.
- d. Surface characteristics for a high quality (HQ) "A" log sort will have sound tight knots and not to exceed 1 ½ inch in diameter, numbering not more than an average of one per foot of log length. May include logs with not more than two larger knots. Knots ½ inch and smaller in diameter shall not be a determining factor. Logs will have a growth ring count of 6 or more rings per inch in the outer third top end of the log.

G-025 Schedules

The following attached schedules are hereby incorporated by reference:

Schedule	Title
А	Sort Specifications

G-026.2 Log Delivery Destination

Purchaser shall accept logs delivered to the destination as described in the G-022.2 clause. Purchaser may make a written request to the State for a change in log delivery destination or scaling or weighing location. If agreeable and in the best interest of the State, the State may approve the Purchaser's request. Written approval must be granted by the State prior to log delivery to a new destination or use of a new scaling or weighing facility.

Increased haul distance shall result in an increase in the P-028.2 log delivery payment rate in an amount to be calculated by the State. In no circumstance shall the payment rate for delivered logs be reduced as a result of a state approved delivery destination or scaling or weighing facility change.

Purchaser may refuse loads delivered to the wrong destination.

G-027.2 Log Delivery Schedule and Conditions

- a. Delivery hours Purchaser agrees to accept logs from the Contractor at the Purchaser's delivery location during Purchaser's working hours or at least between the hours of 8:00 a.m. and 5:00 p.m., Monday through Friday, except legal holidays unless otherwise agreed upon by the State.
- b. Improperly loaded trucks It is understood and agreed that the Purchaser incurs no obligation to accept improperly or illegally loaded trucks in its facility. Any truck so loaded may be directed to vacate the yard and shall remain the responsibility of the harvesting contractor. The Purchaser shall notify the State within 24 hours of any load (s) rejected and specify the reasons why.
- c. Log Delivery Interruptions Purchaser may schedule times in which delivery of logs will not be accepted. The Purchaser shall notify the Contract Administrator at least five (5) working days before the scheduled interruption or closure occurs. The duration of the log delivery interruption shall not exceed seven (7) consecutive working days or a total of ten (10) working days over the duration of the contract term. If Purchaser's scheduled delivery interruption exceeds contract requirements and causes the State harm, Purchaser will be in breach of contract and subject to liquidated damages as per the D-026.2 and D-027.2 clauses, unless Purchaser and the State have made a prior agreement in writing to mitigate potential harm to the State.
- d. Required Acceptance of Daily Load Deliveries and Notification If the State is harmed by purchaser's refusal to accept up to 20 truck deliveries of any one sort per day, Purchaser will be in breach of contract and subject to damages as per the D-026.2 and D-027.2 clauses. A truck delivery is all the wood delivered including sorts on super trucks, mule trains and pups brought to the delivery point by a single truck. The Purchaser shall notify the Contract Administrator at least 48 hours in advance if:

1. Purchaser intends to limit the number of truck deliveries accepted on any day to less than that listed above, or

2. Purchaser intends to limit the number of truck deliveries accepted on any day to the number listed above.

- e. State Notification to Purchaser The State will notify the Purchaser when it anticipates or schedules an interruption of deliveries and when it anticipates the number of truck deliveries on any day will exceed the number listed above.
- f. If payments are not received or, the State determines that the payment security has become unsatisfactory or, a demand is made against the payment security

under the P-045.2 clause the State shall suspend deliveries until such time as the violation has been remedied. Any suspension of deliveries due to late payment or inadequate payment security will be considered a Log Delivery Interruption under (c) of this clause.

G-030.2 Contract Term and Expiration Date

Purchaser agrees to accept and pay for forest products delivered through the period ending November 30, 2016.

G-050.2 Contract Term Extension

Contract extensions and any other conditions subject to the extension as agreed to by the Purchaser and State, must be formalized in writing, signed by Purchaser and State.

G-054.2 Early Contract Termination

The State may terminate this contract in whole or in part by giving fifteen (15) days written notice to the Purchaser when it is in the best interests of the State. If this contract is so terminated, the State shall be liable only for the return of that portion of the initial deposit that is not required for payment, and the return of unapplied payments. The State shall not be liable for damages, whether direct or consequential.

G-056.2 Force Majeure

No Party shall be liable for any failure to perform its obligations, other than payments due, where such failure is as a result of Acts of Nature (including fire, flood, earthquake, storm, or other natural disaster), war, act of foreign enemies, hostilities (whether war is declared or not), terrorist activities, government sanction, fire, labor dispute, strike or lockout.

Any Party asserting Force Majeure as an excuse shall have the burden of proving that reasonable steps were taken (under the circumstances) to minimize delay or damages caused by foreseeable events, that all non-excused obligations were substantially fulfilled, and that the other Party was timely notified of the likelihood or actual occurrence which would justify such an assertion, so that other prudent precautions could be contemplated.

In the event of Force Majeure, the State reserves the right to terminate this agreement in accordance with clause G-054.2 'Early Contract Termination'.

G-060.2 Exclusion of Warranties

The PARTIES AGREE that the IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE and ALL OTHER WARRANTIES EXPRESSED OR IMPLIED ARE EXCLUDED from this transaction and shall not apply to the goods to be harvested or sold. For example, THE FOLLOWING SPECIFIC MATTERS ARE NOT WARRANTED, and are EXCLUDED from this transaction:

a. The MERCHANTABILITY of the forest products. The use of the term "merchantable" in any document is not intended to vary the foregoing.

- b. The CONDITION of the forest products. The forest products will be conveyed "AS IS."
- c. THE VOLUME, WEIGHT, QUANITY, OR QUALITY, of the forest products to be harvested. The descriptions of the forest products to be conveyed, are estimates only, made solely for administrative and identification purposes. The timing of forest product deliveries.
- d. Items contained in any other documents prepared for or by the State.

G-065 Regulatory Disclaimer

The State disclaims any responsibility for, or liability relating to, regulatory actions by any government agency, including actions pursuant to the Forest Practices Act, Ch. 76.09 RCW that may affect the operability of the timber sale.

G-070.2 Limitation on Damage

In the event of a breach of any provision of this contract by the State, the liability of the State shall be limited to return of the unused initial deposit and unapplied payments to the Purchaser. The State shall not be liable for any damages, whether direct, incidental, or consequential.

G-112.2 Title

The State hereby warrants that State is the owner of said logs and has the right to sell same, free of liens, encumbrances, or claims, but subject to trade restrictions promulgated in WAC 240-15-015. Purchaser assumes title and all risk and responsibility for said logs upon delivery.

G-116.2 Sustainable Forestry Initiative® (SFI) Certification

Forest products purchased under this contract are certified as being in conformance with the Sustainable Forestry Initiative program Standard under certificate number: BV-SFIS-US09000572.

G-160.2 Agents

The State's rights and duties will be exercised by the Region Manager at Colville, Washington. The Region Manager will notify Purchaser in writing who is responsible for administering the contract. The Region Manager has sole authority to waive, modify, or amend the terms of this contract in the manner prescribed in clause G-180. No agent, employee, or representative of the State has any authority to bind the State to any affirmation, representation, or warranty concerning the logs conveyed beyond the terms of this contract.

The Purchaser agrees to notify the State in writing of their authorized representative at the log delivery destination who will be readily available and who shall be authorized to receive, on behalf of the Purchaser any instructions or notices given by the State in regard to performance under this contract, and any limits to this person's authority.

G-180 Modifications

Waivers, modifications, or amendments of the terms of this contract must be in writing signed by Purchaser and the State.

G-190 Contract Complete

This contract is the final expression of the Parties' agreement. There are no understandings, agreements, or representations, expressed or implied, which are not specified in this contract.

G-200.2 Notice

Notices required to be given under the following clauses shall be in writing and shall be delivered to the State or Purchaser's authorized agent or sent by certified mail to the Purchaser's post office address, so that their receipt may be acknowledged.

G-026.2 Log Delivery Destination G-027.2 Log Delivery and Schedule Conditions G-210.2 Violation of Contract

All other notices required to be given under this contract shall be in writing and delivered to their respective authorized agent or mailed to the Party's post office address. Parties agree to notify the other of any change of mailing address.

G-210.2 Violation of Contract

- a. If Purchaser violates any provision of this contract, the Contract Administrator, by written notice, may suspend delivery of further loads of forest products. If the violation is capable of being remedied, the Purchaser has five (5) days after receipt of suspension notice to remedy the violation. If the violation cannot be remedied (such as violation of WAC 240-15-015) or Purchaser fails to remedy the violation within five (5) days after receipt of a suspension notice, the State may terminate the rights of the Purchaser under this contract and collect damages as described in the damages clause in this contract.
- b. The State has the right to remedy the breach in the absence of any indicated attempt by the Purchaser or if Purchaser is unable, as determined by the State, to remedy the breach. Any expense incurred by the State shall be charged to Purchaser and shall be paid within thirty (30) days of receipt of billing.
- c. If Purchaser's violation is a result of a failure to make payment to the State when due, in addition to (a.) above, interest shall accrue on the unpaid balance at 12 percent per annum, beginning the date payment was due. The State may secure payments from the security provided.

G-240.2 Dispute Resolution

The following procedures apply in the event of a dispute regarding interpretation or administration of this contract and the parties agree that these procedures must be followed before a lawsuit can be initiated.

- a. In the event of a dispute, Purchaser must make a written request to the Region Manager for resolution prior to seeking other relief.
- b. The Region Manager will issue a written decision on Purchaser's request within five business days.
- c. Within five business days of receipt of the Region Manager's decision, the Purchaser may make a written request for resolution to the Deputy Supervisor
 - Uplands of the Department of Natural Resources.
- d. Unless otherwise agreed, the Deputy Supervisor Uplands will hold a conference within 15 calendar days of the receipt of Purchaser's request for review of the Region Manager's written decision. Purchaser and the Region Manager will have an opportunity to present their positions. The Deputy Supervisor Uplands will issue a decision within a reasonable time of being presented with both Parties' positions.

G-252.2 Forest Excise Tax

Purchaser shall be responsible for payment of all forest excise taxes pursuant to chapter 84.33 RCW.

G-253.2 Harvesting Cost Information

The State agrees to supply all harvesting cost information to the Purchaser for their consideration in payment of forest excise taxes.

G-260 Venue

This contract shall be governed by the laws of the State of Washington. In the event of a lawsuit involving this contract, venue shall be proper only in Thurston County Superior Court.

G-330.2 Contract Review

Purchaser may arrange with the Contract Administrator to review the provisions of this contract prior to the delivery of forest products.

Section P: Payments and Securities

P-010 Initial Deposit

Purchaser paid DATA MISSING initial deposit, which will be maintained pursuant to RCW 79.15.100(3). If the operating authority on this contract expires without Purchaser's payment of the full amount specified in the 'Payment for Forest Products' clause, the initial deposit will be immediately forfeited to the State, and will be offset against Purchaser's remaining balance due. Any excess initial deposit funds not needed to ensure full payment of the contract price, or not needed to complete any remaining obligations of the Purchaser existing after contract expiration, will be refunded to the Purchaser.

P-028.2 Payment for Forest Products Delivered

Purchaser agrees to pay the State for delivered forest products at the following rate:

\$0.00/Ton

Purchaser agrees to increase the above delivered payment rate as approved by the State in the event the location of delivery is changed per the G-026.2 clause.

P-036.2 Missorts and Payment Reduction for Delivered Forest Products

Forest Products delivered that do not meet the sorting specifications in G-022.2 where species are incorrect, are scaled over 1" outside the listed diameter specifications, or ponderosa pine with blue stain are considered mis-sorts.

However, when mis-sorted Forest Products amount to more than 3% of the total delivered sort volume, Purchaser may request approval for payment reduction for delivered volume exceeding the mis-sort threshold.

Requests for payment reduction must be submitted to the State in writing prior to contract expiration. Eligibility for mis-sort payment reduction is subject to State approval and shall be determined by the State's delivered product analysis. Forest Products determined by the State eligible for mis-sort price reduction are not eligible for any other price adjustments.

Payment reduction for Forest Products deemed mis-sorted will be calculated as follows:

Payment Reduction = $(B \times M) \times R$ Where:

B = Bid rate from P-028.2 clause

- M = Mis-sorted volume exceeding threshold excluding utility
- R = Reduction factor
 - 0.3 for mis-sort except for blue stain
 - 0.4 for mis-sort related to blue stain

Third party scaling organization information is required to determine Scribner mbf for payment reduction purposes. Value will be derived from the applicable sort value as described in this contract.

Scale information for determining mis-sort payment reduction eligibility must be obtained from roll-out scale. Truck-ramp and/or bundle scaling information is not acceptable for determining eligibility.

Purchaser's exclusive remedy for mis-sorts shall be the payment reduction described in this clause, notwithstanding other provisions in the Uniform Commercial Code

P-037.2 Mismanufacture and Payment Reduction for Delivered Forest Products

Forest Products delivered that do not meet preferred log length specifications or multiples or combinations of preferred lengths and Forest Products delivered not meeting minimum log quality specifications as described in the G-024.2 clause are considered mis-manufactured. Purchaser receiving mis-manufactured Forest Products is required to pay the State at the bid price under this contract.

However, when mis-manufactured Forest Products amount to more than 3% of the total delivered sort volume, Purchaser may request approval for payment reduction for delivered volume exceeding the mis-manufacture threshold.

Requests for payment reduction must be submitted to the State in writing prior to contract expiration. Eligibility for mis-manufacture payment reduction is subject to State approval and shall be determined by the State's delivered product analysis. Forest Products determined by the State eligible for mis-manufacture price reductions are not eligible for any other price adjustments.

Payment reduction for Forest Products deemed mis-manufactured will be calculated as follows:

Payment Reduction = $(B \times M) \times (0.2)$ Where: B = Bid rate from P-028.2 clause

M = Mis-manufactured volume exceeding threshold excluding utility

Third party scaling organization information is required to determine Scribner mbf for payment reduction purposes. Value will be derived from the applicable sort value as described in this contract.

Scale information for determining mis-manufacture payment reduction eligibility must be obtained from roll-out scale. Truck-ramp and/or bundle scaling information is not acceptable for determining eligibility.

Purchaser's exclusive remedy for mis-manufacture shall be the payment reduction described in this clause, notwithstanding other provisions in the Uniform Commercial Code.

P-039.2 Tonnage Sort Payment Reduction Requirements

Purchaser must provide a plan in writing, acceptable to the State, to acquire third party Scribner mbf scaling information in order to be eligible for a payment reduction for a tonnage sort according to clauses P-036.2 or P-037.2. Logs delivered and accepted by the Purchaser prior to the State's acceptance of Purchaser's written payment reduction plan are not eligible for payment reduction.

Failure of Purchaser to provide sample scale data in a timely, accurate and legible basis will void an approved sample scale plan.

An approved payment reduction plan can be voided at the sole discretion of the State.

For the purpose of tonnage sort payment reduction requests, preferred log lengths for tonnage sawlog sorts shall include the following plus any additional lengths identified in clause G-024.2:

Species Type	Preferred Lengths
Conifer Sorts	16', 20', 24', 26', 32', 40'
Hardwood Sorts	18', 20', 26', 28', 30', 36', 38', 40'

P-040.2 Weighing and Scaling Costs

Purchaser agrees to pay for all weighing costs for logs delivered regardless if logs are purchased on a weight or scale basis. In addition, Purchaser agrees to pay for all scaling costs for logs delivered on a scale basis. Purchaser also agrees to pay for all costs associated with the transmission and reporting of scale or weight data.

P-045.2 Guarantee of Payment

Prior to the delivery of forest products and at a date determined by the State, Purchaser shall guarantee payment to the State for products delivered by posting with the State an approved payment security. If the Purchaser has purchased more than one sort, the payment securities may be consolidated for all the sorts. Acceptable payment security includes cash, certificate of deposit assignment, payment bond, savings account assignment, or irrevocable bank letter of credit.

The amount of payment security shall be determined by the State. The amount of payment security shall represent at least 30 days value of forest product deliveries. Payment security for products delivered will be used to guarantee payment to the State for late or non-payments.

If at any time the State determines that the security has become unsatisfactory or a demand is made against the payment security, the Purchaser agrees to increase the amount or replace the security with one acceptable to the state within 5 business days. Failure to increase the amount or replace the security is considered a breach of contract.

P-050.2 Billing and Payment Procedure for Forest Products Delivered

The State will compute and forward to Purchaser a billing statement of charges for forest products delivered during the billing period at the delivered rate shown in P-028.2 clause. After receipt of the billing statement, Purchaser's payment must be received by the Department of Natural Resources on or before the due date shown on the billing statement. Purchaser agrees to make payment, payable to the Department of Natural Resources. Failure to pay on time for forest products delivered is considered a breach of contract.

Included with the billing statement will be a summary report for the billing period compiled by the State or their log and load reporting service.

The State will adjust final billings to account for any State approved payment reductions.

P-080 Payment Account Refund

Advance payments made under P-045 or P-045.2 remaining on account above the value for the charges shall be returned to Purchaser within 30 days following the final report of charges. Refunds not made within the 30 day period will accrue interest at the interest rate, as established by WAC 332-100-030, computed on a daily basis until paid.

Section L: Log Definitions and Accountability

L-010.2 Forest Products Conveyed

Forest products conveyed are logs or parts of logs delivered meeting the sorting criteria defined by clauses G-022.2 and G-024.2 of this contract

L-014.2 Sorts Delivered to Incorrect Destination

Purchaser has agreed to purchase the sort as described in the G-022.2 clause. In the event a load from a different sort is delivered to Purchaser, Purchaser may reject the load. If Purchaser receives an incorrectly delivered load, they shall notify the State within 24 hours. If the Purchaser accepts the load, provisions in the P-035.2 or P-036.2 clause may apply.

L-071.2 Log and Load Reporting Service

This contract may at the States discretion, require the services of a State approved third party log and load reporting service. Purchaser shall ensure log volume measurement, weight, or scale and weight data for each load is received by the log and load reporting service within of logs being measured or weighed.

If during the term of this contract, the State discontinues use of the Log and Load Reporting Service, the State will notify the Purchaser in writing, and will approve an alternative log and load reporting process.

L-090 Scaling Rules

Determination of volume of any forest products shall be conducted by a state approved third party scaling organization and in accordance with the Eastside log scaling and grading rules, Region 6 taper rules, and Scribner Volume Table, revised July 1, 1972, contained in the Northwest Log Rules Eastside and Westside Log Scaling Handbook (developed and produced by the Northwest Log Rules Advisory Group) and in effect on the date of confirmation of this contract.

Special scaling specifications shall be noted on the State's Brand Designation form which is hereby incorporated to this contract by reference.

L-110 State Approval of Log Scaling and Weighing Locations

Forest Product measurement and weighing facilities required by this contract must be approved by the State. Forest products sold under the contract which require log scaling shall be scaled, measured, or counted by a State approved third party log scaling organization. Forest products sold under the contract which require weighing shall be weighed at a location that meets Washington State Department of Agriculture approval.

Prior to forest products being hauled, the Contract Administrator must authorize in writing the use of State approved measurement and/or weighing facilities that are at or en-route to final destinations. Forest products from this sale shall be measured or weighed at facilities, which are currently approved for use by the State and are currently authorized for this sale. The State reserves the right to verify load volume and weights with State employees or contractors at the State's own expense. The State reserves the right to revoke the authorization of previously approved measurement locations.

Section D: Damages

D-010 Liquidated Damages

The clauses in the DAMAGES section of this contract provide for payments by Purchaser to the State for certain breaches of the terms of this contract. These payments are agreed to as liquidated damages and not as penalties. They are reasonable estimates of anticipated harm to the State caused by Purchaser's breach. These liquidated damages provisions are agreed to by the State and Purchaser with the understanding of the difficulty of proving loss and the inconvenience or infeasibility of obtaining an adequate remedy. These liquidated damages provisions provide greater certainty for the Purchaser by allowing the Purchaser to better assess its responsibilities under the contract.

D-026.2 Damages for Delivery Interruptions and Load Non-Acceptance

- a. Purchaser's failure to accept delivery of forest products due to an extended delivery interruption exceeding the limits as described in the G-027.2 (c) clause, results in substantial injury to the State. The Purchaser shall pay the State liquidated damages at a rate of \$1,000.00 per each day of breach, until breach is remedied.
- b. Unless Purchaser and the State have made a prior agreement in writing, Purchaser's failure to accept at least the number of delivered loads as described in the G-027.2 (d) clause, results in substantial injury to the State. The Purchaser shall pay the State liquidated damages at a rate of \$200 per each truck delivery not accepted, until breach is remedied.

D-027.2 Failure to Accept Forest Products Sold

Purchaser's failure to accept all or part of the forest products sold in this agreement prior to expiration or completion of the contract results in substantial injury to the State. Except for reasons other than 'Force Majeure' (G-056.2), either section a. or b. below will apply as determined by the State.

- a. When Purchaser's refusal to accept forest products does not prevent further harvesting operations, or forest products can be re-sold to another buyer acceptable to the State, Purchaser shall be liable for and pay State for actual damages plus costs, as determined by the State associated with the administration and re-sale of forest products not accepted by Purchaser under the terms of this contract.
- b. When Purchaser's refusal to accept forest products causes a stoppage of the State's harvesting operations and prevents the State from further harvest of the sale area, the actual damage to the State and associated costs are difficult to assess. The remaining value of all the forest products left in the sale area once the stoppage occurs is not readily ascertainable. Purchaser's failure to perform disrupts the State's management plans. Therefore, Purchaser agrees to pay the State as liquidated damages, a sum calculated using the following formula:

LD = (.35V-I) + C + A - P

Where:

LD = Liquidated Damages

V = The stumpage value remaining in the sale area at the date of work stoppage. This will be determined by multiplying the contract bid rate contained in the P-028.2 clause for all sorts originating in the sale area, by the State's estimate of the remaining volume, less the cost of harvesting and delivery associated with each sort. I = Initial Deposit

C = Costs associated with required harvesting services and road construction services prior to work stoppage but not amortized or paid.

A = Administrative fee = \$2,500.00

P = Advance payments received exceeding the value of logs delivered under this contract.

The above formula reflects the Purchaser's forfeiture of the initial deposit in accordance with clause P-010 by deducting the initial deposit from the amount owed. In no event shall the liquidated damages be less than zero. Interest on the liquidated damage is owed from the date of the work stoppage until final payment, calculated using the following formula:

Interest = $r \times LD \times N$

Where:

r = daily equivalent of an annual interest at current interest rate as established by WAC 332-100-030.

N = Number of days from work stoppage to time of payment

D-030.2 Inadequate Log Accountability

Failure to provide weighing and third party scaling information result in substantial injury to the State. The potential loss of accountability is not readily ascertainable. These contractual breaches result in an increase in the potential for the delivery of forest products for which the State receives inadequate payment and causes an increase in the State's administration costs associated with this contract. The actual costs of these breaches are difficult to assess.

For these reasons, Purchaser's payments for forest product delivery under this contract will be increased in the following amounts, as liquidated damages, to compensate the State for these breaches: \$250.00 each time a load weight is not provided as required by the contract, and \$250.00 each time load scale data is not determined and provided by a State approved third party scaling organization in accordance with this contract.

IN WITNESS WHEREOF, the Parties hereto have entered into this contract.

STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES

Purchaser

Loren D. Torgerson Northeast Region Manager

Date: _____Address:

Date: _____

DRAFT

CORPORATE ACKNOWLEDGEMENT

STATE OF)			
COUNTY OF)			
On this	day of		, 20,	before me	personally
			_ to me	known to _ of the c	
that executed the	within and foregoing instru	ument and acknow			-
free and voluntar	y act and deed of the corpor d that (he/she was) (they we	ration, for the us	es and purp	oses therein r	

IN WITNESS WHEREOF, I have hereunto set my hand and affixed my official seal the day and year first above written.

Notary Public in and for the State of

My appointment expires _____

<u>Schedule A</u> Sort Specifications

Sort #1: Douglas fir and western larch 11 inches and greater in diameter inside the bark. If Purchaser designates peeler lengths, then chuckability standards apply to the logs. Nonchuckable logs will be delivered to the Purchaser of Sort #7. If the Purchaser designates sawlog lengths, then all Douglas fir and western larch sawlogs will be delivered to the Purchaser of this sort and none will be delivered to the Purchaser of Sort #7.

Sort #2: Douglas fir and western larch 7 inches to 10 inches diameter inside the bark. If Purchaser designates peeler lengths, then chuckability standards apply to the logs. Nonchuckable logs will be delivered to the Purchaser of Sort #8. If the Purchaser designates sawlog lengths, then all Douglas fir and western larch sawlogs will be delivered to the Purchaser of this sort and none will be delivered to the Purchaser of Sort #8.

Sort #3: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 5 inches to 6 inches diameter inside the bark.

Sort #4: Ponderosa pine 11 inches and greater in diameter inside the bark.

Sort #5: Ponderosa pine 7 inches to 10 inches diameter inside the bark.

Sort #6: Blue Stain ponderosa pine 7 inches and greater in diameter inside the bark.

Sort #7: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 11 inches and greater in diameter inside the bark. See Sort #1 description for handling procedures for Douglas fir and western larch.

Sort #8: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 7 inches to 10 inches diameter inside the bark. See Sort #2 description for handling procedures for Douglas fir and western larch.

Sort #9: Western red cedar 5 inches and greater in diameter inside the bark.

STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES

LOG SALE AND PURCHASE CONTRACT

AGREEMENT NO. 30-093524

SALE NAME: DEER FIRE SALVAGE SORT 03

THE STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES, HEREINAFTER ACTING SOLELY, IN ITS PROPRIETARY CAPACITY, STATE, AND PURCHASER, AGREE AS FOLLOWS:

Section G: General Terms

G-001.2 Definitions

The following definitions apply throughout this contract;

Contract Administrator: Region Manager's designee responsible for assuring that the contractual obligations of the Purchaser and Contractor are met.

Contractor: State-selected harvester responsible to perform all duties as required by the Harvesting Services Contract, including but not limited to timber harvesting, road construction, debris removal and piling, hauling and delivery of forest products for weighing and/or scaling, to the Purchasers of the timber sales Sorts.

Delivery: Occurs when logs or forest products meeting the sorting specifications arrive at the Purchasers destination, as described in the contract.

Forest Product: Any material derived from the forest for commercial use.

Harvesting: A general term, referring to the Contractor's various obligations under the Harvesting Services Contract.

DRAFT

Harvesting Services Contract: Contract between the Contractor and the State, which sets forth the procedures and obligations of the Contractor for completing the harvesting of timber, and the delivery of various log sorts to the State's purchasers, and the payment obligations of the State, The Harvesting Services Contract will include a Road Plan for any road construction or reconstruction, where applicable.

Log Sale and Purchase Contract: Purchase Agreement between the State and Purchaser(s) of particular log sorts from the timber sale.

Purchaser: The company or individual that has entered a Log Sale Contract with the State for individual log sorts from the timber sale area. The Contractor must deliver the designated log sorts to this company or individual. Contractor will likely be delivering different log sorts to different purchasers under the Harvesting Services Contract.

State: The Washington State Department of Natural Resources, landowner and seller of forest products from the timber sale area. The State is represented by the Region Manager as designated on the contract signature page. Contractual obligations to the State are enforced by the Region Manager or the designated Contract Administrator.

G-010.2 Products Sold and Sale Area

Purchaser was the successful bidder on March 22, 2016 and sale was confirmed on ______. The State, as owner, agrees to sell and deliver to the Purchaser logs meeting the log sort specifications as described in the G-022.2 clause. Logs will be delivered from the DEER FIRE SALVAGE SORTS Timber Sale described as parts of Sections 6, 7, 8, 10, 16, 22, and 23 all in Township 29 North, Range 38 East W.M., in Stevens County.

G-022.2 Sorting Specifications

Purchaser shall accept and pay for delivery of log sorts by a state selected contractor to the designated Purchaser location that meets the following specifications:

Agreement No.	Sort #	Description	Destination
93524	3	ES/WH/DF/GF/LP/WL 5- 6" dib	

Unless otherwise specified, no blue stain is allowed in Ponderosa pine.

G-024.2 Manufacturing Standards

All forest products except poles, produced and sold under this contract will be manufactured to maximize the amount of logs meeting preferred log lengths and to achieve the average log length listed.

Agreement	Sort	Scaling
No.	#	Rule
93524	03	ES

Average Log Length	Preferred Log Lengths
N/A	

"WS" indicates that west side scaling rules apply. Minimum trim is 8 inches per scaling segment for west side scaling rules. "ES" indicates that east side scaling rules apply. Minimum trim is 4 inches per scaling segment for east side scaling rules.

Poles produced under this contract will be manufactured to ANSI specifications (American National Standard Specifications and Dimensions for Wood Poles), in force at the time of signing this contract.

- a. Sweep will be limited to within the bole of the log as measured using a tape stretched between the centers of each end of the log.
- b. Logs approved by the state for peelers shall be chuckable with no more than a 2 inch diameter area of rot within a 5 inch diameter circle located at the center of either end of the log.
- c. Limbs and knots shall be cut flush, with no more than 15 percent of a log having limbs or knots over 2 inches in diameter extending more than 2 inches above the surface of the log.
- d. Surface characteristics for a high quality (HQ) "A" log sort will have sound tight knots and not to exceed 1 ½ inch in diameter, numbering not more than an average of one per foot of log length. May include logs with not more than two larger knots. Knots ½ inch and smaller in diameter shall not be a determining factor. Logs will have a growth ring count of 6 or more rings per inch in the outer third top end of the log.

G-025 Schedules

The following attached schedules are hereby incorporated by reference:

Schedule	Title
А	Sort Specifications

G-026.2 Log Delivery Destination

Purchaser shall accept logs delivered to the destination as described in the G-022.2 clause. Purchaser may make a written request to the State for a change in log delivery destination or scaling or weighing location. If agreeable and in the best interest of the State, the State may approve the Purchaser's request. Written approval must be granted by the State prior to log delivery to a new destination or use of a new scaling or weighing facility.

Increased haul distance shall result in an increase in the P-028.2 log delivery payment rate in an amount to be calculated by the State. In no circumstance shall the payment rate for delivered logs be reduced as a result of a state approved delivery destination or scaling or weighing facility change.

Purchaser may refuse loads delivered to the wrong destination.

G-027.2 Log Delivery Schedule and Conditions

- a. Delivery hours Purchaser agrees to accept logs from the Contractor at the Purchaser's delivery location during Purchaser's working hours or at least between the hours of 8:00 a.m. and 5:00 p.m., Monday through Friday, except legal holidays unless otherwise agreed upon by the State.
- b. Improperly loaded trucks It is understood and agreed that the Purchaser incurs no obligation to accept improperly or illegally loaded trucks in its facility. Any truck so loaded may be directed to vacate the yard and shall remain the responsibility of the harvesting contractor. The Purchaser shall notify the State within 24 hours of any load (s) rejected and specify the reasons why.
- c. Log Delivery Interruptions Purchaser may schedule times in which delivery of logs will not be accepted. The Purchaser shall notify the Contract Administrator at least five (5) working days before the scheduled interruption or closure occurs. The duration of the log delivery interruption shall not exceed seven (7) consecutive working days or a total of ten (10) working days over the duration of the contract term. If Purchaser's scheduled delivery interruption exceeds contract requirements and causes the State harm, Purchaser will be in breach of contract and subject to liquidated damages as per the D-026.2 and D-027.2 clauses, unless Purchaser and the State have made a prior agreement in writing to mitigate potential harm to the State.
- d. Required Acceptance of Daily Load Deliveries and Notification If the State is harmed by purchaser's refusal to accept up to 20 truck deliveries of any one sort per day, Purchaser will be in breach of contract and subject to damages as per the D-026.2 and D-027.2 clauses. A truck delivery is all the wood delivered including sorts on super trucks, mule trains and pups brought to the delivery point by a single truck. The Purchaser shall notify the Contract Administrator at least 48 hours in advance if:

1. Purchaser intends to limit the number of truck deliveries accepted on any day to less than that listed above, or

2. Purchaser intends to limit the number of truck deliveries accepted on any day to the number listed above.

e. State Notification to Purchaser - The State will notify the Purchaser when it anticipates or schedules an interruption of deliveries and when it anticipates the number of truck deliveries on any day will exceed the number listed above.

f. If payments are not received or, the State determines that the payment security has become unsatisfactory or, a demand is made against the payment security under the P-045.2 clause the State shall suspend deliveries until such time as the violation has been remedied. Any suspension of deliveries due to late payment or inadequate payment security will be considered a Log Delivery Interruption under (c) of this clause.

G-030.2 Contract Term and Expiration Date

Purchaser agrees to accept and pay for forest products delivered through the period ending November 30, 2016.

G-050.2 Contract Term Extension

Contract extensions and any other conditions subject to the extension as agreed to by the Purchaser and State, must be formalized in writing, signed by Purchaser and State.

G-054.2 Early Contract Termination

The State may terminate this contract in whole or in part by giving fifteen (15) days written notice to the Purchaser when it is in the best interests of the State. If this contract is so terminated, the State shall be liable only for the return of that portion of the initial deposit that is not required for payment, and the return of unapplied payments. The State shall not be liable for damages, whether direct or consequential.

G-056.2 Force Majeure

No Party shall be liable for any failure to perform its obligations, other than payments due, where such failure is as a result of Acts of Nature (including fire, flood, earthquake, storm, or other natural disaster), war, act of foreign enemies, hostilities (whether war is declared or not), terrorist activities, government sanction, fire, labor dispute, strike or lockout.

Any Party asserting Force Majeure as an excuse shall have the burden of proving that reasonable steps were taken (under the circumstances) to minimize delay or damages caused by foreseeable events, that all non-excused obligations were substantially fulfilled, and that the other Party was timely notified of the likelihood or actual occurrence which would justify such an assertion, so that other prudent precautions could be contemplated.

In the event of Force Majeure, the State reserves the right to terminate this agreement in accordance with clause G-054.2 'Early Contract Termination'.

G-060.2 Exclusion of Warranties

The PARTIES AGREE that the IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE and ALL OTHER WARRANTIES EXPRESSED OR IMPLIED ARE EXCLUDED from this transaction and shall not apply to the goods to be harvested or sold. For example, THE FOLLOWING SPECIFIC MATTERS ARE NOT WARRANTED, and are EXCLUDED from this transaction:

- a. The MERCHANTABILITY of the forest products. The use of the term "merchantable" in any document is not intended to vary the foregoing.
- b. The CONDITION of the forest products. The forest products will be conveyed "AS IS."
- c. THE VOLUME, WEIGHT, QUANITY, OR QUALITY, of the forest products to be harvested. The descriptions of the forest products to be conveyed, are estimates only, made solely for administrative and identification purposes. The timing of forest product deliveries.
- d. Items contained in any other documents prepared for or by the State.

G-065 Regulatory Disclaimer

The State disclaims any responsibility for, or liability relating to, regulatory actions by any government agency, including actions pursuant to the Forest Practices Act, Ch. 76.09 RCW that may affect the operability of the timber sale.

G-070.2 Limitation on Damage

In the event of a breach of any provision of this contract by the State, the liability of the State shall be limited to return of the unused initial deposit and unapplied payments to the Purchaser. The State shall not be liable for any damages, whether direct, incidental, or consequential.

G-112.2 Title

The State hereby warrants that State is the owner of said logs and has the right to sell same, free of liens, encumbrances, or claims, but subject to trade restrictions promulgated in WAC 240-15-015. Purchaser assumes title and all risk and responsibility for said logs upon delivery.

G-116.2 Sustainable Forestry Initiative® (SFI) Certification

Forest products purchased under this contract are certified as being in conformance with the Sustainable Forestry Initiative program Standard under certificate number: BV-SFIS-US09000572.

G-160.2 Agents

The State's rights and duties will be exercised by the Region Manager at Colville, Washington. The Region Manager will notify Purchaser in writing who is responsible for administering the contract. The Region Manager has sole authority to waive, modify, or amend the terms of this contract in the manner prescribed in clause G-180. No agent, employee, or representative of the State has any authority to bind the State to any affirmation, representation, or warranty concerning the logs conveyed beyond the terms of this contract.

The Purchaser agrees to notify the State in writing of their authorized representative at the log delivery destination who will be readily available and who shall be authorized

to receive, on behalf of the Purchaser any instructions or notices given by the State in regard to performance under this contract, and any limits to this person's authority.

G-180 Modifications

Waivers, modifications, or amendments of the terms of this contract must be in writing signed by Purchaser and the State.

G-190 Contract Complete

This contract is the final expression of the Parties' agreement. There are no understandings, agreements, or representations, expressed or implied, which are not specified in this contract.

G-200.2 Notice

Notices required to be given under the following clauses shall be in writing and shall be delivered to the State or Purchaser's authorized agent or sent by certified mail to the Purchaser's post office address, so that their receipt may be acknowledged.

G-026.2 Log Delivery Destination G-027.2 Log Delivery and Schedule Conditions G-210.2 Violation of Contract

All other notices required to be given under this contract shall be in writing and delivered to their respective authorized agent or mailed to the Party's post office address. Parties agree to notify the other of any change of mailing address.

G-210.2 Violation of Contract

- a. If Purchaser violates any provision of this contract, the Contract Administrator, by written notice, may suspend delivery of further loads of forest products. If the violation is capable of being remedied, the Purchaser has five (5) days after receipt of suspension notice to remedy the violation. If the violation cannot be remedied (such as violation of WAC 240-15-015) or Purchaser fails to remedy the violation within five (5) days after receipt of a suspension notice, the State may terminate the rights of the Purchaser under this contract and collect damages as described in the damages clause in this contract.
- b. The State has the right to remedy the breach in the absence of any indicated attempt by the Purchaser or if Purchaser is unable, as determined by the State, to remedy the breach. Any expense incurred by the State shall be charged to Purchaser and shall be paid within thirty (30) days of receipt of billing.
- c. If Purchaser's violation is a result of a failure to make payment to the State when due, in addition to (a.) above, interest shall accrue on the unpaid balance at 12 percent per annum, beginning the date payment was due. The State may secure payments from the security provided.

G-240.2 Dispute Resolution

The following procedures apply in the event of a dispute regarding interpretation or administration of this contract and the parties agree that these procedures must be followed before a lawsuit can be initiated.

- a. In the event of a dispute, Purchaser must make a written request to the Region Manager for resolution prior to seeking other relief.
- b. The Region Manager will issue a written decision on Purchaser's request within five business days.
- c. Within five business days of receipt of the Region Manager's decision, the Purchaser may make a written request for resolution to the Deputy Supervisor
 Uplands of the Department of Natural Resources.
- d. Unless otherwise agreed, the Deputy Supervisor Uplands will hold a conference within 15 calendar days of the receipt of Purchaser's request for review of the Region Manager's written decision. Purchaser and the Region Manager will have an opportunity to present their positions. The Deputy Supervisor Uplands will issue a decision within a reasonable time of being presented with both Parties' positions.

G-252.2 Forest Excise Tax

Purchaser shall be responsible for payment of all forest excise taxes pursuant to chapter 84.33 RCW.

G-253.2 Harvesting Cost Information

The State agrees to supply all harvesting cost information to the Purchaser for their consideration in payment of forest excise taxes.

G-260 Venue

This contract shall be governed by the laws of the State of Washington. In the event of a lawsuit involving this contract, venue shall be proper only in Thurston County Superior Court.

G-330.2 Contract Review

Purchaser may arrange with the Contract Administrator to review the provisions of this contract prior to the delivery of forest products.

Section P: Payments and Securities

P-010 Initial Deposit

Purchaser paid DATA MISSING initial deposit, which will be maintained pursuant to RCW 79.15.100(3). If the operating authority on this contract expires without Purchaser's payment of the full amount specified in the 'Payment for Forest Products' clause, the initial deposit will be immediately forfeited to the State, and will be offset against Purchaser's remaining balance due. Any excess initial deposit funds not needed

to ensure full payment of the contract price, or not needed to complete any remaining obligations of the Purchaser existing after contract expiration, will be refunded to the Purchaser.

P-028.2 Payment for Forest Products Delivered

Purchaser agrees to pay the State for delivered forest products at the following rate:

\$0.00/Ton

Purchaser agrees to increase the above delivered payment rate as approved by the State in the event the location of delivery is changed per the G-026.2 clause.

P-036.2 Missorts and Payment Reduction for Delivered Forest Products

Forest Products delivered that do not meet the sorting specifications in G-022.2 where species are incorrect, are scaled over 1" outside the listed diameter specifications, or ponderosa pine with blue stain are considered mis-sorts.

However, when mis-sorted Forest Products amount to more than 3% of the total delivered sort volume, Purchaser may request approval for payment reduction for delivered volume exceeding the mis-sort threshold.

Requests for payment reduction must be submitted to the State in writing prior to contract expiration. Eligibility for mis-sort payment reduction is subject to State approval and shall be determined by the State's delivered product analysis. Forest Products determined by the State eligible for mis-sort price reduction are not eligible for any other price adjustments.

Payment reduction for Forest Products deemed mis-sorted will be calculated as follows:

Payment Reduction = (B x M) x R Where:

- B = Bid rate from P-028.2 clause
- M = Mis-sorted volume exceeding threshold excluding utility
- R = Reduction factor
 - 0.3 for mis-sort except for blue stain
 - 0.4 for mis-sort related to blue stain

Third party scaling organization information is required to determine Scribner mbf for payment reduction purposes. Value will be derived from the applicable sort value as described in this contract.

Scale information for determining mis-sort payment reduction eligibility must be obtained from roll-out scale. Truck-ramp and/or bundle scaling information is not acceptable for determining eligibility.

Purchaser's exclusive remedy for mis-sorts shall be the payment reduction described in this clause, notwithstanding other provisions in the Uniform Commercial Code

P-037.2 Mismanufacture and Payment Reduction for Delivered Forest Products

Forest Products delivered that do not meet preferred log length specifications or multiples or combinations of preferred lengths and Forest Products delivered not meeting minimum log quality specifications as described in the G-024.2 clause are considered mis-manufactured. Purchaser receiving mis-manufactured Forest Products is required to pay the State at the bid price under this contract.

However, when mis-manufactured Forest Products amount to more than 3% of the total delivered sort volume, Purchaser may request approval for payment reduction for delivered volume exceeding the mis-manufacture threshold.

Requests for payment reduction must be submitted to the State in writing prior to contract expiration. Eligibility for mis-manufacture payment reduction is subject to State approval and shall be determined by the State's delivered product analysis. Forest Products determined by the State eligible for mis-manufacture price reductions are not eligible for any other price adjustments.

Payment reduction for Forest Products deemed mis-manufactured will be calculated as follows:

Payment Reduction = $(B \times M) \times (0.2)$ Where:

B = Bid rate from P-028.2 clause

M = Mis-manufactured volume exceeding threshold excluding utility

Third party scaling organization information is required to determine Scribner mbf for payment reduction purposes. Value will be derived from the applicable sort value as described in this contract.

Scale information for determining mis-manufacture payment reduction eligibility must be obtained from roll-out scale. Truck-ramp and/or bundle scaling information is not acceptable for determining eligibility.

Purchaser's exclusive remedy for mis-manufacture shall be the payment reduction described in this clause, notwithstanding other provisions in the Uniform Commercial Code.

P-039.2 Tonnage Sort Payment Reduction Requirements

Purchaser must provide a plan in writing, acceptable to the State, to acquire third party Scribner mbf scaling information in order to be eligible for a payment reduction for a tonnage sort according to clauses P-036.2 or P-037.2. Logs delivered and accepted by the Purchaser prior to the State's acceptance of Purchaser's written payment reduction plan are not eligible for payment reduction.

Failure of Purchaser to provide sample scale data in a timely, accurate and legible basis will void an approved sample scale plan.

An approved payment reduction plan can be voided at the sole discretion of the State.

For the purpose of tonnage sort payment reduction requests, preferred log lengths for tonnage sawlog sorts shall include the following plus any additional lengths identified in clause G-024.2:

Species Type	Preferred Lengths
Conifer Sorts	16', 20', 24', 26', 32', 40'
Hardwood Sorts	18', 20', 26', 28', 30', 36', 38', 40'

P-040.2 Weighing and Scaling Costs

Purchaser agrees to pay for all weighing costs for logs delivered regardless if logs are purchased on a weight or scale basis. In addition, Purchaser agrees to pay for all scaling costs for logs delivered on a scale basis. Purchaser also agrees to pay for all costs associated with the transmission and reporting of scale or weight data.

P-045.2 Guarantee of Payment

Prior to the delivery of forest products and at a date determined by the State, Purchaser shall guarantee payment to the State for products delivered by posting with the State an approved payment security. If the Purchaser has purchased more than one sort, the payment securities may be consolidated for all the sorts. Acceptable payment security includes cash, certificate of deposit assignment, payment bond, savings account assignment, or irrevocable bank letter of credit.

The amount of payment security shall be determined by the State. The amount of payment security shall represent at least 30 days value of forest product deliveries. Payment security for products delivered will be used to guarantee payment to the State for late or non-payments.

If at any time the State determines that the security has become unsatisfactory or a demand is made against the payment security, the Purchaser agrees to increase the amount or replace the security with one acceptable to the state within 5 business days. Failure to increase the amount or replace the security is considered a breach of contract.

P-050.2 Billing and Payment Procedure for Forest Products Delivered

The State will compute and forward to Purchaser a billing statement of charges for forest products delivered during the billing period at the delivered rate shown in P-028.2 clause. After receipt of the billing statement, Purchaser's payment must be received by the Department of Natural Resources on or before the due date shown on the billing statement. Purchaser agrees to make payment, payable to the Department of Natural Resources. Failure to pay on time for forest products delivered is considered a breach of contract.

Included with the billing statement will be a summary report for the billing period compiled by the State or their log and load reporting service.

The State will adjust final billings to account for any State approved payment reductions.

P-080 Payment Account Refund

Advance payments made under P-045 or P-045.2 remaining on account above the value for the charges shall be returned to Purchaser within 30 days following the final report of charges. Refunds not made within the 30 day period will accrue interest at the interest rate, as established by WAC 332-100-030, computed on a daily basis until paid.

Section L: Log Definitions and Accountability

L-010.2 Forest Products Conveyed

Forest products conveyed are logs or parts of logs delivered meeting the sorting criteria defined by clauses G-022.2 and G-024.2 of this contract

L-014.2 Sorts Delivered to Incorrect Destination

Purchaser has agreed to purchase the sort as described in the G-022.2 clause. In the event a load from a different sort is delivered to Purchaser, Purchaser may reject the load. If Purchaser receives an incorrectly delivered load, they shall notify the State within 24 hours. If the Purchaser accepts the load, provisions in the P-035.2 or P-036.2 clause may apply.

L-071.2 Log and Load Reporting Service

This contract may at the States discretion, require the services of a State approved third party log and load reporting service. Purchaser shall ensure log volume measurement, weight, or scale and weight data for each load is received by the log and load reporting service within of logs being measured or weighed.

If during the term of this contract, the State discontinues use of the Log and Load Reporting Service, the State will notify the Purchaser in writing, and will approve an alternative log and load reporting process.

L-090 Scaling Rules

Determination of volume of any forest products shall be conducted by a state approved third party scaling organization and in accordance with the Eastside log scaling and grading rules, Region 6 taper rules, and Scribner Volume Table, revised July 1, 1972, contained in the Northwest Log Rules Eastside and Westside Log Scaling Handbook (developed and produced by the Northwest Log Rules Advisory Group) and in effect on the date of confirmation of this contract.

Special scaling specifications shall be noted on the State's Brand Designation form which is hereby incorporated to this contract by reference.

L-110 State Approval of Log Scaling and Weighing Locations

Forest Product measurement and weighing facilities required by this contract must be approved by the State. Forest products sold under the contract which require log scaling shall be scaled, measured, or counted by a State approved third party log scaling organization. Forest products sold under the contract which require weighing shall be weighed at a location that meets Washington State Department of Agriculture approval.

Prior to forest products being hauled, the Contract Administrator must authorize in writing the use of State approved measurement and/or weighing facilities that are at or en-route to final destinations. Forest products from this sale shall be measured or weighed at facilities, which are currently approved for use by the State and are currently authorized for this sale. The State reserves the right to verify load volume and weights with State employees or contractors at the State's own expense. The State reserves the right to revoke the authorization of previously approved measurement locations.

Section D: Damages

D-010 Liquidated Damages

The clauses in the DAMAGES section of this contract provide for payments by Purchaser to the State for certain breaches of the terms of this contract. These payments are agreed to as liquidated damages and not as penalties. They are reasonable estimates of anticipated harm to the State caused by Purchaser's breach. These liquidated damages provisions are agreed to by the State and Purchaser with the understanding of the difficulty of proving loss and the inconvenience or infeasibility of obtaining an adequate remedy. These liquidated damages provisions provide greater certainty for the Purchaser by allowing the Purchaser to better assess its responsibilities under the contract.

D-026.2 Damages for Delivery Interruptions and Load Non-Acceptance

- a. Purchaser's failure to accept delivery of forest products due to an extended delivery interruption exceeding the limits as described in the G-027.2 (c) clause, results in substantial injury to the State. The Purchaser shall pay the State liquidated damages at a rate of \$1,000.00 per each day of breach, until breach is remedied.
- b. Unless Purchaser and the State have made a prior agreement in writing, Purchaser's failure to accept at least the number of delivered loads as described in the G-027.2 (d) clause, results in substantial injury to the State. The Purchaser shall pay the State liquidated damages at a rate of \$200 per each truck delivery not accepted, until breach is remedied.

D-027.2 Failure to Accept Forest Products Sold

Purchaser's failure to accept all or part of the forest products sold in this agreement prior to expiration or completion of the contract results in substantial injury to the State. Except for reasons other than 'Force Majeure' (G-056.2), either section a. or b. below will apply as determined by the State.

- a. When Purchaser's refusal to accept forest products does not prevent further harvesting operations, or forest products can be re-sold to another buyer acceptable to the State, Purchaser shall be liable for and pay State for actual damages plus costs, as determined by the State associated with the administration and re-sale of forest products not accepted by Purchaser under the terms of this contract.
- b. When Purchaser's refusal to accept forest products causes a stoppage of the State's harvesting operations and prevents the State from further harvest of the sale area, the actual damage to the State and associated costs are difficult to assess. The remaining value of all the forest products left in the sale area once the stoppage occurs is not readily ascertainable. Purchaser's failure to perform disrupts the State's management plans. Therefore, Purchaser agrees to pay the State as liquidated damages, a sum calculated using the following formula:

LD = (.35V-I) + C + A - P

Where:

LD = Liquidated Damages

V = The stumpage value remaining in the sale area at the date of work stoppage. This will be determined by multiplying the contract bid rate contained in the P-028.2 clause for all sorts originating in the sale area, by the State's estimate of the remaining volume, less the cost of harvesting and delivery associated with each sort. I = Initial Deposit

C = Costs associated with required harvesting services and road construction services prior to work stoppage but not amortized or paid.

A = Administrative fee = \$2,500.00

P = Advance payments received exceeding the value of logs delivered under this contract.

The above formula reflects the Purchaser's forfeiture of the initial deposit in accordance with clause P-010 by deducting the initial deposit from the amount owed. In no event shall the liquidated damages be less than zero. Interest on the liquidated damage is owed from the date of the work stoppage until final payment, calculated using the following formula:

Interest = $r \times LD \times N$

Where:

r = daily equivalent of an annual interest at current interest rate as established by WAC 332-100-030.

N = Number of days from work stoppage to time of payment

D-030.2 Inadequate Log Accountability

Failure to provide weighing and third party scaling information result in substantial injury to the State. The potential loss of accountability is not readily ascertainable. These contractual breaches result in an increase in the potential for the delivery of forest products for which the State receives inadequate payment and causes an increase in the State's administration costs associated with this contract. The actual costs of these breaches are difficult to assess.

For these reasons, Purchaser's payments for forest product delivery under this contract will be increased in the following amounts, as liquidated damages, to compensate the State for these breaches: \$250.00 each time a load weight is not provided as required by the contract, and \$250.00 each time load scale data is not determined and provided by a State approved third party scaling organization in accordance with this contract.

IN WITNESS WHEREOF, the Parties hereto have entered into this contract.

STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES

Purchaser

Loren D. Torgerson Northeast Region Manager

Date: _____Address:

Date: _____

DRAFT

CORPORATE ACKNOWLEDGEMENT

STATE OF)				
COUNTY OF)				
On this	day of		_, 20,	before me	person	ally
			to me	known to of the		
that executed the	within and foregoing instr	ument and acknow			1	
•	y act and deed of the corpo l that (he/she was) (they we					ned,

IN WITNESS WHEREOF, I have hereunto set my hand and affixed my official seal the day and year first above written.

Notary Public in and for the State of

My appointment expires _____

<u>Schedule A</u> Sort Specifications

Sort #1: Douglas fir and western larch 11 inches and greater in diameter inside the bark. If Purchaser designates peeler lengths, then chuckability standards apply to the logs. Nonchuckable logs will be delivered to the Purchaser of Sort #7. If the Purchaser designates sawlog lengths, then all Douglas fir and western larch sawlogs will be delivered to the Purchaser of this sort and none will be delivered to the Purchaser of Sort #7.

Sort #2: Douglas fir and western larch 7 inches to 10 inches diameter inside the bark. If Purchaser designates peeler lengths, then chuckability standards apply to the logs. Nonchuckable logs will be delivered to the Purchaser of Sort #8. If the Purchaser designates sawlog lengths, then all Douglas fir and western larch sawlogs will be delivered to the Purchaser of this sort and none will be delivered to the Purchaser of Sort #8.

Sort #3: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 5 inches to 6 inches diameter inside the bark.

Sort #4: Ponderosa pine 11 inches and greater in diameter inside the bark.

Sort #5: Ponderosa pine 7 inches to 10 inches diameter inside the bark.

Sort #6: Blue Stain ponderosa pine 7 inches and greater in diameter inside the bark.

Sort #7: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 11 inches and greater in diameter inside the bark. See Sort #1 description for handling procedures for Douglas fir and western larch.

Sort #8: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 7 inches to 10 inches diameter inside the bark. See Sort #2 description for handling procedures for Douglas fir and western larch.

Sort #9: Western red cedar 5 inches and greater in diameter inside the bark.

STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES

LOG SALE AND PURCHASE CONTRACT

AGREEMENT NO. 30-093525

SALE NAME: DEER FIRE SALVAGE SORT 04

THE STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES, HEREINAFTER ACTING SOLELY, IN ITS PROPRIETARY CAPACITY, STATE, AND PURCHASER, AGREE AS FOLLOWS:

Section G: General Terms

G-001.2 Definitions

The following definitions apply throughout this contract;

Contract Administrator: Region Manager's designee responsible for assuring that the contractual obligations of the Purchaser and Contractor are met.

Contractor: State-selected harvester responsible to perform all duties as required by the Harvesting Services Contract, including but not limited to timber harvesting, road construction, debris removal and piling, hauling and delivery of forest products for weighing and/or scaling, to the Purchasers of the timber sales Sorts.

Delivery: Occurs when logs or forest products meeting the sorting specifications arrive at the Purchasers destination, as described in the contract.

Forest Product: Any material derived from the forest for commercial use.

Harvesting: A general term, referring to the Contractor's various obligations under the Harvesting Services Contract.

DRAFT

Harvesting Services Contract: Contract between the Contractor and the State, which sets forth the procedures and obligations of the Contractor for completing the harvesting of timber, and the delivery of various log sorts to the State's purchasers, and the payment obligations of the State, The Harvesting Services Contract will include a Road Plan for any road construction or reconstruction, where applicable.

Log Sale and Purchase Contract: Purchase Agreement between the State and Purchaser(s) of particular log sorts from the timber sale.

Purchaser: The company or individual that has entered a Log Sale Contract with the State for individual log sorts from the timber sale area. The Contractor must deliver the designated log sorts to this company or individual. Contractor will likely be delivering different log sorts to different purchasers under the Harvesting Services Contract.

State: The Washington State Department of Natural Resources, landowner and seller of forest products from the timber sale area. The State is represented by the Region Manager as designated on the contract signature page. Contractual obligations to the State are enforced by the Region Manager or the designated Contract Administrator.

G-010.2 Products Sold and Sale Area

Purchaser was the successful bidder on March 22, 2016 and sale was confirmed on ______. The State, as owner, agrees to sell and deliver to the Purchaser logs meeting the log sort specifications as described in the G-022.2 clause. Logs will be delivered from the DEER FIRE SALVAGE SORTS Timber Sale described as parts of Sections 6, 7, 8, 10, 16, 22, and 23 all in Township 29 North, Range 38 East W.M., in Stevens County.

G-022.2 Sorting Specifications

Purchaser shall accept and pay for delivery of log sorts by a state selected contractor to the designated Purchaser location that meets the following specifications:

Agreement No.	Sort #	Description	Destination
93525	4	PP 11"+ dib	

Unless otherwise specified, no blue stain is allowed in Ponderosa pine.

G-024.2 Manufacturing Standards

All forest products except poles, produced and sold under this contract will be manufactured to maximize the amount of logs meeting preferred log lengths and to achieve the average log length listed.

Agreement No.	Sort #	Scaling Rule
93525	04	ES

Average Log Length	Preferred Log Lengths
N/A	

"WS" indicates that west side scaling rules apply. Minimum trim is 8 inches per scaling segment for west side scaling rules. "ES" indicates that east side scaling rules apply. Minimum trim is 4 inches per scaling segment for east side scaling rules.

Poles produced under this contract will be manufactured to ANSI specifications (American National Standard Specifications and Dimensions for Wood Poles), in force at the time of signing this contract.

- a. Sweep will be limited to within the bole of the log as measured using a tape stretched between the centers of each end of the log.
- b. Logs approved by the state for peelers shall be chuckable with no more than a 2 inch diameter area of rot within a 5 inch diameter circle located at the center of either end of the log.
- c. Limbs and knots shall be cut flush, with no more than 15 percent of a log having limbs or knots over 2 inches in diameter extending more than 2 inches above the surface of the log.
- d. Surface characteristics for a high quality (HQ) "A" log sort will have sound tight knots and not to exceed 1 ½ inch in diameter, numbering not more than an average of one per foot of log length. May include logs with not more than two larger knots. Knots ½ inch and smaller in diameter shall not be a determining factor. Logs will have a growth ring count of 6 or more rings per inch in the outer third top end of the log.

G-025 Schedules

The following attached schedules are hereby incorporated by reference:

Schedule	Title
А	Sort Specifications

G-026.2 Log Delivery Destination

Purchaser shall accept logs delivered to the destination as described in the G-022.2 clause. Purchaser may make a written request to the State for a change in log delivery destination or scaling or weighing location. If agreeable and in the best interest of the State, the State may approve the Purchaser's request. Written approval must be granted by the State prior to log delivery to a new destination or use of a new scaling or weighing facility.

Increased haul distance shall result in an increase in the P-028.2 log delivery payment rate in an amount to be calculated by the State. In no circumstance shall the payment rate for delivered logs be reduced as a result of a state approved delivery destination or scaling or weighing facility change.

Purchaser may refuse loads delivered to the wrong destination.

G-027.2 Log Delivery Schedule and Conditions

- a. Delivery hours Purchaser agrees to accept logs from the Contractor at the Purchaser's delivery location during Purchaser's working hours or at least between the hours of 8:00 a.m. and 5:00 p.m., Monday through Friday, except legal holidays unless otherwise agreed upon by the State.
- b. Improperly loaded trucks It is understood and agreed that the Purchaser incurs no obligation to accept improperly or illegally loaded trucks in its facility. Any truck so loaded may be directed to vacate the yard and shall remain the responsibility of the harvesting contractor. The Purchaser shall notify the State within 24 hours of any load (s) rejected and specify the reasons why.
- c. Log Delivery Interruptions Purchaser may schedule times in which delivery of logs will not be accepted. The Purchaser shall notify the Contract Administrator at least five (5) working days before the scheduled interruption or closure occurs. The duration of the log delivery interruption shall not exceed seven (7) consecutive working days or a total of ten (10) working days over the duration of the contract term. If Purchaser's scheduled delivery interruption exceeds contract requirements and causes the State harm, Purchaser will be in breach of contract and subject to liquidated damages as per the D-026.2 and D-027.2 clauses, unless Purchaser and the State have made a prior agreement in writing to mitigate potential harm to the State.
- d. Required Acceptance of Daily Load Deliveries and Notification If the State is harmed by purchaser's refusal to accept up to 20 truck deliveries of any one sort per day, Purchaser will be in breach of contract and subject to damages as per the D-026.2 and D-027.2 clauses. A truck delivery is all the wood delivered including sorts on super trucks, mule trains and pups brought to the delivery point by a single truck. The Purchaser shall notify the Contract Administrator at least 48 hours in advance if:

1. Purchaser intends to limit the number of truck deliveries accepted on any day to less than that listed above, or

2. Purchaser intends to limit the number of truck deliveries accepted on any day to the number listed above.

- e. State Notification to Purchaser The State will notify the Purchaser when it anticipates or schedules an interruption of deliveries and when it anticipates the number of truck deliveries on any day will exceed the number listed above.
- f. If payments are not received or, the State determines that the payment security has become unsatisfactory or, a demand is made against the payment security

under the P-045.2 clause the State shall suspend deliveries until such time as the violation has been remedied. Any suspension of deliveries due to late payment or inadequate payment security will be considered a Log Delivery Interruption under (c) of this clause.

G-030.2 Contract Term and Expiration Date

Purchaser agrees to accept and pay for forest products delivered through the period ending November 30, 2016.

G-050.2 Contract Term Extension

Contract extensions and any other conditions subject to the extension as agreed to by the Purchaser and State, must be formalized in writing, signed by Purchaser and State.

G-054.2 Early Contract Termination

The State may terminate this contract in whole or in part by giving fifteen (15) days written notice to the Purchaser when it is in the best interests of the State. If this contract is so terminated, the State shall be liable only for the return of that portion of the initial deposit that is not required for payment, and the return of unapplied payments. The State shall not be liable for damages, whether direct or consequential.

G-056.2 Force Majeure

No Party shall be liable for any failure to perform its obligations, other than payments due, where such failure is as a result of Acts of Nature (including fire, flood, earthquake, storm, or other natural disaster), war, act of foreign enemies, hostilities (whether war is declared or not), terrorist activities, government sanction, fire, labor dispute, strike or lockout.

Any Party asserting Force Majeure as an excuse shall have the burden of proving that reasonable steps were taken (under the circumstances) to minimize delay or damages caused by foreseeable events, that all non-excused obligations were substantially fulfilled, and that the other Party was timely notified of the likelihood or actual occurrence which would justify such an assertion, so that other prudent precautions could be contemplated.

In the event of Force Majeure, the State reserves the right to terminate this agreement in accordance with clause G-054.2 'Early Contract Termination'.

G-060.2 Exclusion of Warranties

The PARTIES AGREE that the IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE and ALL OTHER WARRANTIES EXPRESSED OR IMPLIED ARE EXCLUDED from this transaction and shall not apply to the goods to be harvested or sold. For example, THE FOLLOWING SPECIFIC MATTERS ARE NOT WARRANTED, and are EXCLUDED from this transaction:

a. The MERCHANTABILITY of the forest products. The use of the term "merchantable" in any document is not intended to vary the foregoing.

- b. The CONDITION of the forest products. The forest products will be conveyed "AS IS."
- c. THE VOLUME, WEIGHT, QUANITY, OR QUALITY, of the forest products to be harvested. The descriptions of the forest products to be conveyed, are estimates only, made solely for administrative and identification purposes. The timing of forest product deliveries.
- d. Items contained in any other documents prepared for or by the State.

G-065 Regulatory Disclaimer

The State disclaims any responsibility for, or liability relating to, regulatory actions by any government agency, including actions pursuant to the Forest Practices Act, Ch. 76.09 RCW that may affect the operability of the timber sale.

G-070.2 Limitation on Damage

In the event of a breach of any provision of this contract by the State, the liability of the State shall be limited to return of the unused initial deposit and unapplied payments to the Purchaser. The State shall not be liable for any damages, whether direct, incidental, or consequential.

G-112.2 Title

The State hereby warrants that State is the owner of said logs and has the right to sell same, free of liens, encumbrances, or claims, but subject to trade restrictions promulgated in WAC 240-15-015. Purchaser assumes title and all risk and responsibility for said logs upon delivery.

G-116.2 Sustainable Forestry Initiative® (SFI) Certification

Forest products purchased under this contract are certified as being in conformance with the Sustainable Forestry Initiative program Standard under certificate number: BV-SFIS-US09000572.

G-160.2 Agents

The State's rights and duties will be exercised by the Region Manager at Colville, Washington. The Region Manager will notify Purchaser in writing who is responsible for administering the contract. The Region Manager has sole authority to waive, modify, or amend the terms of this contract in the manner prescribed in clause G-180. No agent, employee, or representative of the State has any authority to bind the State to any affirmation, representation, or warranty concerning the logs conveyed beyond the terms of this contract.

The Purchaser agrees to notify the State in writing of their authorized representative at the log delivery destination who will be readily available and who shall be authorized to receive, on behalf of the Purchaser any instructions or notices given by the State in regard to performance under this contract, and any limits to this person's authority.

G-180 Modifications

Waivers, modifications, or amendments of the terms of this contract must be in writing signed by Purchaser and the State.

G-190 Contract Complete

This contract is the final expression of the Parties' agreement. There are no understandings, agreements, or representations, expressed or implied, which are not specified in this contract.

G-200.2 Notice

Notices required to be given under the following clauses shall be in writing and shall be delivered to the State or Purchaser's authorized agent or sent by certified mail to the Purchaser's post office address, so that their receipt may be acknowledged.

G-026.2 Log Delivery Destination G-027.2 Log Delivery and Schedule Conditions G-210.2 Violation of Contract

All other notices required to be given under this contract shall be in writing and delivered to their respective authorized agent or mailed to the Party's post office address. Parties agree to notify the other of any change of mailing address.

G-210.2 Violation of Contract

- a. If Purchaser violates any provision of this contract, the Contract Administrator, by written notice, may suspend delivery of further loads of forest products. If the violation is capable of being remedied, the Purchaser has five (5) days after receipt of suspension notice to remedy the violation. If the violation cannot be remedied (such as violation of WAC 240-15-015) or Purchaser fails to remedy the violation within five (5) days after receipt of a suspension notice, the State may terminate the rights of the Purchaser under this contract and collect damages as described in the damages clause in this contract.
- b. The State has the right to remedy the breach in the absence of any indicated attempt by the Purchaser or if Purchaser is unable, as determined by the State, to remedy the breach. Any expense incurred by the State shall be charged to Purchaser and shall be paid within thirty (30) days of receipt of billing.
- c. If Purchaser's violation is a result of a failure to make payment to the State when due, in addition to (a.) above, interest shall accrue on the unpaid balance at 12 percent per annum, beginning the date payment was due. The State may secure payments from the security provided.

G-240.2 Dispute Resolution

The following procedures apply in the event of a dispute regarding interpretation or administration of this contract and the parties agree that these procedures must be followed before a lawsuit can be initiated.

- a. In the event of a dispute, Purchaser must make a written request to the Region Manager for resolution prior to seeking other relief.
- b. The Region Manager will issue a written decision on Purchaser's request within five business days.
- c. Within five business days of receipt of the Region Manager's decision, the Purchaser may make a written request for resolution to the Deputy Supervisor
 Uplands of the Department of Natural Resources.
- d. Unless otherwise agreed, the Deputy Supervisor Uplands will hold a conference within 15 calendar days of the receipt of Purchaser's request for review of the Region Manager's written decision. Purchaser and the Region Manager will have an opportunity to present their positions. The Deputy Supervisor Uplands will issue a decision within a reasonable time of being presented with both Parties' positions.

G-252.2 Forest Excise Tax

Purchaser shall be responsible for payment of all forest excise taxes pursuant to chapter 84.33 RCW.

G-253.2 Harvesting Cost Information

The State agrees to supply all harvesting cost information to the Purchaser for their consideration in payment of forest excise taxes.

G-260 Venue

This contract shall be governed by the laws of the State of Washington. In the event of a lawsuit involving this contract, venue shall be proper only in Thurston County Superior Court.

G-330.2 Contract Review

Purchaser may arrange with the Contract Administrator to review the provisions of this contract prior to the delivery of forest products.

Section P: Payments and Securities

P-010 Initial Deposit

Purchaser paid DATA MISSING initial deposit, which will be maintained pursuant to RCW 79.15.100(3). If the operating authority on this contract expires without Purchaser's payment of the full amount specified in the 'Payment for Forest Products' clause, the initial deposit will be immediately forfeited to the State, and will be offset against Purchaser's remaining balance due. Any excess initial deposit funds not needed to ensure full payment of the contract price, or not needed to complete any remaining obligations of the Purchaser existing after contract expiration, will be refunded to the Purchaser.

P-028.2 Payment for Forest Products Delivered

Purchaser agrees to pay the State for delivered forest products at the following rate:

\$0.00/Ton

Purchaser agrees to increase the above delivered payment rate as approved by the State in the event the location of delivery is changed per the G-026.2 clause.

P-036.2 Missorts and Payment Reduction for Delivered Forest Products

Forest Products delivered that do not meet the sorting specifications in G-022.2 where species are incorrect, are scaled over 1" outside the listed diameter specifications, or ponderosa pine with blue stain are considered mis-sorts.

However, when mis-sorted Forest Products amount to more than 3% of the total delivered sort volume, Purchaser may request approval for payment reduction for delivered volume exceeding the mis-sort threshold.

Requests for payment reduction must be submitted to the State in writing prior to contract expiration. Eligibility for mis-sort payment reduction is subject to State approval and shall be determined by the State's delivered product analysis. Forest Products determined by the State eligible for mis-sort price reduction are not eligible for any other price adjustments.

Payment reduction for Forest Products deemed mis-sorted will be calculated as follows:

Payment Reduction = $(B \times M) \times R$ Where:

B = Bid rate from P-028.2 clause

- M = Mis-sorted volume exceeding threshold excluding utility
- R = Reduction factor
 - 0.3 for mis-sort except for blue stain
 - 0.4 for mis-sort related to blue stain

Third party scaling organization information is required to determine Scribner mbf for payment reduction purposes. Value will be derived from the applicable sort value as described in this contract.

Scale information for determining mis-sort payment reduction eligibility must be obtained from roll-out scale. Truck-ramp and/or bundle scaling information is not acceptable for determining eligibility.

Purchaser's exclusive remedy for mis-sorts shall be the payment reduction described in this clause, notwithstanding other provisions in the Uniform Commercial Code

P-037.2 Mismanufacture and Payment Reduction for Delivered Forest Products

Forest Products delivered that do not meet preferred log length specifications or multiples or combinations of preferred lengths and Forest Products delivered not meeting minimum log quality specifications as described in the G-024.2 clause are considered mis-manufactured. Purchaser receiving mis-manufactured Forest Products is required to pay the State at the bid price under this contract.

However, when mis-manufactured Forest Products amount to more than 3% of the total delivered sort volume, Purchaser may request approval for payment reduction for delivered volume exceeding the mis-manufacture threshold.

Requests for payment reduction must be submitted to the State in writing prior to contract expiration. Eligibility for mis-manufacture payment reduction is subject to State approval and shall be determined by the State's delivered product analysis. Forest Products determined by the State eligible for mis-manufacture price reductions are not eligible for any other price adjustments.

Payment reduction for Forest Products deemed mis-manufactured will be calculated as follows:

Payment Reduction = $(B \times M) \times (0.2)$ Where: B = Bid rate from P-028.2 clause

M = Mis-manufactured volume exceeding threshold excluding utility

Third party scaling organization information is required to determine Scribner mbf for payment reduction purposes. Value will be derived from the applicable sort value as described in this contract.

Scale information for determining mis-manufacture payment reduction eligibility must be obtained from roll-out scale. Truck-ramp and/or bundle scaling information is not acceptable for determining eligibility.

Purchaser's exclusive remedy for mis-manufacture shall be the payment reduction described in this clause, notwithstanding other provisions in the Uniform Commercial Code.

P-039.2 Tonnage Sort Payment Reduction Requirements

Purchaser must provide a plan in writing, acceptable to the State, to acquire third party Scribner mbf scaling information in order to be eligible for a payment reduction for a tonnage sort according to clauses P-036.2 or P-037.2. Logs delivered and accepted by the Purchaser prior to the State's acceptance of Purchaser's written payment reduction plan are not eligible for payment reduction.

Failure of Purchaser to provide sample scale data in a timely, accurate and legible basis will void an approved sample scale plan.

An approved payment reduction plan can be voided at the sole discretion of the State.

For the purpose of tonnage sort payment reduction requests, preferred log lengths for tonnage sawlog sorts shall include the following plus any additional lengths identified in clause G-024.2:

Species Type	Preferred Lengths
Conifer Sorts	16', 20', 24', 26', 32', 40'
Hardwood Sorts	18', 20', 26', 28', 30', 36', 38', 40'

P-040.2 Weighing and Scaling Costs

Purchaser agrees to pay for all weighing costs for logs delivered regardless if logs are purchased on a weight or scale basis. In addition, Purchaser agrees to pay for all scaling costs for logs delivered on a scale basis. Purchaser also agrees to pay for all costs associated with the transmission and reporting of scale or weight data.

P-045.2 Guarantee of Payment

Prior to the delivery of forest products and at a date determined by the State, Purchaser shall guarantee payment to the State for products delivered by posting with the State an approved payment security. If the Purchaser has purchased more than one sort, the payment securities may be consolidated for all the sorts. Acceptable payment security includes cash, certificate of deposit assignment, payment bond, savings account assignment, or irrevocable bank letter of credit.

The amount of payment security shall be determined by the State. The amount of payment security shall represent at least 30 days value of forest product deliveries. Payment security for products delivered will be used to guarantee payment to the State for late or non-payments.

If at any time the State determines that the security has become unsatisfactory or a demand is made against the payment security, the Purchaser agrees to increase the amount or replace the security with one acceptable to the state within 5 business days. Failure to increase the amount or replace the security is considered a breach of contract.

P-050.2 Billing and Payment Procedure for Forest Products Delivered

The State will compute and forward to Purchaser a billing statement of charges for forest products delivered during the billing period at the delivered rate shown in P-028.2 clause. After receipt of the billing statement, Purchaser's payment must be received by the Department of Natural Resources on or before the due date shown on the billing statement. Purchaser agrees to make payment, payable to the Department of Natural Resources. Failure to pay on time for forest products delivered is considered a breach of contract.

Included with the billing statement will be a summary report for the billing period compiled by the State or their log and load reporting service.

The State will adjust final billings to account for any State approved payment reductions.

P-080 Payment Account Refund

Advance payments made under P-045 or P-045.2 remaining on account above the value for the charges shall be returned to Purchaser within 30 days following the final report of charges. Refunds not made within the 30 day period will accrue interest at the interest rate, as established by WAC 332-100-030, computed on a daily basis until paid.

Section L: Log Definitions and Accountability

L-010.2 Forest Products Conveyed

Forest products conveyed are logs or parts of logs delivered meeting the sorting criteria defined by clauses G-022.2 and G-024.2 of this contract

L-014.2 Sorts Delivered to Incorrect Destination

Purchaser has agreed to purchase the sort as described in the G-022.2 clause. In the event a load from a different sort is delivered to Purchaser, Purchaser may reject the load. If Purchaser receives an incorrectly delivered load, they shall notify the State within 24 hours. If the Purchaser accepts the load, provisions in the P-035.2 or P-036.2 clause may apply.

L-071.2 Log and Load Reporting Service

This contract may at the States discretion, require the services of a State approved third party log and load reporting service. Purchaser shall ensure log volume measurement, weight, or scale and weight data for each load is received by the log and load reporting service within of logs being measured or weighed.

If during the term of this contract, the State discontinues use of the Log and Load Reporting Service, the State will notify the Purchaser in writing, and will approve an alternative log and load reporting process.

L-090 Scaling Rules

Determination of volume of any forest products shall be conducted by a state approved third party scaling organization and in accordance with the Eastside log scaling and grading rules, Region 6 taper rules, and Scribner Volume Table, revised July 1, 1972, contained in the Northwest Log Rules Eastside and Westside Log Scaling Handbook (developed and produced by the Northwest Log Rules Advisory Group) and in effect on the date of confirmation of this contract.

Special scaling specifications shall be noted on the State's Brand Designation form which is hereby incorporated to this contract by reference.

L-110 State Approval of Log Scaling and Weighing Locations

Forest Product measurement and weighing facilities required by this contract must be approved by the State. Forest products sold under the contract which require log scaling shall be scaled, measured, or counted by a State approved third party log scaling organization. Forest products sold under the contract which require weighing shall be weighed at a location that meets Washington State Department of Agriculture approval.

Prior to forest products being hauled, the Contract Administrator must authorize in writing the use of State approved measurement and/or weighing facilities that are at or en-route to final destinations. Forest products from this sale shall be measured or weighed at facilities, which are currently approved for use by the State and are currently authorized for this sale. The State reserves the right to verify load volume and weights with State employees or contractors at the State's own expense. The State reserves the right to revoke the authorization of previously approved measurement locations.

Section D: Damages

D-010 Liquidated Damages

The clauses in the DAMAGES section of this contract provide for payments by Purchaser to the State for certain breaches of the terms of this contract. These payments are agreed to as liquidated damages and not as penalties. They are reasonable estimates of anticipated harm to the State caused by Purchaser's breach. These liquidated damages provisions are agreed to by the State and Purchaser with the understanding of the difficulty of proving loss and the inconvenience or infeasibility of obtaining an adequate remedy. These liquidated damages provisions provide greater certainty for the Purchaser by allowing the Purchaser to better assess its responsibilities under the contract.

D-026.2 Damages for Delivery Interruptions and Load Non-Acceptance

- a. Purchaser's failure to accept delivery of forest products due to an extended delivery interruption exceeding the limits as described in the G-027.2 (c) clause, results in substantial injury to the State. The Purchaser shall pay the State liquidated damages at a rate of \$1,000.00 per each day of breach, until breach is remedied.
- b. Unless Purchaser and the State have made a prior agreement in writing, Purchaser's failure to accept at least the number of delivered loads as described in the G-027.2 (d) clause, results in substantial injury to the State. The Purchaser shall pay the State liquidated damages at a rate of \$200 per each truck delivery not accepted, until breach is remedied.

D-027.2 Failure to Accept Forest Products Sold

Purchaser's failure to accept all or part of the forest products sold in this agreement prior to expiration or completion of the contract results in substantial injury to the State. Except for reasons other than 'Force Majeure' (G-056.2), either section a. or b. below will apply as determined by the State.

- a. When Purchaser's refusal to accept forest products does not prevent further harvesting operations, or forest products can be re-sold to another buyer acceptable to the State, Purchaser shall be liable for and pay State for actual damages plus costs, as determined by the State associated with the administration and re-sale of forest products not accepted by Purchaser under the terms of this contract.
- b. When Purchaser's refusal to accept forest products causes a stoppage of the State's harvesting operations and prevents the State from further harvest of the sale area, the actual damage to the State and associated costs are difficult to assess. The remaining value of all the forest products left in the sale area once the stoppage occurs is not readily ascertainable. Purchaser's failure to perform disrupts the State's management plans. Therefore, Purchaser agrees to pay the State as liquidated damages, a sum calculated using the following formula:

LD = (.35V-I) + C + A - P

Where:

LD = Liquidated Damages

V = The stumpage value remaining in the sale area at the date of work stoppage. This will be determined by multiplying the contract bid rate contained in the P-028.2 clause for all sorts originating in the sale area, by the State's estimate of the remaining volume, less the cost of harvesting and delivery associated with each sort. I = Initial Deposit

C = Costs associated with required harvesting services and road construction services prior to work stoppage but not amortized or paid.

A = Administrative fee = \$2,500.00

P = Advance payments received exceeding the value of logs delivered under this contract.

The above formula reflects the Purchaser's forfeiture of the initial deposit in accordance with clause P-010 by deducting the initial deposit from the amount owed. In no event shall the liquidated damages be less than zero. Interest on the liquidated damage is owed from the date of the work stoppage until final payment, calculated using the following formula:

Interest = $r \times LD \times N$

Where:

r = daily equivalent of an annual interest at current interest rate as established by WAC 332-100-030.

N = Number of days from work stoppage to time of payment

D-030.2 Inadequate Log Accountability

Failure to provide weighing and third party scaling information result in substantial injury to the State. The potential loss of accountability is not readily ascertainable. These contractual breaches result in an increase in the potential for the delivery of forest products for which the State receives inadequate payment and causes an increase in the State's administration costs associated with this contract. The actual costs of these breaches are difficult to assess.

For these reasons, Purchaser's payments for forest product delivery under this contract will be increased in the following amounts, as liquidated damages, to compensate the State for these breaches: \$250.00 each time a load weight is not provided as required by the contract, and \$250.00 each time load scale data is not determined and provided by a State approved third party scaling organization in accordance with this contract.

IN WITNESS WHEREOF, the Parties hereto have entered into this contract.

STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES

Purchaser

Loren D. Torgerson Northeast Region Manager

Date: _____Address:

Date: _____

DRAFT

CORPORATE ACKNOWLEDGEMENT

STATE OF)			
COUNTY OF)			
On this	day of		, 20,	before me	personally
			_ to me	known to _ of the c	
that executed the	within and foregoing instru	ument and acknow			-
free and voluntar	y act and deed of the corpor d that (he/she was) (they we	ration, for the us	es and purp	oses therein r	

IN WITNESS WHEREOF, I have hereunto set my hand and affixed my official seal the day and year first above written.

Notary Public in and for the State of

My appointment expires _____

<u>Schedule A</u> Sort Specifications

Sort #1: Douglas fir and western larch 11 inches and greater in diameter inside the bark. If Purchaser designates peeler lengths, then chuckability standards apply to the logs. Nonchuckable logs will be delivered to the Purchaser of Sort #7. If the Purchaser designates sawlog lengths, then all Douglas fir and western larch sawlogs will be delivered to the Purchaser of this sort and none will be delivered to the Purchaser of Sort #7.

Sort #2: Douglas fir and western larch 7 inches to 10 inches diameter inside the bark. If Purchaser designates peeler lengths, then chuckability standards apply to the logs. Nonchuckable logs will be delivered to the Purchaser of Sort #8. If the Purchaser designates sawlog lengths, then all Douglas fir and western larch sawlogs will be delivered to the Purchaser of this sort and none will be delivered to the Purchaser of Sort #8.

Sort #3: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 5 inches to 6 inches diameter inside the bark.

Sort #4: Ponderosa pine 11 inches and greater in diameter inside the bark.

Sort #5: Ponderosa pine 7 inches to 10 inches diameter inside the bark.

Sort #6: Blue Stain ponderosa pine 7 inches and greater in diameter inside the bark.

Sort #7: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 11 inches and greater in diameter inside the bark. See Sort #1 description for handling procedures for Douglas fir and western larch.

Sort #8: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 7 inches to 10 inches diameter inside the bark. See Sort #2 description for handling procedures for Douglas fir and western larch.

Sort #9: Western red cedar 5 inches and greater in diameter inside the bark.

STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES

LOG SALE AND PURCHASE CONTRACT

AGREEMENT NO. 30-093526

SALE NAME: DEER FIRE SALVAGE SORT 05

THE STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES, HEREINAFTER ACTING SOLELY, IN ITS PROPRIETARY CAPACITY, STATE, AND PURCHASER, AGREE AS FOLLOWS:

Section G: General Terms

G-001.2 Definitions

The following definitions apply throughout this contract;

Contract Administrator: Region Manager's designee responsible for assuring that the contractual obligations of the Purchaser and Contractor are met.

Contractor: State-selected harvester responsible to perform all duties as required by the Harvesting Services Contract, including but not limited to timber harvesting, road construction, debris removal and piling, hauling and delivery of forest products for weighing and/or scaling, to the Purchasers of the timber sales Sorts.

Delivery: Occurs when logs or forest products meeting the sorting specifications arrive at the Purchasers destination, as described in the contract.

Forest Product: Any material derived from the forest for commercial use.

Harvesting: A general term, referring to the Contractor's various obligations under the Harvesting Services Contract.

DRAFT

Harvesting Services Contract: Contract between the Contractor and the State, which sets forth the procedures and obligations of the Contractor for completing the harvesting of timber, and the delivery of various log sorts to the State's purchasers, and the payment obligations of the State, The Harvesting Services Contract will include a Road Plan for any road construction or reconstruction, where applicable.

Log Sale and Purchase Contract: Purchase Agreement between the State and Purchaser(s) of particular log sorts from the timber sale.

Purchaser: The company or individual that has entered a Log Sale Contract with the State for individual log sorts from the timber sale area. The Contractor must deliver the designated log sorts to this company or individual. Contractor will likely be delivering different log sorts to different purchasers under the Harvesting Services Contract.

State: The Washington State Department of Natural Resources, landowner and seller of forest products from the timber sale area. The State is represented by the Region Manager as designated on the contract signature page. Contractual obligations to the State are enforced by the Region Manager or the designated Contract Administrator.

G-010.2 Products Sold and Sale Area

Purchaser was the successful bidder on March 22, 2016 and sale was confirmed on ______. The State, as owner, agrees to sell and deliver to the Purchaser logs meeting the log sort specifications as described in the G-022.2 clause. Logs will be delivered from the DEER FIRE SALVAGE SORTS Timber Sale described as parts of Sections 6, 7, 8, 10, 16, 22, and 23 all in Township 29 North, Range 38 East W.M., in Stevens County.

G-022.2 Sorting Specifications

Purchaser shall accept and pay for delivery of log sorts by a state selected contractor to the designated Purchaser location that meets the following specifications:

Agreement No.	Sort #	Description	Destination
93526	5	PP 7-10" dib	

Unless otherwise specified, no blue stain is allowed in Ponderosa pine.

G-024.2 Manufacturing Standards

All forest products except poles, produced and sold under this contract will be manufactured to maximize the amount of logs meeting preferred log lengths and to achieve the average log length listed.

Agreement		
No.	#	Rule
93526	05	ES

Average Log Length	Preferred Log Lengths
N/A	

"WS" indicates that west side scaling rules apply. Minimum trim is 8 inches per scaling segment for west side scaling rules. "ES" indicates that east side scaling rules apply. Minimum trim is 4 inches per scaling segment for east side scaling rules.

Poles produced under this contract will be manufactured to ANSI specifications (American National Standard Specifications and Dimensions for Wood Poles), in force at the time of signing this contract.

- a. Sweep will be limited to within the bole of the log as measured using a tape stretched between the centers of each end of the log.
- b. Logs approved by the state for peelers shall be chuckable with no more than a 2 inch diameter area of rot within a 5 inch diameter circle located at the center of either end of the log.
- c. Limbs and knots shall be cut flush, with no more than 15 percent of a log having limbs or knots over 2 inches in diameter extending more than 2 inches above the surface of the log.
- d. Surface characteristics for a high quality (HQ) "A" log sort will have sound tight knots and not to exceed 1 ½ inch in diameter, numbering not more than an average of one per foot of log length. May include logs with not more than two larger knots. Knots ½ inch and smaller in diameter shall not be a determining factor. Logs will have a growth ring count of 6 or more rings per inch in the outer third top end of the log.

G-025 Schedules

The following attached schedules are hereby incorporated by reference:

Schedule	Title
А	Sort Specifications

G-026.2 Log Delivery Destination

Purchaser shall accept logs delivered to the destination as described in the G-022.2 clause. Purchaser may make a written request to the State for a change in log delivery destination or scaling or weighing location. If agreeable and in the best interest of the State, the State may approve the Purchaser's request. Written approval must be granted by the State prior to log delivery to a new destination or use of a new scaling or weighing facility.

Increased haul distance shall result in an increase in the P-028.2 log delivery payment rate in an amount to be calculated by the State. In no circumstance shall the payment rate for delivered logs be reduced as a result of a state approved delivery destination or scaling or weighing facility change.

Purchaser may refuse loads delivered to the wrong destination.

G-027.2 Log Delivery Schedule and Conditions

- a. Delivery hours Purchaser agrees to accept logs from the Contractor at the Purchaser's delivery location during Purchaser's working hours or at least between the hours of 8:00 a.m. and 5:00 p.m., Monday through Friday, except legal holidays unless otherwise agreed upon by the State.
- b. Improperly loaded trucks It is understood and agreed that the Purchaser incurs no obligation to accept improperly or illegally loaded trucks in its facility. Any truck so loaded may be directed to vacate the yard and shall remain the responsibility of the harvesting contractor. The Purchaser shall notify the State within 24 hours of any load (s) rejected and specify the reasons why.
- c. Log Delivery Interruptions Purchaser may schedule times in which delivery of logs will not be accepted. The Purchaser shall notify the Contract Administrator at least five (5) working days before the scheduled interruption or closure occurs. The duration of the log delivery interruption shall not exceed seven (7) consecutive working days or a total of ten (10) working days over the duration of the contract term. If Purchaser's scheduled delivery interruption exceeds contract requirements and causes the State harm, Purchaser will be in breach of contract and subject to liquidated damages as per the D-026.2 and D-027.2 clauses, unless Purchaser and the State have made a prior agreement in writing to mitigate potential harm to the State.
- d. Required Acceptance of Daily Load Deliveries and Notification If the State is harmed by purchaser's refusal to accept up to 20 truck deliveries of any one sort per day, Purchaser will be in breach of contract and subject to damages as per the D-026.2 and D-027.2 clauses. A truck delivery is all the wood delivered including sorts on super trucks, mule trains and pups brought to the delivery point by a single truck. The Purchaser shall notify the Contract Administrator at least 48 hours in advance if:

1. Purchaser intends to limit the number of truck deliveries accepted on any day to less than that listed above, or

2. Purchaser intends to limit the number of truck deliveries accepted on any day to the number listed above.

- e. State Notification to Purchaser The State will notify the Purchaser when it anticipates or schedules an interruption of deliveries and when it anticipates the number of truck deliveries on any day will exceed the number listed above.
- f. If payments are not received or, the State determines that the payment security has become unsatisfactory or, a demand is made against the payment security

under the P-045.2 clause the State shall suspend deliveries until such time as the violation has been remedied. Any suspension of deliveries due to late payment or inadequate payment security will be considered a Log Delivery Interruption under (c) of this clause.

G-030.2 Contract Term and Expiration Date

Purchaser agrees to accept and pay for forest products delivered through the period ending November 30, 2016.

G-050.2 Contract Term Extension

Contract extensions and any other conditions subject to the extension as agreed to by the Purchaser and State, must be formalized in writing, signed by Purchaser and State.

G-054.2 Early Contract Termination

The State may terminate this contract in whole or in part by giving fifteen (15) days written notice to the Purchaser when it is in the best interests of the State. If this contract is so terminated, the State shall be liable only for the return of that portion of the initial deposit that is not required for payment, and the return of unapplied payments. The State shall not be liable for damages, whether direct or consequential.

G-056.2 Force Majeure

No Party shall be liable for any failure to perform its obligations, other than payments due, where such failure is as a result of Acts of Nature (including fire, flood, earthquake, storm, or other natural disaster), war, act of foreign enemies, hostilities (whether war is declared or not), terrorist activities, government sanction, fire, labor dispute, strike or lockout.

Any Party asserting Force Majeure as an excuse shall have the burden of proving that reasonable steps were taken (under the circumstances) to minimize delay or damages caused by foreseeable events, that all non-excused obligations were substantially fulfilled, and that the other Party was timely notified of the likelihood or actual occurrence which would justify such an assertion, so that other prudent precautions could be contemplated.

In the event of Force Majeure, the State reserves the right to terminate this agreement in accordance with clause G-054.2 'Early Contract Termination'.

G-060.2 Exclusion of Warranties

The PARTIES AGREE that the IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE and ALL OTHER WARRANTIES EXPRESSED OR IMPLIED ARE EXCLUDED from this transaction and shall not apply to the goods to be harvested or sold. For example, THE FOLLOWING SPECIFIC MATTERS ARE NOT WARRANTED, and are EXCLUDED from this transaction:

a. The MERCHANTABILITY of the forest products. The use of the term "merchantable" in any document is not intended to vary the foregoing.

- b. The CONDITION of the forest products. The forest products will be conveyed "AS IS."
- c. THE VOLUME, WEIGHT, QUANITY, OR QUALITY, of the forest products to be harvested. The descriptions of the forest products to be conveyed, are estimates only, made solely for administrative and identification purposes. The timing of forest product deliveries.
- d. Items contained in any other documents prepared for or by the State.

G-065 Regulatory Disclaimer

The State disclaims any responsibility for, or liability relating to, regulatory actions by any government agency, including actions pursuant to the Forest Practices Act, Ch. 76.09 RCW that may affect the operability of the timber sale.

G-070.2 Limitation on Damage

In the event of a breach of any provision of this contract by the State, the liability of the State shall be limited to return of the unused initial deposit and unapplied payments to the Purchaser. The State shall not be liable for any damages, whether direct, incidental, or consequential.

G-112.2 Title

The State hereby warrants that State is the owner of said logs and has the right to sell same, free of liens, encumbrances, or claims, but subject to trade restrictions promulgated in WAC 240-15-015. Purchaser assumes title and all risk and responsibility for said logs upon delivery.

G-116.2 Sustainable Forestry Initiative® (SFI) Certification

Forest products purchased under this contract are certified as being in conformance with the Sustainable Forestry Initiative program Standard under certificate number: BV-SFIS-US09000572.

G-160.2 Agents

The State's rights and duties will be exercised by the Region Manager at Colville, Washington. The Region Manager will notify Purchaser in writing who is responsible for administering the contract. The Region Manager has sole authority to waive, modify, or amend the terms of this contract in the manner prescribed in clause G-180. No agent, employee, or representative of the State has any authority to bind the State to any affirmation, representation, or warranty concerning the logs conveyed beyond the terms of this contract.

The Purchaser agrees to notify the State in writing of their authorized representative at the log delivery destination who will be readily available and who shall be authorized to receive, on behalf of the Purchaser any instructions or notices given by the State in regard to performance under this contract, and any limits to this person's authority.

G-180 Modifications

Waivers, modifications, or amendments of the terms of this contract must be in writing signed by Purchaser and the State.

G-190 Contract Complete

This contract is the final expression of the Parties' agreement. There are no understandings, agreements, or representations, expressed or implied, which are not specified in this contract.

G-200.2 Notice

Notices required to be given under the following clauses shall be in writing and shall be delivered to the State or Purchaser's authorized agent or sent by certified mail to the Purchaser's post office address, so that their receipt may be acknowledged.

G-026.2 Log Delivery Destination G-027.2 Log Delivery and Schedule Conditions G-210.2 Violation of Contract

All other notices required to be given under this contract shall be in writing and delivered to their respective authorized agent or mailed to the Party's post office address. Parties agree to notify the other of any change of mailing address.

G-210.2 Violation of Contract

- a. If Purchaser violates any provision of this contract, the Contract Administrator, by written notice, may suspend delivery of further loads of forest products. If the violation is capable of being remedied, the Purchaser has five (5) days after receipt of suspension notice to remedy the violation. If the violation cannot be remedied (such as violation of WAC 240-15-015) or Purchaser fails to remedy the violation within five (5) days after receipt of a suspension notice, the State may terminate the rights of the Purchaser under this contract and collect damages as described in the damages clause in this contract.
- b. The State has the right to remedy the breach in the absence of any indicated attempt by the Purchaser or if Purchaser is unable, as determined by the State, to remedy the breach. Any expense incurred by the State shall be charged to Purchaser and shall be paid within thirty (30) days of receipt of billing.
- c. If Purchaser's violation is a result of a failure to make payment to the State when due, in addition to (a.) above, interest shall accrue on the unpaid balance at 12 percent per annum, beginning the date payment was due. The State may secure payments from the security provided.

G-240.2 Dispute Resolution

The following procedures apply in the event of a dispute regarding interpretation or administration of this contract and the parties agree that these procedures must be followed before a lawsuit can be initiated.

- a. In the event of a dispute, Purchaser must make a written request to the Region Manager for resolution prior to seeking other relief.
- b. The Region Manager will issue a written decision on Purchaser's request within five business days.
- c. Within five business days of receipt of the Region Manager's decision, the Purchaser may make a written request for resolution to the Deputy Supervisor
 - Uplands of the Department of Natural Resources.
- d. Unless otherwise agreed, the Deputy Supervisor Uplands will hold a conference within 15 calendar days of the receipt of Purchaser's request for review of the Region Manager's written decision. Purchaser and the Region Manager will have an opportunity to present their positions. The Deputy Supervisor Uplands will issue a decision within a reasonable time of being presented with both Parties' positions.

G-252.2 Forest Excise Tax

Purchaser shall be responsible for payment of all forest excise taxes pursuant to chapter 84.33 RCW.

G-253.2 Harvesting Cost Information

The State agrees to supply all harvesting cost information to the Purchaser for their consideration in payment of forest excise taxes.

G-260 Venue

This contract shall be governed by the laws of the State of Washington. In the event of a lawsuit involving this contract, venue shall be proper only in Thurston County Superior Court.

G-330.2 Contract Review

Purchaser may arrange with the Contract Administrator to review the provisions of this contract prior to the delivery of forest products.

Section P: Payments and Securities

P-010 Initial Deposit

Purchaser paid DATA MISSING initial deposit, which will be maintained pursuant to RCW 79.15.100(3). If the operating authority on this contract expires without Purchaser's payment of the full amount specified in the 'Payment for Forest Products' clause, the initial deposit will be immediately forfeited to the State, and will be offset against Purchaser's remaining balance due. Any excess initial deposit funds not needed to ensure full payment of the contract price, or not needed to complete any remaining obligations of the Purchaser existing after contract expiration, will be refunded to the Purchaser.

P-028.2 Payment for Forest Products Delivered

Purchaser agrees to pay the State for delivered forest products at the following rate:

\$0.00/Ton

Purchaser agrees to increase the above delivered payment rate as approved by the State in the event the location of delivery is changed per the G-026.2 clause.

P-036.2 Missorts and Payment Reduction for Delivered Forest Products

Forest Products delivered that do not meet the sorting specifications in G-022.2 where species are incorrect, are scaled over 1" outside the listed diameter specifications, or ponderosa pine with blue stain are considered mis-sorts.

However, when mis-sorted Forest Products amount to more than 3% of the total delivered sort volume, Purchaser may request approval for payment reduction for delivered volume exceeding the mis-sort threshold.

Requests for payment reduction must be submitted to the State in writing prior to contract expiration. Eligibility for mis-sort payment reduction is subject to State approval and shall be determined by the State's delivered product analysis. Forest Products determined by the State eligible for mis-sort price reduction are not eligible for any other price adjustments.

Payment reduction for Forest Products deemed mis-sorted will be calculated as follows:

Payment Reduction = $(B \times M) \times R$ Where:

B = Bid rate from P-028.2 clause

- M = Mis-sorted volume exceeding threshold excluding utility
- R = Reduction factor
 - 0.3 for mis-sort except for blue stain
 - 0.4 for mis-sort related to blue stain

Third party scaling organization information is required to determine Scribner mbf for payment reduction purposes. Value will be derived from the applicable sort value as described in this contract.

Scale information for determining mis-sort payment reduction eligibility must be obtained from roll-out scale. Truck-ramp and/or bundle scaling information is not acceptable for determining eligibility.

Purchaser's exclusive remedy for mis-sorts shall be the payment reduction described in this clause, notwithstanding other provisions in the Uniform Commercial Code

P-037.2 Mismanufacture and Payment Reduction for Delivered Forest Products

Forest Products delivered that do not meet preferred log length specifications or multiples or combinations of preferred lengths and Forest Products delivered not meeting minimum log quality specifications as described in the G-024.2 clause are considered mis-manufactured. Purchaser receiving mis-manufactured Forest Products is required to pay the State at the bid price under this contract.

However, when mis-manufactured Forest Products amount to more than 3% of the total delivered sort volume, Purchaser may request approval for payment reduction for delivered volume exceeding the mis-manufacture threshold.

Requests for payment reduction must be submitted to the State in writing prior to contract expiration. Eligibility for mis-manufacture payment reduction is subject to State approval and shall be determined by the State's delivered product analysis. Forest Products determined by the State eligible for mis-manufacture price reductions are not eligible for any other price adjustments.

Payment reduction for Forest Products deemed mis-manufactured will be calculated as follows:

Payment Reduction = $(B \times M) \times (0.2)$ Where: B = Bid rate from P-028.2 clause

M = Mis-manufactured volume exceeding threshold excluding utility

Third party scaling organization information is required to determine Scribner mbf for payment reduction purposes. Value will be derived from the applicable sort value as described in this contract.

Scale information for determining mis-manufacture payment reduction eligibility must be obtained from roll-out scale. Truck-ramp and/or bundle scaling information is not acceptable for determining eligibility.

Purchaser's exclusive remedy for mis-manufacture shall be the payment reduction described in this clause, notwithstanding other provisions in the Uniform Commercial Code.

P-039.2 Tonnage Sort Payment Reduction Requirements

Purchaser must provide a plan in writing, acceptable to the State, to acquire third party Scribner mbf scaling information in order to be eligible for a payment reduction for a tonnage sort according to clauses P-036.2 or P-037.2. Logs delivered and accepted by the Purchaser prior to the State's acceptance of Purchaser's written payment reduction plan are not eligible for payment reduction.

Failure of Purchaser to provide sample scale data in a timely, accurate and legible basis will void an approved sample scale plan.

An approved payment reduction plan can be voided at the sole discretion of the State.

For the purpose of tonnage sort payment reduction requests, preferred log lengths for tonnage sawlog sorts shall include the following plus any additional lengths identified in clause G-024.2:

Species Type	Preferred Lengths
Conifer Sorts	16', 20', 24', 26', 32', 40'
Hardwood Sorts	18', 20', 26', 28', 30', 36', 38', 40'

P-040.2 Weighing and Scaling Costs

Purchaser agrees to pay for all weighing costs for logs delivered regardless if logs are purchased on a weight or scale basis. In addition, Purchaser agrees to pay for all scaling costs for logs delivered on a scale basis. Purchaser also agrees to pay for all costs associated with the transmission and reporting of scale or weight data.

P-045.2 Guarantee of Payment

Prior to the delivery of forest products and at a date determined by the State, Purchaser shall guarantee payment to the State for products delivered by posting with the State an approved payment security. If the Purchaser has purchased more than one sort, the payment securities may be consolidated for all the sorts. Acceptable payment security includes cash, certificate of deposit assignment, payment bond, savings account assignment, or irrevocable bank letter of credit.

The amount of payment security shall be determined by the State. The amount of payment security shall represent at least 30 days value of forest product deliveries. Payment security for products delivered will be used to guarantee payment to the State for late or non-payments.

If at any time the State determines that the security has become unsatisfactory or a demand is made against the payment security, the Purchaser agrees to increase the amount or replace the security with one acceptable to the state within 5 business days. Failure to increase the amount or replace the security is considered a breach of contract.

P-050.2 Billing and Payment Procedure for Forest Products Delivered

The State will compute and forward to Purchaser a billing statement of charges for forest products delivered during the billing period at the delivered rate shown in P-028.2 clause. After receipt of the billing statement, Purchaser's payment must be received by the Department of Natural Resources on or before the due date shown on the billing statement. Purchaser agrees to make payment, payable to the Department of Natural Resources. Failure to pay on time for forest products delivered is considered a breach of contract.

Included with the billing statement will be a summary report for the billing period compiled by the State or their log and load reporting service.

The State will adjust final billings to account for any State approved payment reductions.

P-080 Payment Account Refund

Advance payments made under P-045 or P-045.2 remaining on account above the value for the charges shall be returned to Purchaser within 30 days following the final report of charges. Refunds not made within the 30 day period will accrue interest at the interest rate, as established by WAC 332-100-030, computed on a daily basis until paid.

Section L: Log Definitions and Accountability

L-010.2 Forest Products Conveyed

Forest products conveyed are logs or parts of logs delivered meeting the sorting criteria defined by clauses G-022.2 and G-024.2 of this contract

L-014.2 Sorts Delivered to Incorrect Destination

Purchaser has agreed to purchase the sort as described in the G-022.2 clause. In the event a load from a different sort is delivered to Purchaser, Purchaser may reject the load. If Purchaser receives an incorrectly delivered load, they shall notify the State within 24 hours. If the Purchaser accepts the load, provisions in the P-035.2 or P-036.2 clause may apply.

L-071.2 Log and Load Reporting Service

This contract may at the States discretion, require the services of a State approved third party log and load reporting service. Purchaser shall ensure log volume measurement, weight, or scale and weight data for each load is received by the log and load reporting service within of logs being measured or weighed.

If during the term of this contract, the State discontinues use of the Log and Load Reporting Service, the State will notify the Purchaser in writing, and will approve an alternative log and load reporting process.

L-090 Scaling Rules

Determination of volume of any forest products shall be conducted by a state approved third party scaling organization and in accordance with the Eastside log scaling and grading rules, Region 6 taper rules, and Scribner Volume Table, revised July 1, 1972, contained in the Northwest Log Rules Eastside and Westside Log Scaling Handbook (developed and produced by the Northwest Log Rules Advisory Group) and in effect on the date of confirmation of this contract.

Special scaling specifications shall be noted on the State's Brand Designation form which is hereby incorporated to this contract by reference.

L-110 State Approval of Log Scaling and Weighing Locations

Forest Product measurement and weighing facilities required by this contract must be approved by the State. Forest products sold under the contract which require log scaling shall be scaled, measured, or counted by a State approved third party log scaling organization. Forest products sold under the contract which require weighing shall be weighed at a location that meets Washington State Department of Agriculture approval.

Prior to forest products being hauled, the Contract Administrator must authorize in writing the use of State approved measurement and/or weighing facilities that are at or en-route to final destinations. Forest products from this sale shall be measured or weighed at facilities, which are currently approved for use by the State and are currently authorized for this sale. The State reserves the right to verify load volume and weights with State employees or contractors at the State's own expense. The State reserves the right to revoke the authorization of previously approved measurement locations.

Section D: Damages

D-010 Liquidated Damages

The clauses in the DAMAGES section of this contract provide for payments by Purchaser to the State for certain breaches of the terms of this contract. These payments are agreed to as liquidated damages and not as penalties. They are reasonable estimates of anticipated harm to the State caused by Purchaser's breach. These liquidated damages provisions are agreed to by the State and Purchaser with the understanding of the difficulty of proving loss and the inconvenience or infeasibility of obtaining an adequate remedy. These liquidated damages provisions provide greater certainty for the Purchaser by allowing the Purchaser to better assess its responsibilities under the contract.

D-026.2 Damages for Delivery Interruptions and Load Non-Acceptance

- a. Purchaser's failure to accept delivery of forest products due to an extended delivery interruption exceeding the limits as described in the G-027.2 (c) clause, results in substantial injury to the State. The Purchaser shall pay the State liquidated damages at a rate of \$1,000.00 per each day of breach, until breach is remedied.
- b. Unless Purchaser and the State have made a prior agreement in writing, Purchaser's failure to accept at least the number of delivered loads as described in the G-027.2 (d) clause, results in substantial injury to the State. The Purchaser shall pay the State liquidated damages at a rate of \$200 per each truck delivery not accepted, until breach is remedied.

D-027.2 Failure to Accept Forest Products Sold

Purchaser's failure to accept all or part of the forest products sold in this agreement prior to expiration or completion of the contract results in substantial injury to the State. Except for reasons other than 'Force Majeure' (G-056.2), either section a. or b. below will apply as determined by the State.

- a. When Purchaser's refusal to accept forest products does not prevent further harvesting operations, or forest products can be re-sold to another buyer acceptable to the State, Purchaser shall be liable for and pay State for actual damages plus costs, as determined by the State associated with the administration and re-sale of forest products not accepted by Purchaser under the terms of this contract.
- b. When Purchaser's refusal to accept forest products causes a stoppage of the State's harvesting operations and prevents the State from further harvest of the sale area, the actual damage to the State and associated costs are difficult to assess. The remaining value of all the forest products left in the sale area once the stoppage occurs is not readily ascertainable. Purchaser's failure to perform disrupts the State's management plans. Therefore, Purchaser agrees to pay the State as liquidated damages, a sum calculated using the following formula:

LD = (.35V-I) + C + A - P

Where:

LD = Liquidated Damages

V = The stumpage value remaining in the sale area at the date of work stoppage. This will be determined by multiplying the contract bid rate contained in the P-028.2 clause for all sorts originating in the sale area, by the State's estimate of the remaining volume, less the cost of harvesting and delivery associated with each sort. I = Initial Deposit

C = Costs associated with required harvesting services and road construction services prior to work stoppage but not amortized or paid.

A = Administrative fee = \$2,500.00

P = Advance payments received exceeding the value of logs delivered under this contract.

The above formula reflects the Purchaser's forfeiture of the initial deposit in accordance with clause P-010 by deducting the initial deposit from the amount owed. In no event shall the liquidated damages be less than zero. Interest on the liquidated damage is owed from the date of the work stoppage until final payment, calculated using the following formula:

Interest = $r \times LD \times N$

Where:

r = daily equivalent of an annual interest at current interest rate as established by WAC 332-100-030.

N = Number of days from work stoppage to time of payment

D-030.2 Inadequate Log Accountability

Failure to provide weighing and third party scaling information result in substantial injury to the State. The potential loss of accountability is not readily ascertainable. These contractual breaches result in an increase in the potential for the delivery of forest products for which the State receives inadequate payment and causes an increase in the State's administration costs associated with this contract. The actual costs of these breaches are difficult to assess.

For these reasons, Purchaser's payments for forest product delivery under this contract will be increased in the following amounts, as liquidated damages, to compensate the State for these breaches: \$250.00 each time a load weight is not provided as required by the contract, and \$250.00 each time load scale data is not determined and provided by a State approved third party scaling organization in accordance with this contract.

IN WITNESS WHEREOF, the Parties hereto have entered into this contract.

STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES

Purchaser

Loren D. Torgerson Northeast Region Manager

Date: _____Address:

Date: _____

DRAFT

CORPORATE ACKNOWLEDGEMENT

STATE OF)				
COUNTY OF)				
On this	day of		_, 20,	before me	person	ally
			to me	known to of the		
that executed the	within and foregoing instr	ument and acknow			1	
•	y act and deed of the corpo l that (he/she was) (they we					ned,

IN WITNESS WHEREOF, I have hereunto set my hand and affixed my official seal the day and year first above written.

Notary Public in and for the State of

My appointment expires _____

<u>Schedule A</u> Sort Specifications

Sort #1: Douglas fir and western larch 11 inches and greater in diameter inside the bark. If Purchaser designates peeler lengths, then chuckability standards apply to the logs. Nonchuckable logs will be delivered to the Purchaser of Sort #7. If the Purchaser designates sawlog lengths, then all Douglas fir and western larch sawlogs will be delivered to the Purchaser of this sort and none will be delivered to the Purchaser of Sort #7.

Sort #2: Douglas fir and western larch 7 inches to 10 inches diameter inside the bark. If Purchaser designates peeler lengths, then chuckability standards apply to the logs. Nonchuckable logs will be delivered to the Purchaser of Sort #8. If the Purchaser designates sawlog lengths, then all Douglas fir and western larch sawlogs will be delivered to the Purchaser of this sort and none will be delivered to the Purchaser of Sort #8.

Sort #3: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 5 inches to 6 inches diameter inside the bark.

Sort #4: Ponderosa pine 11 inches and greater in diameter inside the bark.

Sort #5: Ponderosa pine 7 inches to 10 inches diameter inside the bark.

Sort #6: Blue Stain ponderosa pine 7 inches and greater in diameter inside the bark.

Sort #7: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 11 inches and greater in diameter inside the bark. See Sort #1 description for handling procedures for Douglas fir and western larch.

Sort #8: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 7 inches to 10 inches diameter inside the bark. See Sort #2 description for handling procedures for Douglas fir and western larch.

Sort #9: Western red cedar 5 inches and greater in diameter inside the bark.

STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES

LOG SALE AND PURCHASE CONTRACT

AGREEMENT NO. 30-093528

SALE NAME: DEER FIRE SALVAGE SORT 07

THE STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES, HEREINAFTER ACTING SOLELY, IN ITS PROPRIETARY CAPACITY, STATE, AND PURCHASER, AGREE AS FOLLOWS:

Section G: General Terms

G-001.2 Definitions

The following definitions apply throughout this contract;

Contract Administrator: Region Manager's designee responsible for assuring that the contractual obligations of the Purchaser and Contractor are met.

Contractor: State-selected harvester responsible to perform all duties as required by the Harvesting Services Contract, including but not limited to timber harvesting, road construction, debris removal and piling, hauling and delivery of forest products for weighing and/or scaling, to the Purchasers of the timber sales Sorts.

Delivery: Occurs when logs or forest products meeting the sorting specifications arrive at the Purchasers destination, as described in the contract.

Forest Product: Any material derived from the forest for commercial use.

Harvesting: A general term, referring to the Contractor's various obligations under the Harvesting Services Contract.

DRAFT

Harvesting Services Contract: Contract between the Contractor and the State, which sets forth the procedures and obligations of the Contractor for completing the harvesting of timber, and the delivery of various log sorts to the State's purchasers, and the payment obligations of the State, The Harvesting Services Contract will include a Road Plan for any road construction or reconstruction, where applicable.

Log Sale and Purchase Contract: Purchase Agreement between the State and Purchaser(s) of particular log sorts from the timber sale.

Purchaser: The company or individual that has entered a Log Sale Contract with the State for individual log sorts from the timber sale area. The Contractor must deliver the designated log sorts to this company or individual. Contractor will likely be delivering different log sorts to different purchasers under the Harvesting Services Contract.

State: The Washington State Department of Natural Resources, landowner and seller of forest products from the timber sale area. The State is represented by the Region Manager as designated on the contract signature page. Contractual obligations to the State are enforced by the Region Manager or the designated Contract Administrator.

G-010.2 Products Sold and Sale Area

Purchaser was the successful bidder on March 22, 2016 and sale was confirmed on ______. The State, as owner, agrees to sell and deliver to the Purchaser logs meeting the log sort specifications as described in the G-022.2 clause. Logs will be delivered from the DEER FIRE SALVAGE SORTS Timber Sale described as parts of Sections 6, 7, 8, 10, 16, 22, and 23 all in Township 29 North, Range 38 East W.M., in Stevens County.

G-022.2 Sorting Specifications

Purchaser shall accept and pay for delivery of log sorts by a state selected contractor to the designated Purchaser location that meets the following specifications:

Agreement No.	Sort #	Description	Destination
93528	7	ES/WH/GF/LP and non- chuck DF/WL 11"+ dib	

Unless otherwise specified, no blue stain is allowed in Ponderosa pine.

G-024.2 Manufacturing Standards

All forest products except poles, produced and sold under this contract will be manufactured to maximize the amount of logs meeting preferred log lengths and to achieve the average log length listed.

Agreement	Sort	Scaling
No.	#	Rule
93528	07	ES

Average Log Length	Preferred Log Lengths
N/A	

"WS" indicates that west side scaling rules apply. Minimum trim is 8 inches per scaling segment for west side scaling rules. "ES" indicates that east side scaling rules apply. Minimum trim is 4 inches per scaling segment for east side scaling rules.

Poles produced under this contract will be manufactured to ANSI specifications (American National Standard Specifications and Dimensions for Wood Poles), in force at the time of signing this contract.

- a. Sweep will be limited to within the bole of the log as measured using a tape stretched between the centers of each end of the log.
- b. Logs approved by the state for peelers shall be chuckable with no more than a 2 inch diameter area of rot within a 5 inch diameter circle located at the center of either end of the log.
- c. Limbs and knots shall be cut flush, with no more than 15 percent of a log having limbs or knots over 2 inches in diameter extending more than 2 inches above the surface of the log.
- d. Surface characteristics for a high quality (HQ) "A" log sort will have sound tight knots and not to exceed 1 ½ inch in diameter, numbering not more than an average of one per foot of log length. May include logs with not more than two larger knots. Knots ½ inch and smaller in diameter shall not be a determining factor. Logs will have a growth ring count of 6 or more rings per inch in the outer third top end of the log.

G-025 Schedules

The following attached schedules are hereby incorporated by reference:

Schedule	Title
А	Sort Specifications

G-026.2 Log Delivery Destination

Purchaser shall accept logs delivered to the destination as described in the G-022.2 clause. Purchaser may make a written request to the State for a change in log delivery destination or scaling or weighing location. If agreeable and in the best interest of the State, the State may approve the Purchaser's request. Written approval must be granted by the State prior to log delivery to a new destination or use of a new scaling or weighing facility.

Increased haul distance shall result in an increase in the P-028.2 log delivery payment rate in an amount to be calculated by the State. In no circumstance shall the payment rate for delivered logs be reduced as a result of a state approved delivery destination or scaling or weighing facility change.

Purchaser may refuse loads delivered to the wrong destination.

G-027.2 Log Delivery Schedule and Conditions

- a. Delivery hours Purchaser agrees to accept logs from the Contractor at the Purchaser's delivery location during Purchaser's working hours or at least between the hours of 8:00 a.m. and 5:00 p.m., Monday through Friday, except legal holidays unless otherwise agreed upon by the State.
- b. Improperly loaded trucks It is understood and agreed that the Purchaser incurs no obligation to accept improperly or illegally loaded trucks in its facility. Any truck so loaded may be directed to vacate the yard and shall remain the responsibility of the harvesting contractor. The Purchaser shall notify the State within 24 hours of any load (s) rejected and specify the reasons why.
- c. Log Delivery Interruptions Purchaser may schedule times in which delivery of logs will not be accepted. The Purchaser shall notify the Contract Administrator at least five (5) working days before the scheduled interruption or closure occurs. The duration of the log delivery interruption shall not exceed seven (7) consecutive working days or a total of ten (10) working days over the duration of the contract term. If Purchaser's scheduled delivery interruption exceeds contract requirements and causes the State harm, Purchaser will be in breach of contract and subject to liquidated damages as per the D-026.2 and D-027.2 clauses, unless Purchaser and the State have made a prior agreement in writing to mitigate potential harm to the State.
- d. Required Acceptance of Daily Load Deliveries and Notification If the State is harmed by purchaser's refusal to accept up to 20 truck deliveries of any one sort per day, Purchaser will be in breach of contract and subject to damages as per the D-026.2 and D-027.2 clauses. A truck delivery is all the wood delivered including sorts on super trucks, mule trains and pups brought to the delivery point by a single truck. The Purchaser shall notify the Contract Administrator at least 48 hours in advance if:

1. Purchaser intends to limit the number of truck deliveries accepted on any day to less than that listed above, or

2. Purchaser intends to limit the number of truck deliveries accepted on any day to the number listed above.

e. State Notification to Purchaser - The State will notify the Purchaser when it anticipates or schedules an interruption of deliveries and when it anticipates the number of truck deliveries on any day will exceed the number listed above.

f. If payments are not received or, the State determines that the payment security has become unsatisfactory or, a demand is made against the payment security under the P-045.2 clause the State shall suspend deliveries until such time as the violation has been remedied. Any suspension of deliveries due to late payment or inadequate payment security will be considered a Log Delivery Interruption under (c) of this clause.

G-030.2 Contract Term and Expiration Date

Purchaser agrees to accept and pay for forest products delivered through the period ending November 30, 2016.

G-050.2 Contract Term Extension

Contract extensions and any other conditions subject to the extension as agreed to by the Purchaser and State, must be formalized in writing, signed by Purchaser and State.

G-054.2 Early Contract Termination

The State may terminate this contract in whole or in part by giving fifteen (15) days written notice to the Purchaser when it is in the best interests of the State. If this contract is so terminated, the State shall be liable only for the return of that portion of the initial deposit that is not required for payment, and the return of unapplied payments. The State shall not be liable for damages, whether direct or consequential.

G-056.2 Force Majeure

No Party shall be liable for any failure to perform its obligations, other than payments due, where such failure is as a result of Acts of Nature (including fire, flood, earthquake, storm, or other natural disaster), war, act of foreign enemies, hostilities (whether war is declared or not), terrorist activities, government sanction, fire, labor dispute, strike or lockout.

Any Party asserting Force Majeure as an excuse shall have the burden of proving that reasonable steps were taken (under the circumstances) to minimize delay or damages caused by foreseeable events, that all non-excused obligations were substantially fulfilled, and that the other Party was timely notified of the likelihood or actual occurrence which would justify such an assertion, so that other prudent precautions could be contemplated.

In the event of Force Majeure, the State reserves the right to terminate this agreement in accordance with clause G-054.2 'Early Contract Termination'.

G-060.2 Exclusion of Warranties

The PARTIES AGREE that the IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE and ALL OTHER WARRANTIES EXPRESSED OR IMPLIED ARE EXCLUDED from this transaction and shall not apply to the goods to be harvested or sold. For example, THE FOLLOWING SPECIFIC MATTERS ARE NOT WARRANTED, and are EXCLUDED from this transaction:

- a. The MERCHANTABILITY of the forest products. The use of the term "merchantable" in any document is not intended to vary the foregoing.
- b. The CONDITION of the forest products. The forest products will be conveyed "AS IS."
- c. THE VOLUME, WEIGHT, QUANITY, OR QUALITY, of the forest products to be harvested. The descriptions of the forest products to be conveyed, are estimates only, made solely for administrative and identification purposes. The timing of forest product deliveries.
- d. Items contained in any other documents prepared for or by the State.

G-065 Regulatory Disclaimer

The State disclaims any responsibility for, or liability relating to, regulatory actions by any government agency, including actions pursuant to the Forest Practices Act, Ch. 76.09 RCW that may affect the operability of the timber sale.

G-070.2 Limitation on Damage

In the event of a breach of any provision of this contract by the State, the liability of the State shall be limited to return of the unused initial deposit and unapplied payments to the Purchaser. The State shall not be liable for any damages, whether direct, incidental, or consequential.

G-112.2 Title

The State hereby warrants that State is the owner of said logs and has the right to sell same, free of liens, encumbrances, or claims, but subject to trade restrictions promulgated in WAC 240-15-015. Purchaser assumes title and all risk and responsibility for said logs upon delivery.

G-116.2 Sustainable Forestry Initiative® (SFI) Certification

Forest products purchased under this contract are certified as being in conformance with the Sustainable Forestry Initiative program Standard under certificate number: BV-SFIS-US09000572.

G-160.2 Agents

The State's rights and duties will be exercised by the Region Manager at Colville, Washington. The Region Manager will notify Purchaser in writing who is responsible for administering the contract. The Region Manager has sole authority to waive, modify, or amend the terms of this contract in the manner prescribed in clause G-180. No agent, employee, or representative of the State has any authority to bind the State to any affirmation, representation, or warranty concerning the logs conveyed beyond the terms of this contract.

The Purchaser agrees to notify the State in writing of their authorized representative at the log delivery destination who will be readily available and who shall be authorized

to receive, on behalf of the Purchaser any instructions or notices given by the State in regard to performance under this contract, and any limits to this person's authority.

G-180 Modifications

Waivers, modifications, or amendments of the terms of this contract must be in writing signed by Purchaser and the State.

G-190 Contract Complete

This contract is the final expression of the Parties' agreement. There are no understandings, agreements, or representations, expressed or implied, which are not specified in this contract.

G-200.2 Notice

Notices required to be given under the following clauses shall be in writing and shall be delivered to the State or Purchaser's authorized agent or sent by certified mail to the Purchaser's post office address, so that their receipt may be acknowledged.

G-026.2 Log Delivery Destination G-027.2 Log Delivery and Schedule Conditions G-210.2 Violation of Contract

All other notices required to be given under this contract shall be in writing and delivered to their respective authorized agent or mailed to the Party's post office address. Parties agree to notify the other of any change of mailing address.

G-210.2 Violation of Contract

- a. If Purchaser violates any provision of this contract, the Contract Administrator, by written notice, may suspend delivery of further loads of forest products. If the violation is capable of being remedied, the Purchaser has five (5) days after receipt of suspension notice to remedy the violation. If the violation cannot be remedied (such as violation of WAC 240-15-015) or Purchaser fails to remedy the violation within five (5) days after receipt of a suspension notice, the State may terminate the rights of the Purchaser under this contract and collect damages as described in the damages clause in this contract.
- b. The State has the right to remedy the breach in the absence of any indicated attempt by the Purchaser or if Purchaser is unable, as determined by the State, to remedy the breach. Any expense incurred by the State shall be charged to Purchaser and shall be paid within thirty (30) days of receipt of billing.
- c. If Purchaser's violation is a result of a failure to make payment to the State when due, in addition to (a.) above, interest shall accrue on the unpaid balance at 12 percent per annum, beginning the date payment was due. The State may secure payments from the security provided.

G-240.2 Dispute Resolution

The following procedures apply in the event of a dispute regarding interpretation or administration of this contract and the parties agree that these procedures must be followed before a lawsuit can be initiated.

- a. In the event of a dispute, Purchaser must make a written request to the Region Manager for resolution prior to seeking other relief.
- b. The Region Manager will issue a written decision on Purchaser's request within five business days.
- c. Within five business days of receipt of the Region Manager's decision, the Purchaser may make a written request for resolution to the Deputy Supervisor
 Uplands of the Department of Natural Resources.
- d. Unless otherwise agreed, the Deputy Supervisor Uplands will hold a conference within 15 calendar days of the receipt of Purchaser's request for review of the Region Manager's written decision. Purchaser and the Region Manager will have an opportunity to present their positions. The Deputy Supervisor Uplands will issue a decision within a reasonable time of being presented with both Parties' positions.

G-252.2 Forest Excise Tax

Purchaser shall be responsible for payment of all forest excise taxes pursuant to chapter 84.33 RCW.

G-253.2 Harvesting Cost Information

The State agrees to supply all harvesting cost information to the Purchaser for their consideration in payment of forest excise taxes.

G-260 Venue

This contract shall be governed by the laws of the State of Washington. In the event of a lawsuit involving this contract, venue shall be proper only in Thurston County Superior Court.

G-330.2 Contract Review

Purchaser may arrange with the Contract Administrator to review the provisions of this contract prior to the delivery of forest products.

Section P: Payments and Securities

P-010 Initial Deposit

Purchaser paid DATA MISSING initial deposit, which will be maintained pursuant to RCW 79.15.100(3). If the operating authority on this contract expires without Purchaser's payment of the full amount specified in the 'Payment for Forest Products' clause, the initial deposit will be immediately forfeited to the State, and will be offset against Purchaser's remaining balance due. Any excess initial deposit funds not needed

to ensure full payment of the contract price, or not needed to complete any remaining obligations of the Purchaser existing after contract expiration, will be refunded to the Purchaser.

P-028.2 Payment for Forest Products Delivered

Purchaser agrees to pay the State for delivered forest products at the following rate:

\$0.00/Ton

Purchaser agrees to increase the above delivered payment rate as approved by the State in the event the location of delivery is changed per the G-026.2 clause.

P-036.2 Missorts and Payment Reduction for Delivered Forest Products

Forest Products delivered that do not meet the sorting specifications in G-022.2 where species are incorrect, are scaled over 1" outside the listed diameter specifications, or ponderosa pine with blue stain are considered mis-sorts.

However, when mis-sorted Forest Products amount to more than 3% of the total delivered sort volume, Purchaser may request approval for payment reduction for delivered volume exceeding the mis-sort threshold.

Requests for payment reduction must be submitted to the State in writing prior to contract expiration. Eligibility for mis-sort payment reduction is subject to State approval and shall be determined by the State's delivered product analysis. Forest Products determined by the State eligible for mis-sort price reduction are not eligible for any other price adjustments.

Payment reduction for Forest Products deemed mis-sorted will be calculated as follows:

Payment Reduction = (B x M) x R Where:

- B = Bid rate from P-028.2 clause
- M = Mis-sorted volume exceeding threshold excluding utility
- R = Reduction factor
 - 0.3 for mis-sort except for blue stain
 - 0.4 for mis-sort related to blue stain

Third party scaling organization information is required to determine Scribner mbf for payment reduction purposes. Value will be derived from the applicable sort value as described in this contract.

Scale information for determining mis-sort payment reduction eligibility must be obtained from roll-out scale. Truck-ramp and/or bundle scaling information is not acceptable for determining eligibility.

Purchaser's exclusive remedy for mis-sorts shall be the payment reduction described in this clause, notwithstanding other provisions in the Uniform Commercial Code

P-037.2 Mismanufacture and Payment Reduction for Delivered Forest Products

Forest Products delivered that do not meet preferred log length specifications or multiples or combinations of preferred lengths and Forest Products delivered not meeting minimum log quality specifications as described in the G-024.2 clause are considered mis-manufactured. Purchaser receiving mis-manufactured Forest Products is required to pay the State at the bid price under this contract.

However, when mis-manufactured Forest Products amount to more than 3% of the total delivered sort volume, Purchaser may request approval for payment reduction for delivered volume exceeding the mis-manufacture threshold.

Requests for payment reduction must be submitted to the State in writing prior to contract expiration. Eligibility for mis-manufacture payment reduction is subject to State approval and shall be determined by the State's delivered product analysis. Forest Products determined by the State eligible for mis-manufacture price reductions are not eligible for any other price adjustments.

Payment reduction for Forest Products deemed mis-manufactured will be calculated as follows:

Payment Reduction = $(B \times M) \times (0.2)$ Where:

B = Bid rate from P-028.2 clause

M = Mis-manufactured volume exceeding threshold excluding utility

Third party scaling organization information is required to determine Scribner mbf for payment reduction purposes. Value will be derived from the applicable sort value as described in this contract.

Scale information for determining mis-manufacture payment reduction eligibility must be obtained from roll-out scale. Truck-ramp and/or bundle scaling information is not acceptable for determining eligibility.

Purchaser's exclusive remedy for mis-manufacture shall be the payment reduction described in this clause, notwithstanding other provisions in the Uniform Commercial Code.

P-039.2 Tonnage Sort Payment Reduction Requirements

Purchaser must provide a plan in writing, acceptable to the State, to acquire third party Scribner mbf scaling information in order to be eligible for a payment reduction for a tonnage sort according to clauses P-036.2 or P-037.2. Logs delivered and accepted by the Purchaser prior to the State's acceptance of Purchaser's written payment reduction plan are not eligible for payment reduction.

Failure of Purchaser to provide sample scale data in a timely, accurate and legible basis will void an approved sample scale plan.

An approved payment reduction plan can be voided at the sole discretion of the State.

For the purpose of tonnage sort payment reduction requests, preferred log lengths for tonnage sawlog sorts shall include the following plus any additional lengths identified in clause G-024.2:

Species Type	Preferred Lengths
Conifer Sorts	16', 20', 24', 26', 32', 40'
Hardwood Sorts	18', 20', 26', 28', 30', 36', 38', 40'

P-040.2 Weighing and Scaling Costs

Purchaser agrees to pay for all weighing costs for logs delivered regardless if logs are purchased on a weight or scale basis. In addition, Purchaser agrees to pay for all scaling costs for logs delivered on a scale basis. Purchaser also agrees to pay for all costs associated with the transmission and reporting of scale or weight data.

P-045.2 Guarantee of Payment

Prior to the delivery of forest products and at a date determined by the State, Purchaser shall guarantee payment to the State for products delivered by posting with the State an approved payment security. If the Purchaser has purchased more than one sort, the payment securities may be consolidated for all the sorts. Acceptable payment security includes cash, certificate of deposit assignment, payment bond, savings account assignment, or irrevocable bank letter of credit.

The amount of payment security shall be determined by the State. The amount of payment security shall represent at least 30 days value of forest product deliveries. Payment security for products delivered will be used to guarantee payment to the State for late or non-payments.

If at any time the State determines that the security has become unsatisfactory or a demand is made against the payment security, the Purchaser agrees to increase the amount or replace the security with one acceptable to the state within 5 business days. Failure to increase the amount or replace the security is considered a breach of contract.

P-050.2 Billing and Payment Procedure for Forest Products Delivered

The State will compute and forward to Purchaser a billing statement of charges for forest products delivered during the billing period at the delivered rate shown in P-028.2 clause. After receipt of the billing statement, Purchaser's payment must be received by the Department of Natural Resources on or before the due date shown on the billing statement. Purchaser agrees to make payment, payable to the Department of Natural Resources. Failure to pay on time for forest products delivered is considered a breach of contract.

Included with the billing statement will be a summary report for the billing period compiled by the State or their log and load reporting service.

The State will adjust final billings to account for any State approved payment reductions.

P-080 Payment Account Refund

Advance payments made under P-045 or P-045.2 remaining on account above the value for the charges shall be returned to Purchaser within 30 days following the final report of charges. Refunds not made within the 30 day period will accrue interest at the interest rate, as established by WAC 332-100-030, computed on a daily basis until paid.

Section L: Log Definitions and Accountability

L-010.2 Forest Products Conveyed

Forest products conveyed are logs or parts of logs delivered meeting the sorting criteria defined by clauses G-022.2 and G-024.2 of this contract

L-014.2 Sorts Delivered to Incorrect Destination

Purchaser has agreed to purchase the sort as described in the G-022.2 clause. In the event a load from a different sort is delivered to Purchaser, Purchaser may reject the load. If Purchaser receives an incorrectly delivered load, they shall notify the State within 24 hours. If the Purchaser accepts the load, provisions in the P-035.2 or P-036.2 clause may apply.

L-071.2 Log and Load Reporting Service

This contract may at the States discretion, require the services of a State approved third party log and load reporting service. Purchaser shall ensure log volume measurement, weight, or scale and weight data for each load is received by the log and load reporting service within of logs being measured or weighed.

If during the term of this contract, the State discontinues use of the Log and Load Reporting Service, the State will notify the Purchaser in writing, and will approve an alternative log and load reporting process.

L-090 Scaling Rules

Determination of volume of any forest products shall be conducted by a state approved third party scaling organization and in accordance with the Eastside log scaling and grading rules, Region 6 taper rules, and Scribner Volume Table, revised July 1, 1972, contained in the Northwest Log Rules Eastside and Westside Log Scaling Handbook (developed and produced by the Northwest Log Rules Advisory Group) and in effect on the date of confirmation of this contract.

Special scaling specifications shall be noted on the State's Brand Designation form which is hereby incorporated to this contract by reference.

L-110 State Approval of Log Scaling and Weighing Locations

Forest Product measurement and weighing facilities required by this contract must be approved by the State. Forest products sold under the contract which require log scaling shall be scaled, measured, or counted by a State approved third party log scaling organization. Forest products sold under the contract which require weighing shall be weighed at a location that meets Washington State Department of Agriculture approval.

Prior to forest products being hauled, the Contract Administrator must authorize in writing the use of State approved measurement and/or weighing facilities that are at or en-route to final destinations. Forest products from this sale shall be measured or weighed at facilities, which are currently approved for use by the State and are currently authorized for this sale. The State reserves the right to verify load volume and weights with State employees or contractors at the State's own expense. The State reserves the right to revoke the authorization of previously approved measurement locations.

Section D: Damages

D-010 Liquidated Damages

The clauses in the DAMAGES section of this contract provide for payments by Purchaser to the State for certain breaches of the terms of this contract. These payments are agreed to as liquidated damages and not as penalties. They are reasonable estimates of anticipated harm to the State caused by Purchaser's breach. These liquidated damages provisions are agreed to by the State and Purchaser with the understanding of the difficulty of proving loss and the inconvenience or infeasibility of obtaining an adequate remedy. These liquidated damages provisions provide greater certainty for the Purchaser by allowing the Purchaser to better assess its responsibilities under the contract.

D-026.2 Damages for Delivery Interruptions and Load Non-Acceptance

- a. Purchaser's failure to accept delivery of forest products due to an extended delivery interruption exceeding the limits as described in the G-027.2 (c) clause, results in substantial injury to the State. The Purchaser shall pay the State liquidated damages at a rate of \$1,000.00 per each day of breach, until breach is remedied.
- b. Unless Purchaser and the State have made a prior agreement in writing, Purchaser's failure to accept at least the number of delivered loads as described in the G-027.2 (d) clause, results in substantial injury to the State. The Purchaser shall pay the State liquidated damages at a rate of \$200 per each truck delivery not accepted, until breach is remedied.

D-027.2 Failure to Accept Forest Products Sold

Purchaser's failure to accept all or part of the forest products sold in this agreement prior to expiration or completion of the contract results in substantial injury to the State. Except for reasons other than 'Force Majeure' (G-056.2), either section a. or b. below will apply as determined by the State.

- a. When Purchaser's refusal to accept forest products does not prevent further harvesting operations, or forest products can be re-sold to another buyer acceptable to the State, Purchaser shall be liable for and pay State for actual damages plus costs, as determined by the State associated with the administration and re-sale of forest products not accepted by Purchaser under the terms of this contract.
- b. When Purchaser's refusal to accept forest products causes a stoppage of the State's harvesting operations and prevents the State from further harvest of the sale area, the actual damage to the State and associated costs are difficult to assess. The remaining value of all the forest products left in the sale area once the stoppage occurs is not readily ascertainable. Purchaser's failure to perform disrupts the State's management plans. Therefore, Purchaser agrees to pay the State as liquidated damages, a sum calculated using the following formula:

LD = (.35V-I) + C + A - P

Where:

LD = Liquidated Damages

V = The stumpage value remaining in the sale area at the date of work stoppage. This will be determined by multiplying the contract bid rate contained in the P-028.2 clause for all sorts originating in the sale area, by the State's estimate of the remaining volume, less the cost of harvesting and delivery associated with each sort. I = Initial Deposit

C = Costs associated with required harvesting services and road construction services prior to work stoppage but not amortized or paid.

A = Administrative fee = \$2,500.00

P = Advance payments received exceeding the value of logs delivered under this contract.

The above formula reflects the Purchaser's forfeiture of the initial deposit in accordance with clause P-010 by deducting the initial deposit from the amount owed. In no event shall the liquidated damages be less than zero. Interest on the liquidated damage is owed from the date of the work stoppage until final payment, calculated using the following formula:

Interest = $r \times LD \times N$

Where:

r = daily equivalent of an annual interest at current interest rate as established by WAC 332-100-030.

N = Number of days from work stoppage to time of payment

D-030.2 Inadequate Log Accountability

Failure to provide weighing and third party scaling information result in substantial injury to the State. The potential loss of accountability is not readily ascertainable. These contractual breaches result in an increase in the potential for the delivery of forest products for which the State receives inadequate payment and causes an increase in the State's administration costs associated with this contract. The actual costs of these breaches are difficult to assess.

For these reasons, Purchaser's payments for forest product delivery under this contract will be increased in the following amounts, as liquidated damages, to compensate the State for these breaches: \$250.00 each time a load weight is not provided as required by the contract, and \$250.00 each time load scale data is not determined and provided by a State approved third party scaling organization in accordance with this contract.

IN WITNESS WHEREOF, the Parties hereto have entered into this contract.

STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES

Purchaser

Loren D. Torgerson Northeast Region Manager

Date: _____Address:

Date: _____

DRAFT

CORPORATE ACKNOWLEDGEMENT

STATE OF)			
COUNTY OF)			
On this	day of		, 20,	before me	personally
			_ to me	known to _ of the c	
that executed the	within and foregoing instru	ument and acknow			-
free and voluntar	y act and deed of the corpor d that (he/she was) (they we	ration, for the us	es and purp	oses therein r	

IN WITNESS WHEREOF, I have hereunto set my hand and affixed my official seal the day and year first above written.

Notary Public in and for the State of

My appointment expires _____

<u>Schedule A</u> Sort Specifications

Sort #1: Douglas fir and western larch 11 inches and greater in diameter inside the bark. If Purchaser designates peeler lengths, then chuckability standards apply to the logs. Nonchuckable logs will be delivered to the Purchaser of Sort #7. If the Purchaser designates sawlog lengths, then all Douglas fir and western larch sawlogs will be delivered to the Purchaser of this sort and none will be delivered to the Purchaser of Sort #7.

Sort #2: Douglas fir and western larch 7 inches to 10 inches diameter inside the bark. If Purchaser designates peeler lengths, then chuckability standards apply to the logs. Nonchuckable logs will be delivered to the Purchaser of Sort #8. If the Purchaser designates sawlog lengths, then all Douglas fir and western larch sawlogs will be delivered to the Purchaser of this sort and none will be delivered to the Purchaser of Sort #8.

Sort #3: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 5 inches to 6 inches diameter inside the bark.

Sort #4: Ponderosa pine 11 inches and greater in diameter inside the bark.

Sort #5: Ponderosa pine 7 inches to 10 inches diameter inside the bark.

Sort #6: Blue Stain ponderosa pine 7 inches and greater in diameter inside the bark.

Sort #7: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 11 inches and greater in diameter inside the bark. See Sort #1 description for handling procedures for Douglas fir and western larch.

Sort #8: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 7 inches to 10 inches diameter inside the bark. See Sort #2 description for handling procedures for Douglas fir and western larch.

Sort #9: Western red cedar 5 inches and greater in diameter inside the bark.

STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES

LOG SALE AND PURCHASE CONTRACT

AGREEMENT NO. 30-093529

SALE NAME: DEER FIRE SALVAGE SORT 08

THE STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES, HEREINAFTER ACTING SOLELY, IN ITS PROPRIETARY CAPACITY, STATE, AND PURCHASER, AGREE AS FOLLOWS:

Section G: General Terms

G-001.2 Definitions

The following definitions apply throughout this contract;

Contract Administrator: Region Manager's designee responsible for assuring that the contractual obligations of the Purchaser and Contractor are met.

Contractor: State-selected harvester responsible to perform all duties as required by the Harvesting Services Contract, including but not limited to timber harvesting, road construction, debris removal and piling, hauling and delivery of forest products for weighing and/or scaling, to the Purchasers of the timber sales Sorts.

Delivery: Occurs when logs or forest products meeting the sorting specifications arrive at the Purchasers destination, as described in the contract.

Forest Product: Any material derived from the forest for commercial use.

Harvesting: A general term, referring to the Contractor's various obligations under the Harvesting Services Contract.

DRAFT

Harvesting Services Contract: Contract between the Contractor and the State, which sets forth the procedures and obligations of the Contractor for completing the harvesting of timber, and the delivery of various log sorts to the State's purchasers, and the payment obligations of the State, The Harvesting Services Contract will include a Road Plan for any road construction or reconstruction, where applicable.

Log Sale and Purchase Contract: Purchase Agreement between the State and Purchaser(s) of particular log sorts from the timber sale.

Purchaser: The company or individual that has entered a Log Sale Contract with the State for individual log sorts from the timber sale area. The Contractor must deliver the designated log sorts to this company or individual. Contractor will likely be delivering different log sorts to different purchasers under the Harvesting Services Contract.

State: The Washington State Department of Natural Resources, landowner and seller of forest products from the timber sale area. The State is represented by the Region Manager as designated on the contract signature page. Contractual obligations to the State are enforced by the Region Manager or the designated Contract Administrator.

G-010.2 Products Sold and Sale Area

Purchaser was the successful bidder on March 22, 2016 and sale was confirmed on ______. The State, as owner, agrees to sell and deliver to the Purchaser logs meeting the log sort specifications as described in the G-022.2 clause. Logs will be delivered from the DEER FIRE SALVAGE SORTS Timber Sale described as parts of Sections 6, 7, 8, 10, 16, 22, and 23 all in Township 29 North, Range 38 East W.M., in Stevens County.

G-022.2 Sorting Specifications

Purchaser shall accept and pay for delivery of log sorts by a state selected contractor to the designated Purchaser location that meets the following specifications:

Agreement	Sort	Description	Destination
No.	#		
93529	8	ES/WH/GF/LP and non- chuckable DF/WL 7-10" dib	

Unless otherwise specified, no blue stain is allowed in Ponderosa pine.

G-024.2 Manufacturing Standards

All forest products except poles, produced and sold under this contract will be manufactured to maximize the amount of logs meeting preferred log lengths and to achieve the average log length listed.

Agreement	Sort	Scaling
No.	#	Rule

93529 08 ES

Average Log Length	Preferred Log Lengths
N/A	

"WS" indicates that west side scaling rules apply. Minimum trim is 8 inches per scaling segment for west side scaling rules. "ES" indicates that east side scaling rules apply. Minimum trim is 4 inches per scaling segment for east side scaling rules.

Poles produced under this contract will be manufactured to ANSI specifications (American National Standard Specifications and Dimensions for Wood Poles), in force at the time of signing this contract.

- a. Sweep will be limited to within the bole of the log as measured using a tape stretched between the centers of each end of the log.
- b. Logs approved by the state for peelers shall be chuckable with no more than a 2 inch diameter area of rot within a 5 inch diameter circle located at the center of either end of the log.
- c. Limbs and knots shall be cut flush, with no more than 15 percent of a log having limbs or knots over 2 inches in diameter extending more than 2 inches above the surface of the log.
- d. Surface characteristics for a high quality (HQ) "A" log sort will have sound tight knots and not to exceed 1 ½ inch in diameter, numbering not more than an average of one per foot of log length. May include logs with not more than two larger knots. Knots ½ inch and smaller in diameter shall not be a determining factor. Logs will have a growth ring count of 6 or more rings per inch in the outer third top end of the log.

G-025 Schedules

The following attached schedules are hereby incorporated by reference:

Schedule	Title
А	Sort Specifications

G-026.2 Log Delivery Destination

Purchaser shall accept logs delivered to the destination as described in the G-022.2 clause. Purchaser may make a written request to the State for a change in log delivery destination or scaling or weighing location. If agreeable and in the best interest of the State, the State may approve the Purchaser's request. Written approval must be granted by the State prior to log delivery to a new destination or use of a new scaling or weighing facility.

Increased haul distance shall result in an increase in the P-028.2 log delivery payment rate in an amount to be calculated by the State. In no circumstance shall the payment

rate for delivered logs be reduced as a result of a state approved delivery destination or scaling or weighing facility change.

Purchaser may refuse loads delivered to the wrong destination.

G-027.2 Log Delivery Schedule and Conditions

- a. Delivery hours Purchaser agrees to accept logs from the Contractor at the Purchaser's delivery location during Purchaser's working hours or at least between the hours of 8:00 a.m. and 5:00 p.m., Monday through Friday, except legal holidays unless otherwise agreed upon by the State.
- b. Improperly loaded trucks It is understood and agreed that the Purchaser incurs no obligation to accept improperly or illegally loaded trucks in its facility. Any truck so loaded may be directed to vacate the yard and shall remain the responsibility of the harvesting contractor. The Purchaser shall notify the State within 24 hours of any load (s) rejected and specify the reasons why.
- c. Log Delivery Interruptions Purchaser may schedule times in which delivery of logs will not be accepted. The Purchaser shall notify the Contract Administrator at least five (5) working days before the scheduled interruption or closure occurs. The duration of the log delivery interruption shall not exceed seven (7) consecutive working days or a total of ten (10) working days over the duration of the contract term. If Purchaser's scheduled delivery interruption exceeds contract requirements and causes the State harm, Purchaser will be in breach of contract and subject to liquidated damages as per the D-026.2 and D-027.2 clauses, unless Purchaser and the State have made a prior agreement in writing to mitigate potential harm to the State.
- d. Required Acceptance of Daily Load Deliveries and Notification If the State is harmed by purchaser's refusal to accept up to 20 truck deliveries of any one sort per day, Purchaser will be in breach of contract and subject to damages as per the D-026.2 and D-027.2 clauses. A truck delivery is all the wood delivered including sorts on super trucks, mule trains and pups brought to the delivery point by a single truck. The Purchaser shall notify the Contract Administrator at least 48 hours in advance if:

1. Purchaser intends to limit the number of truck deliveries accepted on any day to less than that listed above, or

2. Purchaser intends to limit the number of truck deliveries accepted on any day to the number listed above.

e. State Notification to Purchaser - The State will notify the Purchaser when it anticipates or schedules an interruption of deliveries and when it anticipates the number of truck deliveries on any day will exceed the number listed above.

f. If payments are not received or, the State determines that the payment security has become unsatisfactory or, a demand is made against the payment security under the P-045.2 clause the State shall suspend deliveries until such time as the violation has been remedied. Any suspension of deliveries due to late payment or inadequate payment security will be considered a Log Delivery Interruption under (c) of this clause.

G-030.2 Contract Term and Expiration Date

Purchaser agrees to accept and pay for forest products delivered through the period ending November 30, 2016.

G-050.2 Contract Term Extension

Contract extensions and any other conditions subject to the extension as agreed to by the Purchaser and State, must be formalized in writing, signed by Purchaser and State.

G-054.2 Early Contract Termination

The State may terminate this contract in whole or in part by giving fifteen (15) days written notice to the Purchaser when it is in the best interests of the State. If this contract is so terminated, the State shall be liable only for the return of that portion of the initial deposit that is not required for payment, and the return of unapplied payments. The State shall not be liable for damages, whether direct or consequential.

G-056.2 Force Majeure

No Party shall be liable for any failure to perform its obligations, other than payments due, where such failure is as a result of Acts of Nature (including fire, flood, earthquake, storm, or other natural disaster), war, act of foreign enemies, hostilities (whether war is declared or not), terrorist activities, government sanction, fire, labor dispute, strike or lockout.

Any Party asserting Force Majeure as an excuse shall have the burden of proving that reasonable steps were taken (under the circumstances) to minimize delay or damages caused by foreseeable events, that all non-excused obligations were substantially fulfilled, and that the other Party was timely notified of the likelihood or actual occurrence which would justify such an assertion, so that other prudent precautions could be contemplated.

In the event of Force Majeure, the State reserves the right to terminate this agreement in accordance with clause G-054.2 'Early Contract Termination'.

G-060.2 Exclusion of Warranties

The PARTIES AGREE that the IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE and ALL OTHER WARRANTIES EXPRESSED OR IMPLIED ARE EXCLUDED from this transaction and shall not apply to the goods to be harvested or sold. For example, THE FOLLOWING SPECIFIC MATTERS ARE NOT WARRANTED, and are EXCLUDED from this transaction:

- a. The MERCHANTABILITY of the forest products. The use of the term "merchantable" in any document is not intended to vary the foregoing.
- b. The CONDITION of the forest products. The forest products will be conveyed "AS IS."
- c. THE VOLUME, WEIGHT, QUANITY, OR QUALITY, of the forest products to be harvested. The descriptions of the forest products to be conveyed, are estimates only, made solely for administrative and identification purposes. The timing of forest product deliveries.
- d. Items contained in any other documents prepared for or by the State.

G-065 Regulatory Disclaimer

The State disclaims any responsibility for, or liability relating to, regulatory actions by any government agency, including actions pursuant to the Forest Practices Act, Ch. 76.09 RCW that may affect the operability of the timber sale.

G-070.2 Limitation on Damage

In the event of a breach of any provision of this contract by the State, the liability of the State shall be limited to return of the unused initial deposit and unapplied payments to the Purchaser. The State shall not be liable for any damages, whether direct, incidental, or consequential.

G-112.2 Title

The State hereby warrants that State is the owner of said logs and has the right to sell same, free of liens, encumbrances, or claims, but subject to trade restrictions promulgated in WAC 240-15-015. Purchaser assumes title and all risk and responsibility for said logs upon delivery.

G-116.2 Sustainable Forestry Initiative® (SFI) Certification

Forest products purchased under this contract are certified as being in conformance with the Sustainable Forestry Initiative program Standard under certificate number: BV-SFIS-US09000572.

G-160.2 Agents

The State's rights and duties will be exercised by the Region Manager at Colville, Washington. The Region Manager will notify Purchaser in writing who is responsible for administering the contract. The Region Manager has sole authority to waive, modify, or amend the terms of this contract in the manner prescribed in clause G-180. No agent, employee, or representative of the State has any authority to bind the State to any affirmation, representation, or warranty concerning the logs conveyed beyond the terms of this contract.

The Purchaser agrees to notify the State in writing of their authorized representative at the log delivery destination who will be readily available and who shall be authorized

to receive, on behalf of the Purchaser any instructions or notices given by the State in regard to performance under this contract, and any limits to this person's authority.

G-180 Modifications

Waivers, modifications, or amendments of the terms of this contract must be in writing signed by Purchaser and the State.

G-190 Contract Complete

This contract is the final expression of the Parties' agreement. There are no understandings, agreements, or representations, expressed or implied, which are not specified in this contract.

G-200.2 Notice

Notices required to be given under the following clauses shall be in writing and shall be delivered to the State or Purchaser's authorized agent or sent by certified mail to the Purchaser's post office address, so that their receipt may be acknowledged.

G-026.2 Log Delivery Destination G-027.2 Log Delivery and Schedule Conditions G-210.2 Violation of Contract

All other notices required to be given under this contract shall be in writing and delivered to their respective authorized agent or mailed to the Party's post office address. Parties agree to notify the other of any change of mailing address.

G-210.2 Violation of Contract

- a. If Purchaser violates any provision of this contract, the Contract Administrator, by written notice, may suspend delivery of further loads of forest products. If the violation is capable of being remedied, the Purchaser has five (5) days after receipt of suspension notice to remedy the violation. If the violation cannot be remedied (such as violation of WAC 240-15-015) or Purchaser fails to remedy the violation within five (5) days after receipt of a suspension notice, the State may terminate the rights of the Purchaser under this contract and collect damages as described in the damages clause in this contract.
- b. The State has the right to remedy the breach in the absence of any indicated attempt by the Purchaser or if Purchaser is unable, as determined by the State, to remedy the breach. Any expense incurred by the State shall be charged to Purchaser and shall be paid within thirty (30) days of receipt of billing.
- c. If Purchaser's violation is a result of a failure to make payment to the State when due, in addition to (a.) above, interest shall accrue on the unpaid balance at 12 percent per annum, beginning the date payment was due. The State may secure payments from the security provided.

G-240.2 Dispute Resolution

The following procedures apply in the event of a dispute regarding interpretation or administration of this contract and the parties agree that these procedures must be followed before a lawsuit can be initiated.

- a. In the event of a dispute, Purchaser must make a written request to the Region Manager for resolution prior to seeking other relief.
- b. The Region Manager will issue a written decision on Purchaser's request within five business days.
- c. Within five business days of receipt of the Region Manager's decision, the Purchaser may make a written request for resolution to the Deputy Supervisor
 Uplands of the Department of Natural Resources.
- d. Unless otherwise agreed, the Deputy Supervisor Uplands will hold a conference within 15 calendar days of the receipt of Purchaser's request for review of the Region Manager's written decision. Purchaser and the Region Manager will have an opportunity to present their positions. The Deputy Supervisor Uplands will issue a decision within a reasonable time of being presented with both Parties' positions.

G-252.2 Forest Excise Tax

Purchaser shall be responsible for payment of all forest excise taxes pursuant to chapter 84.33 RCW.

G-253.2 Harvesting Cost Information

The State agrees to supply all harvesting cost information to the Purchaser for their consideration in payment of forest excise taxes.

G-260 Venue

This contract shall be governed by the laws of the State of Washington. In the event of a lawsuit involving this contract, venue shall be proper only in Thurston County Superior Court.

G-330.2 Contract Review

Purchaser may arrange with the Contract Administrator to review the provisions of this contract prior to the delivery of forest products.

Section P: Payments and Securities

P-010 Initial Deposit

Purchaser paid DATA MISSING initial deposit, which will be maintained pursuant to RCW 79.15.100(3). If the operating authority on this contract expires without Purchaser's payment of the full amount specified in the 'Payment for Forest Products' clause, the initial deposit will be immediately forfeited to the State, and will be offset against Purchaser's remaining balance due. Any excess initial deposit funds not needed

to ensure full payment of the contract price, or not needed to complete any remaining obligations of the Purchaser existing after contract expiration, will be refunded to the Purchaser.

P-028.2 Payment for Forest Products Delivered

Purchaser agrees to pay the State for delivered forest products at the following rate:

\$0.00/Ton

Purchaser agrees to increase the above delivered payment rate as approved by the State in the event the location of delivery is changed per the G-026.2 clause.

P-036.2 Missorts and Payment Reduction for Delivered Forest Products

Forest Products delivered that do not meet the sorting specifications in G-022.2 where species are incorrect, are scaled over 1" outside the listed diameter specifications, or ponderosa pine with blue stain are considered mis-sorts.

However, when mis-sorted Forest Products amount to more than 3% of the total delivered sort volume, Purchaser may request approval for payment reduction for delivered volume exceeding the mis-sort threshold.

Requests for payment reduction must be submitted to the State in writing prior to contract expiration. Eligibility for mis-sort payment reduction is subject to State approval and shall be determined by the State's delivered product analysis. Forest Products determined by the State eligible for mis-sort price reduction are not eligible for any other price adjustments.

Payment reduction for Forest Products deemed mis-sorted will be calculated as follows:

Payment Reduction = (B x M) x R Where:

- B = Bid rate from P-028.2 clause
- M = Mis-sorted volume exceeding threshold excluding utility
- R = Reduction factor
 - 0.3 for mis-sort except for blue stain
 - 0.4 for mis-sort related to blue stain

Third party scaling organization information is required to determine Scribner mbf for payment reduction purposes. Value will be derived from the applicable sort value as described in this contract.

Scale information for determining mis-sort payment reduction eligibility must be obtained from roll-out scale. Truck-ramp and/or bundle scaling information is not acceptable for determining eligibility.

Purchaser's exclusive remedy for mis-sorts shall be the payment reduction described in this clause, notwithstanding other provisions in the Uniform Commercial Code

P-037.2 Mismanufacture and Payment Reduction for Delivered Forest Products

Forest Products delivered that do not meet preferred log length specifications or multiples or combinations of preferred lengths and Forest Products delivered not meeting minimum log quality specifications as described in the G-024.2 clause are considered mis-manufactured. Purchaser receiving mis-manufactured Forest Products is required to pay the State at the bid price under this contract.

However, when mis-manufactured Forest Products amount to more than 3% of the total delivered sort volume, Purchaser may request approval for payment reduction for delivered volume exceeding the mis-manufacture threshold.

Requests for payment reduction must be submitted to the State in writing prior to contract expiration. Eligibility for mis-manufacture payment reduction is subject to State approval and shall be determined by the State's delivered product analysis. Forest Products determined by the State eligible for mis-manufacture price reductions are not eligible for any other price adjustments.

Payment reduction for Forest Products deemed mis-manufactured will be calculated as follows:

Payment Reduction = $(B \times M) \times (0.2)$ Where:

B = Bid rate from P-028.2 clause

M = Mis-manufactured volume exceeding threshold excluding utility

Third party scaling organization information is required to determine Scribner mbf for payment reduction purposes. Value will be derived from the applicable sort value as described in this contract.

Scale information for determining mis-manufacture payment reduction eligibility must be obtained from roll-out scale. Truck-ramp and/or bundle scaling information is not acceptable for determining eligibility.

Purchaser's exclusive remedy for mis-manufacture shall be the payment reduction described in this clause, notwithstanding other provisions in the Uniform Commercial Code.

P-039.2 Tonnage Sort Payment Reduction Requirements

Purchaser must provide a plan in writing, acceptable to the State, to acquire third party Scribner mbf scaling information in order to be eligible for a payment reduction for a tonnage sort according to clauses P-036.2 or P-037.2. Logs delivered and accepted by the Purchaser prior to the State's acceptance of Purchaser's written payment reduction plan are not eligible for payment reduction.

Failure of Purchaser to provide sample scale data in a timely, accurate and legible basis will void an approved sample scale plan.

An approved payment reduction plan can be voided at the sole discretion of the State.

For the purpose of tonnage sort payment reduction requests, preferred log lengths for tonnage sawlog sorts shall include the following plus any additional lengths identified in clause G-024.2:

Species Type	Preferred Lengths
Conifer Sorts	16', 20', 24', 26', 32', 40'
Hardwood Sorts	18', 20', 26', 28', 30', 36', 38', 40'

P-040.2 Weighing and Scaling Costs

Purchaser agrees to pay for all weighing costs for logs delivered regardless if logs are purchased on a weight or scale basis. In addition, Purchaser agrees to pay for all scaling costs for logs delivered on a scale basis. Purchaser also agrees to pay for all costs associated with the transmission and reporting of scale or weight data.

P-045.2 Guarantee of Payment

Prior to the delivery of forest products and at a date determined by the State, Purchaser shall guarantee payment to the State for products delivered by posting with the State an approved payment security. If the Purchaser has purchased more than one sort, the payment securities may be consolidated for all the sorts. Acceptable payment security includes cash, certificate of deposit assignment, payment bond, savings account assignment, or irrevocable bank letter of credit.

The amount of payment security shall be determined by the State. The amount of payment security shall represent at least 30 days value of forest product deliveries. Payment security for products delivered will be used to guarantee payment to the State for late or non-payments.

If at any time the State determines that the security has become unsatisfactory or a demand is made against the payment security, the Purchaser agrees to increase the amount or replace the security with one acceptable to the state within 5 business days. Failure to increase the amount or replace the security is considered a breach of contract.

P-050.2 Billing and Payment Procedure for Forest Products Delivered

The State will compute and forward to Purchaser a billing statement of charges for forest products delivered during the billing period at the delivered rate shown in P-028.2 clause. After receipt of the billing statement, Purchaser's payment must be received by the Department of Natural Resources on or before the due date shown on the billing statement. Purchaser agrees to make payment, payable to the Department of Natural Resources. Failure to pay on time for forest products delivered is considered a breach of contract.

Included with the billing statement will be a summary report for the billing period compiled by the State or their log and load reporting service.

The State will adjust final billings to account for any State approved payment reductions.

P-080 Payment Account Refund

Advance payments made under P-045 or P-045.2 remaining on account above the value for the charges shall be returned to Purchaser within 30 days following the final report of charges. Refunds not made within the 30 day period will accrue interest at the interest rate, as established by WAC 332-100-030, computed on a daily basis until paid.

Section L: Log Definitions and Accountability

L-010.2 Forest Products Conveyed

Forest products conveyed are logs or parts of logs delivered meeting the sorting criteria defined by clauses G-022.2 and G-024.2 of this contract

L-014.2 Sorts Delivered to Incorrect Destination

Purchaser has agreed to purchase the sort as described in the G-022.2 clause. In the event a load from a different sort is delivered to Purchaser, Purchaser may reject the load. If Purchaser receives an incorrectly delivered load, they shall notify the State within 24 hours. If the Purchaser accepts the load, provisions in the P-035.2 or P-036.2 clause may apply.

L-071.2 Log and Load Reporting Service

This contract may at the States discretion, require the services of a State approved third party log and load reporting service. Purchaser shall ensure log volume measurement, weight, or scale and weight data for each load is received by the log and load reporting service within of logs being measured or weighed.

If during the term of this contract, the State discontinues use of the Log and Load Reporting Service, the State will notify the Purchaser in writing, and will approve an alternative log and load reporting process.

L-090 Scaling Rules

Determination of volume of any forest products shall be conducted by a state approved third party scaling organization and in accordance with the Eastside log scaling and grading rules, Region 6 taper rules, and Scribner Volume Table, revised July 1, 1972, contained in the Northwest Log Rules Eastside and Westside Log Scaling Handbook (developed and produced by the Northwest Log Rules Advisory Group) and in effect on the date of confirmation of this contract.

Special scaling specifications shall be noted on the State's Brand Designation form which is hereby incorporated to this contract by reference.

L-110 State Approval of Log Scaling and Weighing Locations

Forest Product measurement and weighing facilities required by this contract must be approved by the State. Forest products sold under the contract which require log scaling shall be scaled, measured, or counted by a State approved third party log scaling organization. Forest products sold under the contract which require weighing shall be weighed at a location that meets Washington State Department of Agriculture approval.

Prior to forest products being hauled, the Contract Administrator must authorize in writing the use of State approved measurement and/or weighing facilities that are at or en-route to final destinations. Forest products from this sale shall be measured or weighed at facilities, which are currently approved for use by the State and are currently authorized for this sale. The State reserves the right to verify load volume and weights with State employees or contractors at the State's own expense. The State reserves the right to revoke the authorization of previously approved measurement locations.

Section D: Damages

D-010 Liquidated Damages

The clauses in the DAMAGES section of this contract provide for payments by Purchaser to the State for certain breaches of the terms of this contract. These payments are agreed to as liquidated damages and not as penalties. They are reasonable estimates of anticipated harm to the State caused by Purchaser's breach. These liquidated damages provisions are agreed to by the State and Purchaser with the understanding of the difficulty of proving loss and the inconvenience or infeasibility of obtaining an adequate remedy. These liquidated damages provisions provide greater certainty for the Purchaser by allowing the Purchaser to better assess its responsibilities under the contract.

D-026.2 Damages for Delivery Interruptions and Load Non-Acceptance

- a. Purchaser's failure to accept delivery of forest products due to an extended delivery interruption exceeding the limits as described in the G-027.2 (c) clause, results in substantial injury to the State. The Purchaser shall pay the State liquidated damages at a rate of \$1,000.00 per each day of breach, until breach is remedied.
- b. Unless Purchaser and the State have made a prior agreement in writing, Purchaser's failure to accept at least the number of delivered loads as described in the G-027.2 (d) clause, results in substantial injury to the State. The Purchaser shall pay the State liquidated damages at a rate of \$200 per each truck delivery not accepted, until breach is remedied.

D-027.2 Failure to Accept Forest Products Sold

Purchaser's failure to accept all or part of the forest products sold in this agreement prior to expiration or completion of the contract results in substantial injury to the State. Except for reasons other than 'Force Majeure' (G-056.2), either section a. or b. below will apply as determined by the State.

- a. When Purchaser's refusal to accept forest products does not prevent further harvesting operations, or forest products can be re-sold to another buyer acceptable to the State, Purchaser shall be liable for and pay State for actual damages plus costs, as determined by the State associated with the administration and re-sale of forest products not accepted by Purchaser under the terms of this contract.
- b. When Purchaser's refusal to accept forest products causes a stoppage of the State's harvesting operations and prevents the State from further harvest of the sale area, the actual damage to the State and associated costs are difficult to assess. The remaining value of all the forest products left in the sale area once the stoppage occurs is not readily ascertainable. Purchaser's failure to perform disrupts the State's management plans. Therefore, Purchaser agrees to pay the State as liquidated damages, a sum calculated using the following formula:

LD = (.35V-I) + C + A - P

Where:

LD = Liquidated Damages

V = The stumpage value remaining in the sale area at the date of work stoppage. This will be determined by multiplying the contract bid rate contained in the P-028.2 clause for all sorts originating in the sale area, by the State's estimate of the remaining volume, less the cost of harvesting and delivery associated with each sort. I = Initial Deposit

C = Costs associated with required harvesting services and road construction services prior to work stoppage but not amortized or paid.

A = Administrative fee = \$2,500.00

P = Advance payments received exceeding the value of logs delivered under this contract.

The above formula reflects the Purchaser's forfeiture of the initial deposit in accordance with clause P-010 by deducting the initial deposit from the amount owed. In no event shall the liquidated damages be less than zero. Interest on the liquidated damage is owed from the date of the work stoppage until final payment, calculated using the following formula:

Interest = $r \times LD \times N$

Where:

r = daily equivalent of an annual interest at current interest rate as established by WAC 332-100-030.

N = Number of days from work stoppage to time of payment

D-030.2 Inadequate Log Accountability

Failure to provide weighing and third party scaling information result in substantial injury to the State. The potential loss of accountability is not readily ascertainable. These contractual breaches result in an increase in the potential for the delivery of forest products for which the State receives inadequate payment and causes an increase in the State's administration costs associated with this contract. The actual costs of these breaches are difficult to assess.

For these reasons, Purchaser's payments for forest product delivery under this contract will be increased in the following amounts, as liquidated damages, to compensate the State for these breaches: \$250.00 each time a load weight is not provided as required by the contract, and \$250.00 each time load scale data is not determined and provided by a State approved third party scaling organization in accordance with this contract.

IN WITNESS WHEREOF, the Parties hereto have entered into this contract.

STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES

Purchaser

Loren D. Torgerson Northeast Region Manager

Date: _____Address:

Date: _____

DRAFT

CORPORATE ACKNOWLEDGEMENT

STATE OF)			
COUNTY OF)			
On this	day of		, 20,	before me	personally
			_ to me	known to _ of the c	
that executed the	within and foregoing instru	ument and acknow			-
free and voluntar	y act and deed of the corpor d that (he/she was) (they we	ration, for the us	es and purp	oses therein r	

IN WITNESS WHEREOF, I have hereunto set my hand and affixed my official seal the day and year first above written.

Notary Public in and for the State of

My appointment expires _____

<u>Schedule A</u> Sort Specifications

Sort #1: Douglas fir and western larch 11 inches and greater in diameter inside the bark. If Purchaser designates peeler lengths, then chuckability standards apply to the logs. Nonchuckable logs will be delivered to the Purchaser of Sort #7. If the Purchaser designates sawlog lengths, then all Douglas fir and western larch sawlogs will be delivered to the Purchaser of this sort and none will be delivered to the Purchaser of Sort #7.

Sort #2: Douglas fir and western larch 7 inches to 10 inches diameter inside the bark. If Purchaser designates peeler lengths, then chuckability standards apply to the logs. Nonchuckable logs will be delivered to the Purchaser of Sort #8. If the Purchaser designates sawlog lengths, then all Douglas fir and western larch sawlogs will be delivered to the Purchaser of this sort and none will be delivered to the Purchaser of Sort #8.

Sort #3: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 5 inches to 6 inches diameter inside the bark.

Sort #4: Ponderosa pine 11 inches and greater in diameter inside the bark.

Sort #5: Ponderosa pine 7 inches to 10 inches diameter inside the bark.

Sort #6: Blue Stain ponderosa pine 7 inches and greater in diameter inside the bark.

Sort #7: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 11 inches and greater in diameter inside the bark. See Sort #1 description for handling procedures for Douglas fir and western larch.

Sort #8: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 7 inches to 10 inches diameter inside the bark. See Sort #2 description for handling procedures for Douglas fir and western larch.

Sort #9: Western red cedar 5 inches and greater in diameter inside the bark.

STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES

LOG SALE AND PURCHASE CONTRACT

AGREEMENT NO. 30-093530

SALE NAME: DEER FIRE SALVAGE SORT 09

THE STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES, HEREINAFTER ACTING SOLELY, IN ITS PROPRIETARY CAPACITY, STATE, AND PURCHASER, AGREE AS FOLLOWS:

Section G: General Terms

G-001.2 Definitions

The following definitions apply throughout this contract;

Contract Administrator: Region Manager's designee responsible for assuring that the contractual obligations of the Purchaser and Contractor are met.

Contractor: State-selected harvester responsible to perform all duties as required by the Harvesting Services Contract, including but not limited to timber harvesting, road construction, debris removal and piling, hauling and delivery of forest products for weighing and/or scaling, to the Purchasers of the timber sales Sorts.

Delivery: Occurs when logs or forest products meeting the sorting specifications arrive at the Purchasers destination, as described in the contract.

Forest Product: Any material derived from the forest for commercial use.

Harvesting: A general term, referring to the Contractor's various obligations under the Harvesting Services Contract.

DRAFT

Harvesting Services Contract: Contract between the Contractor and the State, which sets forth the procedures and obligations of the Contractor for completing the harvesting of timber, and the delivery of various log sorts to the State's purchasers, and the payment obligations of the State, The Harvesting Services Contract will include a Road Plan for any road construction or reconstruction, where applicable.

Log Sale and Purchase Contract: Purchase Agreement between the State and Purchaser(s) of particular log sorts from the timber sale.

Purchaser: The company or individual that has entered a Log Sale Contract with the State for individual log sorts from the timber sale area. The Contractor must deliver the designated log sorts to this company or individual. Contractor will likely be delivering different log sorts to different purchasers under the Harvesting Services Contract.

State: The Washington State Department of Natural Resources, landowner and seller of forest products from the timber sale area. The State is represented by the Region Manager as designated on the contract signature page. Contractual obligations to the State are enforced by the Region Manager or the designated Contract Administrator.

G-010.2 Products Sold and Sale Area

Purchaser was the successful bidder on March 22, 2016 and sale was confirmed on ______. The State, as owner, agrees to sell and deliver to the Purchaser logs meeting the log sort specifications as described in the G-022.2 clause. Logs will be delivered from the DEER FIRE SALVAGE SORTS Timber Sale described as parts of Sections 6, 7, 8, 10, 16, 22, and 23 all in Township 29 North, Range 38 East W.M., in Stevens County.

G-022.2 Sorting Specifications

Purchaser shall accept and pay for delivery of log sorts by a state selected contractor to the designated Purchaser location that meets the following specifications:

Agreement No.	Sort #	Description	Destination
93530	9	WRC 5"+ dib	

Unless otherwise specified, no blue stain is allowed in Ponderosa pine.

G-024.2 Manufacturing Standards

All forest products except poles, produced and sold under this contract will be manufactured to maximize the amount of logs meeting preferred log lengths and to achieve the average log length listed.

Agreement	Sort	Scaling
No.	#	Rule
93530	09	ES

Average Log Length	Preferred Log Lengths
N/A	

"WS" indicates that west side scaling rules apply. Minimum trim is 8 inches per scaling segment for west side scaling rules. "ES" indicates that east side scaling rules apply. Minimum trim is 4 inches per scaling segment for east side scaling rules.

Poles produced under this contract will be manufactured to ANSI specifications (American National Standard Specifications and Dimensions for Wood Poles), in force at the time of signing this contract.

- a. Sweep will be limited to within the bole of the log as measured using a tape stretched between the centers of each end of the log.
- b. Logs approved by the state for peelers shall be chuckable with no more than a 2 inch diameter area of rot within a 5 inch diameter circle located at the center of either end of the log.
- c. Limbs and knots shall be cut flush, with no more than 15 percent of a log having limbs or knots over 2 inches in diameter extending more than 2 inches above the surface of the log.
- d. Surface characteristics for a high quality (HQ) "A" log sort will have sound tight knots and not to exceed 1 ½ inch in diameter, numbering not more than an average of one per foot of log length. May include logs with not more than two larger knots. Knots ½ inch and smaller in diameter shall not be a determining factor. Logs will have a growth ring count of 6 or more rings per inch in the outer third top end of the log.

G-025 Schedules

The following attached schedules are hereby incorporated by reference:

Schedule	Title
А	Sort Specifications

G-026.2 Log Delivery Destination

Purchaser shall accept logs delivered to the destination as described in the G-022.2 clause. Purchaser may make a written request to the State for a change in log delivery destination or scaling or weighing location. If agreeable and in the best interest of the State, the State may approve the Purchaser's request. Written approval must be granted by the State prior to log delivery to a new destination or use of a new scaling or weighing facility.

Increased haul distance shall result in an increase in the P-028.2 log delivery payment rate in an amount to be calculated by the State. In no circumstance shall the payment rate for delivered logs be reduced as a result of a state approved delivery destination or scaling or weighing facility change.

Purchaser may refuse loads delivered to the wrong destination.

G-027.2 Log Delivery Schedule and Conditions

- a. Delivery hours Purchaser agrees to accept logs from the Contractor at the Purchaser's delivery location during Purchaser's working hours or at least between the hours of 8:00 a.m. and 5:00 p.m., Monday through Friday, except legal holidays unless otherwise agreed upon by the State.
- b. Improperly loaded trucks It is understood and agreed that the Purchaser incurs no obligation to accept improperly or illegally loaded trucks in its facility. Any truck so loaded may be directed to vacate the yard and shall remain the responsibility of the harvesting contractor. The Purchaser shall notify the State within 24 hours of any load (s) rejected and specify the reasons why.
- c. Log Delivery Interruptions Purchaser may schedule times in which delivery of logs will not be accepted. The Purchaser shall notify the Contract Administrator at least five (5) working days before the scheduled interruption or closure occurs. The duration of the log delivery interruption shall not exceed seven (7) consecutive working days or a total of ten (10) working days over the duration of the contract term. If Purchaser's scheduled delivery interruption exceeds contract requirements and causes the State harm, Purchaser will be in breach of contract and subject to liquidated damages as per the D-026.2 and D-027.2 clauses, unless Purchaser and the State have made a prior agreement in writing to mitigate potential harm to the State.
- d. Required Acceptance of Daily Load Deliveries and Notification If the State is harmed by purchaser's refusal to accept up to 20 truck deliveries of any one sort per day, Purchaser will be in breach of contract and subject to damages as per the D-026.2 and D-027.2 clauses. A truck delivery is all the wood delivered including sorts on super trucks, mule trains and pups brought to the delivery point by a single truck. The Purchaser shall notify the Contract Administrator at least 48 hours in advance if:

1. Purchaser intends to limit the number of truck deliveries accepted on any day to less than that listed above, or

2. Purchaser intends to limit the number of truck deliveries accepted on any day to the number listed above.

- e. State Notification to Purchaser The State will notify the Purchaser when it anticipates or schedules an interruption of deliveries and when it anticipates the number of truck deliveries on any day will exceed the number listed above.
- f. If payments are not received or, the State determines that the payment security has become unsatisfactory or, a demand is made against the payment security

under the P-045.2 clause the State shall suspend deliveries until such time as the violation has been remedied. Any suspension of deliveries due to late payment or inadequate payment security will be considered a Log Delivery Interruption under (c) of this clause.

G-030.2 Contract Term and Expiration Date

Purchaser agrees to accept and pay for forest products delivered through the period ending November 30, 2016.

G-050.2 Contract Term Extension

Contract extensions and any other conditions subject to the extension as agreed to by the Purchaser and State, must be formalized in writing, signed by Purchaser and State.

G-054.2 Early Contract Termination

The State may terminate this contract in whole or in part by giving fifteen (15) days written notice to the Purchaser when it is in the best interests of the State. If this contract is so terminated, the State shall be liable only for the return of that portion of the initial deposit that is not required for payment, and the return of unapplied payments. The State shall not be liable for damages, whether direct or consequential.

G-056.2 Force Majeure

No Party shall be liable for any failure to perform its obligations, other than payments due, where such failure is as a result of Acts of Nature (including fire, flood, earthquake, storm, or other natural disaster), war, act of foreign enemies, hostilities (whether war is declared or not), terrorist activities, government sanction, fire, labor dispute, strike or lockout.

Any Party asserting Force Majeure as an excuse shall have the burden of proving that reasonable steps were taken (under the circumstances) to minimize delay or damages caused by foreseeable events, that all non-excused obligations were substantially fulfilled, and that the other Party was timely notified of the likelihood or actual occurrence which would justify such an assertion, so that other prudent precautions could be contemplated.

In the event of Force Majeure, the State reserves the right to terminate this agreement in accordance with clause G-054.2 'Early Contract Termination'.

G-060.2 Exclusion of Warranties

The PARTIES AGREE that the IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE and ALL OTHER WARRANTIES EXPRESSED OR IMPLIED ARE EXCLUDED from this transaction and shall not apply to the goods to be harvested or sold. For example, THE FOLLOWING SPECIFIC MATTERS ARE NOT WARRANTED, and are EXCLUDED from this transaction:

a. The MERCHANTABILITY of the forest products. The use of the term "merchantable" in any document is not intended to vary the foregoing.

- b. The CONDITION of the forest products. The forest products will be conveyed "AS IS."
- c. THE VOLUME, WEIGHT, QUANITY, OR QUALITY, of the forest products to be harvested. The descriptions of the forest products to be conveyed, are estimates only, made solely for administrative and identification purposes. The timing of forest product deliveries.
- d. Items contained in any other documents prepared for or by the State.

G-065 Regulatory Disclaimer

The State disclaims any responsibility for, or liability relating to, regulatory actions by any government agency, including actions pursuant to the Forest Practices Act, Ch. 76.09 RCW that may affect the operability of the timber sale.

G-070.2 Limitation on Damage

In the event of a breach of any provision of this contract by the State, the liability of the State shall be limited to return of the unused initial deposit and unapplied payments to the Purchaser. The State shall not be liable for any damages, whether direct, incidental, or consequential.

G-112.2 Title

The State hereby warrants that State is the owner of said logs and has the right to sell same, free of liens, encumbrances, or claims, but subject to trade restrictions promulgated in WAC 240-15-015. Purchaser assumes title and all risk and responsibility for said logs upon delivery.

G-116.2 Sustainable Forestry Initiative® (SFI) Certification

Forest products purchased under this contract are certified as being in conformance with the Sustainable Forestry Initiative program Standard under certificate number: BV-SFIS-US09000572.

G-160.2 Agents

The State's rights and duties will be exercised by the Region Manager at Colville, Washington. The Region Manager will notify Purchaser in writing who is responsible for administering the contract. The Region Manager has sole authority to waive, modify, or amend the terms of this contract in the manner prescribed in clause G-180. No agent, employee, or representative of the State has any authority to bind the State to any affirmation, representation, or warranty concerning the logs conveyed beyond the terms of this contract.

The Purchaser agrees to notify the State in writing of their authorized representative at the log delivery destination who will be readily available and who shall be authorized to receive, on behalf of the Purchaser any instructions or notices given by the State in regard to performance under this contract, and any limits to this person's authority.

G-180 Modifications

Waivers, modifications, or amendments of the terms of this contract must be in writing signed by Purchaser and the State.

G-190 Contract Complete

This contract is the final expression of the Parties' agreement. There are no understandings, agreements, or representations, expressed or implied, which are not specified in this contract.

G-200.2 Notice

Notices required to be given under the following clauses shall be in writing and shall be delivered to the State or Purchaser's authorized agent or sent by certified mail to the Purchaser's post office address, so that their receipt may be acknowledged.

G-026.2 Log Delivery Destination G-027.2 Log Delivery and Schedule Conditions G-210.2 Violation of Contract

All other notices required to be given under this contract shall be in writing and delivered to their respective authorized agent or mailed to the Party's post office address. Parties agree to notify the other of any change of mailing address.

G-210.2 Violation of Contract

- a. If Purchaser violates any provision of this contract, the Contract Administrator, by written notice, may suspend delivery of further loads of forest products. If the violation is capable of being remedied, the Purchaser has five (5) days after receipt of suspension notice to remedy the violation. If the violation cannot be remedied (such as violation of WAC 240-15-015) or Purchaser fails to remedy the violation within five (5) days after receipt of a suspension notice, the State may terminate the rights of the Purchaser under this contract and collect damages as described in the damages clause in this contract.
- b. The State has the right to remedy the breach in the absence of any indicated attempt by the Purchaser or if Purchaser is unable, as determined by the State, to remedy the breach. Any expense incurred by the State shall be charged to Purchaser and shall be paid within thirty (30) days of receipt of billing.
- c. If Purchaser's violation is a result of a failure to make payment to the State when due, in addition to (a.) above, interest shall accrue on the unpaid balance at 12 percent per annum, beginning the date payment was due. The State may secure payments from the security provided.

G-240.2 Dispute Resolution

The following procedures apply in the event of a dispute regarding interpretation or administration of this contract and the parties agree that these procedures must be followed before a lawsuit can be initiated.

- a. In the event of a dispute, Purchaser must make a written request to the Region Manager for resolution prior to seeking other relief.
- b. The Region Manager will issue a written decision on Purchaser's request within five business days.
- c. Within five business days of receipt of the Region Manager's decision, the Purchaser may make a written request for resolution to the Deputy Supervisor
 - Uplands of the Department of Natural Resources.
- d. Unless otherwise agreed, the Deputy Supervisor Uplands will hold a conference within 15 calendar days of the receipt of Purchaser's request for review of the Region Manager's written decision. Purchaser and the Region Manager will have an opportunity to present their positions. The Deputy Supervisor Uplands will issue a decision within a reasonable time of being presented with both Parties' positions.

G-252.2 Forest Excise Tax

Purchaser shall be responsible for payment of all forest excise taxes pursuant to chapter 84.33 RCW.

G-253.2 Harvesting Cost Information

The State agrees to supply all harvesting cost information to the Purchaser for their consideration in payment of forest excise taxes.

G-260 Venue

This contract shall be governed by the laws of the State of Washington. In the event of a lawsuit involving this contract, venue shall be proper only in Thurston County Superior Court.

G-330.2 Contract Review

Purchaser may arrange with the Contract Administrator to review the provisions of this contract prior to the delivery of forest products.

Section P: Payments and Securities

P-010 Initial Deposit

Purchaser paid DATA MISSING initial deposit, which will be maintained pursuant to RCW 79.15.100(3). If the operating authority on this contract expires without Purchaser's payment of the full amount specified in the 'Payment for Forest Products' clause, the initial deposit will be immediately forfeited to the State, and will be offset against Purchaser's remaining balance due. Any excess initial deposit funds not needed to ensure full payment of the contract price, or not needed to complete any remaining obligations of the Purchaser existing after contract expiration, will be refunded to the Purchaser.

P-028.2 Payment for Forest Products Delivered

Purchaser agrees to pay the State for delivered forest products at the following rate:

\$0.00/Ton

Purchaser agrees to increase the above delivered payment rate as approved by the State in the event the location of delivery is changed per the G-026.2 clause.

P-036.2 Missorts and Payment Reduction for Delivered Forest Products

Forest Products delivered that do not meet the sorting specifications in G-022.2 where species are incorrect, are scaled over 1" outside the listed diameter specifications, or ponderosa pine with blue stain are considered mis-sorts.

However, when mis-sorted Forest Products amount to more than 3% of the total delivered sort volume, Purchaser may request approval for payment reduction for delivered volume exceeding the mis-sort threshold.

Requests for payment reduction must be submitted to the State in writing prior to contract expiration. Eligibility for mis-sort payment reduction is subject to State approval and shall be determined by the State's delivered product analysis. Forest Products determined by the State eligible for mis-sort price reduction are not eligible for any other price adjustments.

Payment reduction for Forest Products deemed mis-sorted will be calculated as follows:

Payment Reduction = $(B \times M) \times R$ Where:

B = Bid rate from P-028.2 clause

- M = Mis-sorted volume exceeding threshold excluding utility
- R = Reduction factor
 - 0.3 for mis-sort except for blue stain
 - 0.4 for mis-sort related to blue stain

Third party scaling organization information is required to determine Scribner mbf for payment reduction purposes. Value will be derived from the applicable sort value as described in this contract.

Scale information for determining mis-sort payment reduction eligibility must be obtained from roll-out scale. Truck-ramp and/or bundle scaling information is not acceptable for determining eligibility.

Purchaser's exclusive remedy for mis-sorts shall be the payment reduction described in this clause, notwithstanding other provisions in the Uniform Commercial Code

P-037.2 Mismanufacture and Payment Reduction for Delivered Forest Products

Forest Products delivered that do not meet preferred log length specifications or multiples or combinations of preferred lengths and Forest Products delivered not meeting minimum log quality specifications as described in the G-024.2 clause are considered mis-manufactured. Purchaser receiving mis-manufactured Forest Products is required to pay the State at the bid price under this contract.

However, when mis-manufactured Forest Products amount to more than 3% of the total delivered sort volume, Purchaser may request approval for payment reduction for delivered volume exceeding the mis-manufacture threshold.

Requests for payment reduction must be submitted to the State in writing prior to contract expiration. Eligibility for mis-manufacture payment reduction is subject to State approval and shall be determined by the State's delivered product analysis. Forest Products determined by the State eligible for mis-manufacture price reductions are not eligible for any other price adjustments.

Payment reduction for Forest Products deemed mis-manufactured will be calculated as follows:

Payment Reduction = $(B \times M) \times (0.2)$ Where: B = Bid rate from P-028.2 clause

M = Mis-manufactured volume exceeding threshold excluding utility

Third party scaling organization information is required to determine Scribner mbf for payment reduction purposes. Value will be derived from the applicable sort value as described in this contract.

Scale information for determining mis-manufacture payment reduction eligibility must be obtained from roll-out scale. Truck-ramp and/or bundle scaling information is not acceptable for determining eligibility.

Purchaser's exclusive remedy for mis-manufacture shall be the payment reduction described in this clause, notwithstanding other provisions in the Uniform Commercial Code.

P-039.2 Tonnage Sort Payment Reduction Requirements

Purchaser must provide a plan in writing, acceptable to the State, to acquire third party Scribner mbf scaling information in order to be eligible for a payment reduction for a tonnage sort according to clauses P-036.2 or P-037.2. Logs delivered and accepted by the Purchaser prior to the State's acceptance of Purchaser's written payment reduction plan are not eligible for payment reduction.

Failure of Purchaser to provide sample scale data in a timely, accurate and legible basis will void an approved sample scale plan.

An approved payment reduction plan can be voided at the sole discretion of the State.

For the purpose of tonnage sort payment reduction requests, preferred log lengths for tonnage sawlog sorts shall include the following plus any additional lengths identified in clause G-024.2:

Species Type	Preferred Lengths
Conifer Sorts	16', 20', 24', 26', 32', 40'
Hardwood Sorts	18', 20', 26', 28', 30', 36', 38', 40'

P-040.2 Weighing and Scaling Costs

Purchaser agrees to pay for all weighing costs for logs delivered regardless if logs are purchased on a weight or scale basis. In addition, Purchaser agrees to pay for all scaling costs for logs delivered on a scale basis. Purchaser also agrees to pay for all costs associated with the transmission and reporting of scale or weight data.

P-045.2 Guarantee of Payment

Prior to the delivery of forest products and at a date determined by the State, Purchaser shall guarantee payment to the State for products delivered by posting with the State an approved payment security. If the Purchaser has purchased more than one sort, the payment securities may be consolidated for all the sorts. Acceptable payment security includes cash, certificate of deposit assignment, payment bond, savings account assignment, or irrevocable bank letter of credit.

The amount of payment security shall be determined by the State. The amount of payment security shall represent at least 30 days value of forest product deliveries. Payment security for products delivered will be used to guarantee payment to the State for late or non-payments.

If at any time the State determines that the security has become unsatisfactory or a demand is made against the payment security, the Purchaser agrees to increase the amount or replace the security with one acceptable to the state within 5 business days. Failure to increase the amount or replace the security is considered a breach of contract.

P-050.2 Billing and Payment Procedure for Forest Products Delivered

The State will compute and forward to Purchaser a billing statement of charges for forest products delivered during the billing period at the delivered rate shown in P-028.2 clause. After receipt of the billing statement, Purchaser's payment must be received by the Department of Natural Resources on or before the due date shown on the billing statement. Purchaser agrees to make payment, payable to the Department of Natural Resources. Failure to pay on time for forest products delivered is considered a breach of contract.

Included with the billing statement will be a summary report for the billing period compiled by the State or their log and load reporting service.

The State will adjust final billings to account for any State approved payment reductions.

P-080 Payment Account Refund

Advance payments made under P-045 or P-045.2 remaining on account above the value for the charges shall be returned to Purchaser within 30 days following the final report of charges. Refunds not made within the 30 day period will accrue interest at the interest rate, as established by WAC 332-100-030, computed on a daily basis until paid.

Section L: Log Definitions and Accountability

L-010.2 Forest Products Conveyed

Forest products conveyed are logs or parts of logs delivered meeting the sorting criteria defined by clauses G-022.2 and G-024.2 of this contract

L-014.2 Sorts Delivered to Incorrect Destination

Purchaser has agreed to purchase the sort as described in the G-022.2 clause. In the event a load from a different sort is delivered to Purchaser, Purchaser may reject the load. If Purchaser receives an incorrectly delivered load, they shall notify the State within 24 hours. If the Purchaser accepts the load, provisions in the P-035.2 or P-036.2 clause may apply.

L-071.2 Log and Load Reporting Service

This contract may at the States discretion, require the services of a State approved third party log and load reporting service. Purchaser shall ensure log volume measurement, weight, or scale and weight data for each load is received by the log and load reporting service within of logs being measured or weighed.

If during the term of this contract, the State discontinues use of the Log and Load Reporting Service, the State will notify the Purchaser in writing, and will approve an alternative log and load reporting process.

L-090 Scaling Rules

Determination of volume of any forest products shall be conducted by a state approved third party scaling organization and in accordance with the Eastside log scaling and grading rules, Region 6 taper rules, and Scribner Volume Table, revised July 1, 1972, contained in the Northwest Log Rules Eastside and Westside Log Scaling Handbook (developed and produced by the Northwest Log Rules Advisory Group) and in effect on the date of confirmation of this contract.

Special scaling specifications shall be noted on the State's Brand Designation form which is hereby incorporated to this contract by reference.

L-110 State Approval of Log Scaling and Weighing Locations

Forest Product measurement and weighing facilities required by this contract must be approved by the State. Forest products sold under the contract which require log scaling shall be scaled, measured, or counted by a State approved third party log scaling organization. Forest products sold under the contract which require weighing shall be weighed at a location that meets Washington State Department of Agriculture approval.

Prior to forest products being hauled, the Contract Administrator must authorize in writing the use of State approved measurement and/or weighing facilities that are at or en-route to final destinations. Forest products from this sale shall be measured or weighed at facilities, which are currently approved for use by the State and are currently authorized for this sale. The State reserves the right to verify load volume and weights with State employees or contractors at the State's own expense. The State reserves the right to revoke the authorization of previously approved measurement locations.

Section D: Damages

D-010 Liquidated Damages

The clauses in the DAMAGES section of this contract provide for payments by Purchaser to the State for certain breaches of the terms of this contract. These payments are agreed to as liquidated damages and not as penalties. They are reasonable estimates of anticipated harm to the State caused by Purchaser's breach. These liquidated damages provisions are agreed to by the State and Purchaser with the understanding of the difficulty of proving loss and the inconvenience or infeasibility of obtaining an adequate remedy. These liquidated damages provisions provide greater certainty for the Purchaser by allowing the Purchaser to better assess its responsibilities under the contract.

D-026.2 Damages for Delivery Interruptions and Load Non-Acceptance

- a. Purchaser's failure to accept delivery of forest products due to an extended delivery interruption exceeding the limits as described in the G-027.2 (c) clause, results in substantial injury to the State. The Purchaser shall pay the State liquidated damages at a rate of \$1,000.00 per each day of breach, until breach is remedied.
- b. Unless Purchaser and the State have made a prior agreement in writing, Purchaser's failure to accept at least the number of delivered loads as described in the G-027.2 (d) clause, results in substantial injury to the State. The Purchaser shall pay the State liquidated damages at a rate of \$200 per each truck delivery not accepted, until breach is remedied.

D-027.2 Failure to Accept Forest Products Sold

Purchaser's failure to accept all or part of the forest products sold in this agreement prior to expiration or completion of the contract results in substantial injury to the State. Except for reasons other than 'Force Majeure' (G-056.2), either section a. or b. below will apply as determined by the State.

- a. When Purchaser's refusal to accept forest products does not prevent further harvesting operations, or forest products can be re-sold to another buyer acceptable to the State, Purchaser shall be liable for and pay State for actual damages plus costs, as determined by the State associated with the administration and re-sale of forest products not accepted by Purchaser under the terms of this contract.
- b. When Purchaser's refusal to accept forest products causes a stoppage of the State's harvesting operations and prevents the State from further harvest of the sale area, the actual damage to the State and associated costs are difficult to assess. The remaining value of all the forest products left in the sale area once the stoppage occurs is not readily ascertainable. Purchaser's failure to perform disrupts the State's management plans. Therefore, Purchaser agrees to pay the State as liquidated damages, a sum calculated using the following formula:

LD = (.35V-I) + C + A - P

Where:

LD = Liquidated Damages

V = The stumpage value remaining in the sale area at the date of work stoppage. This will be determined by multiplying the contract bid rate contained in the P-028.2 clause for all sorts originating in the sale area, by the State's estimate of the remaining volume, less the cost of harvesting and delivery associated with each sort. I = Initial Deposit

C = Costs associated with required harvesting services and road construction services prior to work stoppage but not amortized or paid.

A = Administrative fee = \$2,500.00

P = Advance payments received exceeding the value of logs delivered under this contract.

The above formula reflects the Purchaser's forfeiture of the initial deposit in accordance with clause P-010 by deducting the initial deposit from the amount owed. In no event shall the liquidated damages be less than zero. Interest on the liquidated damage is owed from the date of the work stoppage until final payment, calculated using the following formula:

Interest = $r \times LD \times N$

Where:

r = daily equivalent of an annual interest at current interest rate as established by WAC 332-100-030.

N = Number of days from work stoppage to time of payment

D-030.2 Inadequate Log Accountability

Failure to provide weighing and third party scaling information result in substantial injury to the State. The potential loss of accountability is not readily ascertainable. These contractual breaches result in an increase in the potential for the delivery of forest products for which the State receives inadequate payment and causes an increase in the State's administration costs associated with this contract. The actual costs of these breaches are difficult to assess.

For these reasons, Purchaser's payments for forest product delivery under this contract will be increased in the following amounts, as liquidated damages, to compensate the State for these breaches: \$250.00 each time a load weight is not provided as required by the contract, and \$250.00 each time load scale data is not determined and provided by a State approved third party scaling organization in accordance with this contract.

IN WITNESS WHEREOF, the Parties hereto have entered into this contract.

STATE OF WASHINGTON DEPARTMENT OF NATURAL RESOURCES

Purchaser

Loren D. Torgerson Northeast Region Manager

Date: _____Address:

Date: _____

DRAFT

CORPORATE ACKNOWLEDGEMENT

STATE OF)			
COUNTY OF)			
On this	day of		, 20,	before me	personally
			_ to me	known to _ of the c	
that executed the	within and foregoing instru	ument and acknow			-
free and voluntar	y act and deed of the corpor d that (he/she was) (they we	ration, for the us	es and purp	oses therein r	

IN WITNESS WHEREOF, I have hereunto set my hand and affixed my official seal the day and year first above written.

Notary Public in and for the State of

My appointment expires _____

<u>Schedule A</u> Sort Specifications

Sort #1: Douglas fir and western larch 11 inches and greater in diameter inside the bark. If Purchaser designates peeler lengths, then chuckability standards apply to the logs. Nonchuckable logs will be delivered to the Purchaser of Sort #7. If the Purchaser designates sawlog lengths, then all Douglas fir and western larch sawlogs will be delivered to the Purchaser of this sort and none will be delivered to the Purchaser of Sort #7.

Sort #2: Douglas fir and western larch 7 inches to 10 inches diameter inside the bark. If Purchaser designates peeler lengths, then chuckability standards apply to the logs. Nonchuckable logs will be delivered to the Purchaser of Sort #8. If the Purchaser designates sawlog lengths, then all Douglas fir and western larch sawlogs will be delivered to the Purchaser of this sort and none will be delivered to the Purchaser of Sort #8.

Sort #3: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 5 inches to 6 inches diameter inside the bark.

Sort #4: Ponderosa pine 11 inches and greater in diameter inside the bark.

Sort #5: Ponderosa pine 7 inches to 10 inches diameter inside the bark.

Sort #6: Blue Stain ponderosa pine 7 inches and greater in diameter inside the bark.

Sort #7: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 11 inches and greater in diameter inside the bark. See Sort #1 description for handling procedures for Douglas fir and western larch.

Sort #8: Lodgepole pine, grand fir, Engelmann spruce, western hemlock, Douglas fir and western larch 7 inches to 10 inches diameter inside the bark. See Sort #2 description for handling procedures for Douglas fir and western larch.

Sort #9: Western red cedar 5 inches and greater in diameter inside the bark.

WASHINGTON STATE DEPARTMENT OF NATURAL RESOURCES

FOREST EXCISE TAX ROAD SUMMARY SHEET

Region:

Timber Sale Name:

Application Number:

EXCISE TAX APPLICABLE ACTIVITIES

Construction: linear feet Road to be constructed (optional and required) but not abandoned

Reconstruction: linear feet Road to be reconstructed (optional and required) but not abandoned

Abandonment:linear feetAbandonment of existing roads not reconstructed under the contract

Decommission: *Road to be made undriveable but not officially abandoned.*

 Pre-Haul Maintenance:
 linear feet

 Existing road to receive maintenance work (specifically required by the contract) prior to haul

EXCISE TAX EXEMPT ACTIVITIES

Temporary Optional Construction: <i>Optional roads to be constructed and then abandoned</i>	linear feet
Temporary Optional Reconstruction: <i>Optional roads to be reconstructed and then abandoned</i>	linear feet

New Abandonment: linear feet Abandonment of roads constructed or reconstructed under the contract

All parties must make their own assessment of the taxable or non-taxable status of any work performed under the timber sale contact. The Department of Revenue bears responsibility for determining forest road excise taxes. The Department of Natural Resources developed this form to help estimate the impact of forest excise taxes. However, the information provided may not precisely calculate the actual amount of taxes due. The Department of Revenue is available for consultation by calling 1.800.548.8829. (Revised 4/09)

linear feet

Cruise Narrative

Sale Name: Deer Fire Salvage	Region: Northeast
Agreement Number: 30-093495	District: Arcadia
Lead Cruiser: Jim Putnam	Completion Date: 1/12/2016
Other Cruisers on sale: Nathan Simpkins, Randy Burke, Pete Malninak, Joe Hoagland, Dan Griggs	Legal: Sections 6, 7, 8, 10, 16, 22 and 23, T29N, R38E WM.

Unit Acre	eage Specificat	ions:					
Unit #	Gross Acres	Net Acres	Total Deletions	•	Leave Tree Acres	Existing Road Acres	Other
1	316.59				AUCS	4.80	
2	189.71					3.17	1.00
3	253.43					7.23	
4	123.70	119.68	4.02			3.02	1.00
5	177.94	174.42	3.52			3.52	
Total	1061.37	1037.63	23.74	0.00	0.00	21.74	2.00

Cruise Sample Design:

This timber sale was cruised using the **variable plot** sampling method. The double basal area system was employed; a small BAF to determine Basal Area (count trees) and a large BAF to determine the Volume-Basal Area Ratio (cruise trees). Each plot was a full plot. Plot locations were created using a computer generated grid, and found using a hand held GPS unit.

Unit #	Small BAF	Large BAF	Sighting	Grid size	%	%	Total
	(count)	(cruise)	height	(plot spacing in	Cruise to	Cruise to	number of
				feet)	count Target	count Actual	Plots
1	33.61	134.44	D4H	450 x 450	25%	18.8%	58
2	27.78	111.11	D4H	450 x 450	25%	20.5%	48
3	33.61	134.44	D4H	450 x 450	25%	22.1%	58
4	33.61	134.44	D4H	450 x 450	25%	24.1%	26
5	33.61	134.44	D4H	450 x 450	25%	20.9%	39
Total						20.9%	229

Cruise Specifications:

Minor species cruise intensity:	We grade the fin BAF; then follow		•									
Minimum top dib:	Ponderosa pine			- to large DA								
	•	han 17.5" DBH		m top of 5.6'	" dib.							
		and greater DI		•								
	DOB at 16'or a 6" top whichever is greater.											
	All other specie				,							
	Trees less than 17.5" DBH have a minimum top of 5.6" dib. Trees 17.6" and greater DBH have a minimum top dib of 40% of											
		and greater Di t 16'or a 6" top		•	of 40% of							
	DOB a		whichever is g	lealer.								
Minimum dbh:	Ponderosa pine:	8.0 inches DBH	1									
	All other species	s: 7.0 inches DB	Н									
Log lengths:	Saw logs: 32 fee	•										
Take / Leave tree description:	Harvest all trees		e take tree crite	ria of the un	it's							
	prescription.											
		Take Tree Prescription Summary										
	Species	DF & WL	GF, RC, AF,	PP	WL Unit 4							
	Demonstrall	70.110	ES, WH & LP									
	Remove all trees with	7.0 - 11.9	7.0 - 26.0		Any DBH							
	less than this	DBH	DBH									
	dbh											
	Remove all	DF only 12.0	26.1 and									
	trees with	and greater	greater DBH									
	less than 50%	DBH	Breater DBH									
	live crown											
	Remove all			Any DBH								
	trees with											
	less than 30%											
	live crown											
Commercial species observed in sale area, but not in cruise:												
Utility wood:	None											
Status codes used:	L – leave tree											
Sort codes used	D – saw log											
Species table used:	NE 2 inch											
Grade table used:	Eastgrad											
Other tables used												
(cruise adjustment):												

Field Observations:

Location:	61 road miles south of Colville, WA in southern Stevens County.
Aspect:	North, East, South and West
Elevation:	2720-4680
Slope:	Unit 1 – 0% to 60%, Average 35%
	Unit 2 – 0% to 40%, Average 25%
	Unit 3 – 0% to 45%, Average 30%
	Unit 4 – 0% to 55%, Average 35%
	Unit 5 – 0% to 55%, Average 35%
Harvest Methods:	100% Ground base yarding with the longest skidding of 1320 feet.
Stand Composition:	The stands are fire damaged second growth Douglas-fir and grand fir
	with larger residual trees. There is a minor component of western
	larch, western red cedar ponderosa pine, lodgepole pine engelmann
	spruce and western hemlock.
Stand Health:	The trees in this sale were killed by the Carpenter Road Fire which
	burned in August, 2015.
	Bark beetles are active and the woodpeckers are working on those trees
Timber Quality:	This sale is a mix of poor quality Grand fir (48%), Douglas-fir (38%), red
	cedar (4%), western larch (4%) ponderosa pine (2%), lodgepole pine
	(1%), engelmann spruce (0.6%) and western hemlock (0.6%).
Non-board Foot Volume:	None cruised
Other Considerations:	This sale will be sold on the tons of logs removed from the sale area.

Trust and Counties:

		Based or	n Volume		Bas	ed on Acres
Unit #	Trust 03 Vol.	Trust 04 Vol.	Trust 07 Vol.	Total Vol.	Stevens Co.	Spokane
1	2900	647	471	4018	311.79	
2	1040			1040	185.54	
3		796		796	246.2	
4	1435			1435	119.68	
5	699			699	174.42	
Total	6074	1443	471	7988	1037.63	0
% of Total	76.04%	18.06%	5.90%	100.00%	100.00%	0.00%

Prepared by: Dan Griggs

Title: Check Cruiser 1

CC: Timber Sales Document Center & File # 30-093495

TC	PSPCSTGR		SI	pecies, S	Sort G	rade - Board	d Fo	ot Vo	olumo	es (P	roject						
TO	9N R38E S07	TVOOL	4			Project:	DE	ERF	SAL					Page		1	
12:	THRU	1 9000	+			Acres	1.	037.6	53					Date		19/20	
T29	9N R38E S22	Ty00U	2				_,							Time	1	:39:4	4PM
-		%				1	Perc	cent of	Net Bo	oard Fo	oot Volu	ime		Avera	ge Lo	g	Logs
	S So Gr	Net	Bd. Ft	. per Acre		Total	L	.og Sca	ale Dia.			Log Length	Ln	Dia	Bd	CF/	Per
Spp	T rt ad	BdFt	Def%	Gross	Net	Net MBF	4-5	6-11	12-16	17+	12-20	21-32 33-55 56-99	Ft	In	Ft	Lf	/Acre
DF	D 2	30	4.3	935	894	928			96	4		100	32		258	1.79	3.5
DF DF	D 3 D 4	48 22	3.1 3.5	1,475 658	1,429 634	1,483 658	69	89 31	11		26	100 74	32 24	9 5	110 28	0.82 0.34	13.0 22.5
									24								
	Totals	34	3.6	3,067	2,958	3,069	15	50	34	1	6	94	27	7		0.68	38.9
	L D 2 L D 3	22 65	2.3	210 623	210 609	218 632		91	100 9			100 100	32 32	12 9	190 117	1.38 0.77	1.1 5.2
	LDJ LD4	13	2.5	117	117	121	67	33	,		25	75	25	5		0.39	3.9
DF	Totals	11	1.5	950	936	971	8	64	28		3	97	29	8	91	0.72	10.3
									-		-						
WL	D 3	31		101	101	105		100				100	32	7	63	0.44	1.6
WL	D 4	69	15.3	255	216	224	48	52			16	84	26	5	28	0.20	7.8
WL	Totals	4	11.0	356	317	329	33	67			11	89	27	6	34	0.25	9.4
	L D 3	75	14.3	135	116	120		100				100	32	8	60	0.57	1.9
WL	LD4	25		39	39	40		100			100		18	6	20	0.27	1.9
WL	Totals	2	11.1	173	154	160		100			25	75	25	7	40	0.46	3.9
CE	D 0	20	10.2	1 202	1 104	1.100			75	25		100	20	15	270	1.02	1.2
GF GF	D 2 D 3	30 56	19.2 3.4	1,392 2,186	1,124 2,112	1,166 2,192		83	75 13	25 4		100 100	32 32	15 9	270 120	1.92 0.74	4.2 17.6
GF	D 4	14	5.6	521	492	511	61	39	10		27	73	22	6		0.33	16.8
GF	Totals	42	9.0	4,099	3,728	3,869	8	52	30	10	4	96	27	8	97	0.75	38.6
WH	D 2	35		17	17	17			100			100		15	320	1.60	.1
WH WH	D 3 D 4	53 12		25 5	25 5	26 5	100	100			100	100	32 16	7 5	78 20	0.52 0.20	.3 .3
								52	26			80					
WH	Totals	1		47	47	48	11	53	36		11	89	25	/	/4	0.55	.6
RC	D 3	72	9.2	257	234	243		69	31			100	32	11	159	1.14	1.5
RC	D 4	28		87	87	90	67	33			33	67	23	5	30	0.34	2.9
RC	Totals	4	6.9	344	320	333	18	59	22		9	91	26	7	73	0.67	4.4
ES	D 3	88		41	41	43	100	57	43		24	100	32			1.37	.2
ES	D 4	12		5	5	6	100				24	76	27			0.38	.1
ES	Totals	1		47	47	48	12	50	38		3	97	30	9	128	1.00	.4
LP	D 3	31	28.6	45	32	33		100				100	32	7	50	0.41	.6
LP	D 3 D 4	69	20.0	45 71	52 71	53 74	100	100			18	82	28	5		0.41	1.8
LP	Totals	1	11.0	116	103	107	69	31			12	88	29	6		0.26	2.4
PP	D 4	47	5.7	90	85	88		100	54	46	2	100	32			1.68	.3
PP	D 5	53		94	94	97		100			3	97	31			0.55	1.3
PP	Totals	2	2.8	184	179	186	<u> </u>	52	26	22	1	99	31	8	113	0.74	1.6
Tota	ls		6.3	9,383	8,789	9,119	12	54	29	5	5	95	27	7	80	0.66	110.5

IC PSTATS					OJECT S ROJECT		STICS RFSAL			PAGE DATE	1 1/19/2016
WP RGI	E S	SC TRACT		ТҮРЕ		AC	RES	PLOTS	TREES	CuFt	BdFt
29N 38E 29N 38E		07 DEER FII 22 DEER FII		00U4 00U2	THR	1,0)37.63	229	575	S	Е
					TREES	Ι	ESTIMATED TOTAL		ERCENT SAMPLE		
		PLOTS	TREES		PER PLOT		TREES		TREES		
TOTAL		229	575		2.5						
CRUISE DBH COUN	т	89	120		1.3		68,822		.2		
REFOREST											
COUNT		91	217		2.4						
BLANKS		49									
100 %											
				ST	AND SUMM	IARY					
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
B.0		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOUG FIR		51	25.4	13.6	61	6.9	25.5	3,067	2,958	724	721
DOUG FIR-	L	7	5.5	15.5	69 70	1.8	7.1	950 4 000	936 2 728	215	215
GR FIR		37	19.5	14.7	70 72	6.0	23.0	4,099	3,728	793	793
W LARCH	т	9 1	7.5 1.9	8.8 12.0	72 78	1.1 0.4	3.2 1.5	356 173	317 154	73 44	64 44
W LARCH-		6	1.9 3.0	12.0		0.4	1.5 2.6	173 344		44 77	
WR CEDAR	(6 3	5.0 1.3	12.0	48 64	0.7	2.6 1.5	544 184	320 179	37	77 37
P PINE E SPRUCE		2	.1	14.4	04 72	0.4	.3	47	47	57 11	11
			1.8	8.4	72	0.1	.3 .7	47	103	11	11
		2				0.2	. /	110	105		
LP PINE	чĸ	2				0.1	3	47	47	9	g
LP PINE WHEMLOC TOTAL		2 <i>120</i> E LIMITS OF	.3 66.3 THE SAMP	12.7 <i>13.5</i> LE	75 66	0.1 <i>17.9</i> BE WITH	.3 65.7 IIN THE SAM	47 <i>9,383</i> MPLE ERRC	47 8,789 DR	9 2,001	
LP PINE WHEMLOC TOTAL CONFIDE CL 68.1	NCE 68.1	2 120 E LIMITS OF 1 TIMES OU COEFF	.3 66.3 THE SAMP JT OF 100 T	12.7 <i>13.5</i> LE THE VOLU	75 66 JME WILL I SAMPLI	<i>17.9</i> BE WITH E TREES	65.7 IIN THE SAN - BF	<i>9,383</i> MPLE ERRC	8,789 DR OF TREES	2,001 REQ.	<i>1,989</i> INF. POP.
LP PINE WHEMLOC TOTAL CONFIDE CL 68.1 SD: 1.0	NCE 68.1	2 120 E LIMITS OF 1 TIMES OU COEFF VAR.%	.3 66.3 THE SAMP JT OF 100 T S.E.%	12.7 <i>13.5</i> LE THE VOLU	75 66 JME WILL 1 SAMPLI LOW	17.9 BE WITH E TREES AVG	65.7 IIN THE SAM - BF HIGH	<i>9,383</i> MPLE ERRC	8,789 DR	2,001	<i>1,989</i> INF. POP.
LP PINE WHEMLOC TOTAL CONFIDE CL 68.1 SD: 1.0 DOUG FIR	NCE 68.1	2 120 E LIMITS OF TIMES OU COEFF VAR.% 100.1	.3 66.3 THE SAMP JT OF 100 T <u>S.E.%</u> 14.0	12.7 <i>13.5</i> LE THE VOLU	75 66 JME WILL 1 SAMPLI LOW 158	17.9 BE WITH E TREES AVG 184	65.7 IIN THE SAM - BF HIGH 209	<i>9,383</i> MPLE ERRC	8,789 DR OF TREES	2,001 REQ.	<i>1,989</i> INF. POP.
LP PINE WHEMLOC TOTAL CONFIDE CL 68.1 SD: 1.0 DOUG FIR DOUG FIR-	NCE 68.1	2 120 E LIMITS OF 1 TIMES OU COEFF VAR.% 100.1 43.6	.3 66.3 THE SAMP JT OF 100 T S.E.% 14.0 17.7	12.7 <i>13.5</i> LE THE VOLU	75 66 JME WILL 1 SAMPLI LOW 158 133	17.9 BE WITH E TREES AVG 184 161	65.7 IIN THE SAN - BF HIGH 209 190	<i>9,383</i> MPLE ERRC	8,789 DR OF TREES	2,001 REQ.	<i>1,989</i> INF. POP.
LP PINE WHEMLOC TOTAL CONFIDE CONFIDE CL 68.1 SD: 1.0 DOUG FIR DOUG FIR GR FIR	NCE 68.1	2 120 E LIMITS OF 1 TIMES OU COEFF VAR.% 100.1 43.6 87.3	.3 66.3 THE SAMP JT OF 100 T S.E.% 14.0 17.7 14.4	12.7 <i>13.5</i> LE THE VOLU	75 66 JME WILL 1 SAMPLI LOW 158 133 255	17.9 BE WITH E TREES AVG 184 161 298	65.7 IIN THE SAN 3 - BF HIGH 209 190 341	<i>9,383</i> MPLE ERRC	8,789 DR OF TREES	2,001 REQ.	<i>1,989</i> INF. POP.
LP PINE WHEMLOC TOTAL CONFIDE CL 68.1 SD: 1.0 DOUG FIR DOUG FIR-	NCE 68.1	2 120 E LIMITS OF 1 TIMES OU COEFF VAR.% 100.1 43.6	.3 66.3 THE SAMP JT OF 100 T S.E.% 14.0 17.7	12.7 <i>13.5</i> LE THE VOLU	75 66 JME WILL 1 SAMPLI LOW 158 133	17.9 BE WITH E TREES AVG 184 161	65.7 IIN THE SAN - BF HIGH 209 190	<i>9,383</i> MPLE ERRC	8,789 DR OF TREES	2,001 REQ.	<i>1,989</i> INF. POP.
LP PINE WHEMLOC TOTAL CONFIDE CONFIDE CL 68.1 SD: 1.0 DOUG FIR DOUG FIR GR FIR W LARCH	NCE 68.1 L	2 120 E LIMITS OF 1 TIMES OU COEFF VAR.% 100.1 43.6 87.3	.3 66.3 THE SAMP JT OF 100 T S.E.% 14.0 17.7 14.4	12.7 <i>13.5</i> LE THE VOLU	75 66 JME WILL 1 SAMPLI LOW 158 133 255	17.9 BE WITH E TREES AVG 184 161 298	65.7 IIN THE SAN 3 - BF HIGH 209 190 341	<i>9,383</i> MPLE ERRC	8,789 DR OF TREES	2,001 REQ.	<i>1,989</i> INF. POP.
LP PINE WHEMLOC TOTAL CONFIDE CONFIDE CL 68.1 SD: 1.0 DOUG FIR DOUG FIR GR FIR W LARCH W LARCH	NCE 68.1 L	2 120 E LIMITS OF 1 TIMES OU COEFF VAR.% 100.1 43.6 87.3 46.4	.3 66.3 THE SAMP JT OF 100 T S.E.% 14.0 17.7 14.4 16.4	12.7 <i>13.5</i> LE THE VOLU	75 66 JME WILL I SAMPLI LOW 158 133 255 50	17.9 BE WITH E TREES AVG 184 161 298 60	65.7 IIN THE SAN 5 - BF HIGH 209 190 341 70	<i>9,383</i> MPLE ERRC	8,789 DR OF TREES	2,001 REQ.	<i>1,989</i> INF. POP.
LP PINE WHEMLOC TOTAL CONFIDE CONFIDE CL 68.1 SD: 1.0 DOUG FIR DOUG FIR GR FIR W LARCH-I WR CEDAR P PINE E SPRUCE	NCE 68.1 L	2 120 E LIMITS OF 1 TIMES OU COEFF VAR.% 100.1 43.6 87.3 46.4 62.1 83.8 45.7	.3 66.3 THE SAMP JT OF 100 T S.E.% 14.0 17.7 14.4 16.4 30.9 58.0 42.8	12.7 <i>13.5</i> LE THE VOLU	75 66 JME WILL 1 SAMPLI LOW 158 133 255 50 166 168 186	17.9 BE WITH E TREES AVG 184 161 298 60 240 400 325	65.7 IIN THE SAN 5 - BF HIGH 209 190 341 70 314 632 464	<i>9,383</i> MPLE ERRC	8,789 DR OF TREES	2,001 REQ.	<i>1,989</i> INF. POP.
LP PINE WHEMLOC TOTAL CONFIDE CONFIDE CL 68.1 SD: 1.0 DOUG FIR DOUG FIR GR FIR W LARCH W LARCH W LARCH W LARCH E SPRUCE LP PINE	NCE 68.1 L	2 120 E LIMITS OF 1 TIMES OU COEFF VAR.% 100.1 43.6 87.3 46.4 62.1 83.8 45.7 23.6	.3 66.3 THE SAMP JT OF 100 T S.E.% 14.0 17.7 14.4 16.4 30.9 58.0 42.8 22.1	12.7 <i>13.5</i> LE THE VOLU	75 66 JME WILL 1 SAMPLI LOW 158 133 255 50 166 168 186 47	17.9 BE WITH E TREES AVG 184 161 298 60 240 400 325 60	65.7 IIN THE SAN 5 - BF HIGH 209 190 341 70 314 632 464 73	<i>9,383</i> MPLE ERRC	8,789 DR OF TREES	2,001 REQ.	<i>1,989</i> INF. POP.
LP PINE WHEMLOC TOTAL CONFIDE CONFIDE CL 68.1 SD: 1.0 DOUG FIR DOUG FIR GR FIR W LARCH W LARCH W LARCH W LARCH E SPRUCE LP PINE E SPRUCE LP PINE WHEMLOC	NCE 68.1 L	2 120 E LIMITS OF 1 TIMES OU COEFF VAR.% 100.1 43.6 87.3 46.4 62.1 83.8 45.7 23.6 93.4	.3 66.3 THE SAMP JT OF 100 T S.E.% 14.0 17.7 14.4 16.4 30.9 58.0 42.8 22.1 87.5	12.7 <i>13.5</i> LE THE VOLU	75 66 JME WILL 1 SAMPLI LOW 158 133 255 50 166 168 186 47 33	17.9 BE WITH E TREES AVG 184 161 298 60 240 400 325 60 265	65.7 IIN THE SAN 5 - BF HIGH 209 190 341 70 314 632 464 73 497	<i>9,383</i> MPLE ERRC	8,789 OR OF TREES 5	2,001 REQ. 7	1,989 INF. POP. 1
LP PINE WHEMLOC TOTAL CONFIDE CONFIDE CL 68.1 SD: 1.0 DOUG FIR DOUG FIR GR FIR W LARCH W LARCH W LARCH W LARCH E SPRUCE LP PINE	NCE 68.1 L	2 120 E LIMITS OF 1 TIMES OU COEFF VAR.% 100.1 43.6 87.3 46.4 62.1 83.8 45.7 23.6	.3 66.3 THE SAMP JT OF 100 T S.E.% 14.0 17.7 14.4 16.4 30.9 58.0 42.8 22.1	12.7 <i>13.5</i> LE THE VOLU	75 66 JME WILL 1 SAMPLI LOW 158 133 255 50 166 168 186 47	17.9 BE WITH E TREES AVG 184 161 298 60 240 400 325 60	65.7 IIN THE SAN 5 - BF HIGH 209 190 341 70 314 632 464 73	<i>9,383</i> MPLE ERRC	8,789 DR OF TREES	2,001 REQ.	1,989 INF. POP. 1
LP PINE WHEMLOC TOTAL CONFIDE	NCE 68.1 L L	2 120 E LIMITS OF TIMES OU COEFF VAR.% 100.1 43.6 87.3 46.4 62.1 83.8 45.7 23.6 93.4 97.6 COEFF	.3 66.3 THE SAMP JT OF 100 T S.E.% 14.0 17.7 14.4 16.4 30.9 58.0 42.8 22.1 87.5 8.9	12.7 13.5 LE HE VOLU	75 66 JME WILL I SAMPLI LOW 158 133 255 50 166 168 186 47 33 <i>198</i> TREES/A	17.9 BE WITH E TREES AVG 184 161 298 60 240 400 325 60 265 217 ACRE	65.7 IIN THE SAN 5 - BF HIGH 209 190 341 70 314 632 464 73 497 237	9,383 MPLE ERRC #	8,789 OR OF TREES 5 381 OF PLOTS	2,001 REO. 7 194 REQ.	1,989 INF. POP. 1 1 1 1 1 9 1 1 1 1 9
LP PINE WHEMLOC TOTAL CONFIDE CONFIDE CL 68.1 SD: 1.0 DOUG FIR GR FIR W LARCH W LARCH W LARCH W LARCH W LARCH W LARCH W LARCH CE 68.1 SD: 1.0	NCE 68.1 L L	2 120 E LIMITS OF TIMES OU COEFF VAR.% 100.1 43.6 87.3 46.4 62.1 83.8 45.7 23.6 93.4 97.6 COEFF VAR.%	.3 66.3 THE SAMP JT OF 100 T S.E.% 14.0 17.7 14.4 16.4 30.9 58.0 42.8 22.1 87.5 8.9 S.E.%	12.7 13.5 LE HE VOLU	75 66 JME WILL 1 SAMPLI LOW 158 133 255 50 166 168 186 47 33 198 TREES/A	17.9 BE WITH E TREES AVG 184 161 298 60 240 400 325 60 265 217 ACRE AVG	65.7 IIN THE SAN 5 - BF HIGH 209 190 341 70 314 632 464 73 497 237 HIGH	9,383 MPLE ERRC #	8,789 OR OF TREES 5 381	2,001 REO. 7	1,989 INF. POP. 1 1 1 1 1 9 1 1 1 1 9
LP PINE WHEMLOC TOTAL CONFIDE CONFIDE CL 68.1 SD: 1.0 DOUG FIR DOUG FIR GR FIR W LARCH W LARCH W LARCH W LARCH W LARCH W LARCH CL 68.1 SD: 1.0 DOUG FIR	NCE 68.1 L L	2 120 E LIMITS OF TIMES OU COEFF VAR.% 100.1 43.6 87.3 46.4 62.1 83.8 45.7 23.6 93.4 97.6 COEFF VAR.% 161.0	.3 66.3 THE SAMP JT OF 100 T S.E.% 14.0 17.7 14.4 16.4 30.9 58.0 42.8 22.1 87.5 8.9 S.E.% 10.6	12.7 13.5 LE HE VOLU	75 66 JME WILL 1 SAMPLI LOW 158 133 255 50 166 168 186 47 33 198 TREES/A LOW 23	17.9 BE WITH E TREES AVG 184 161 298 60 240 400 325 60 265 217 ACRE AVG 25	65.7 IIN THE SAN - BF HIGH 209 190 341 70 314 632 464 73 497 237 HIGH 28	9,383 MPLE ERRC #	8,789 OR OF TREES 5 381 OF PLOTS	2,001 REO. 7 194 REQ.	1,989 INF. POP. 1 1 1 1 1 9 1 1 1 1 9
LP PINE WHEMLOC TOTAL CONFIDE CONFIDE CL 68.1 SD: 1.0 DOUG FIR GR FIR W LARCH W LARCH W LARCH W LARCH W LARCH W LARCH CL 68.1 SD: 1.0 DOUG FIR DOUG FIR DOUG FIR	NCE 68.1 L L	2 120 E LIMITS OF TIMES OU COEFF VAR.% 100.1 43.6 87.3 46.4 62.1 83.8 45.7 23.6 93.4 97.6 COEFF VAR.% 161.0 255.0	.3 66.3 THE SAMP JT OF 100 T S.E.% 14.0 17.7 14.4 16.4 30.9 58.0 42.8 22.1 87.5 8.9 S.E.% 10.6 16.9	12.7 13.5 LE HE VOLU	75 66 JME WILL 1 SAMPLI LOW 158 133 255 50 166 168 186 47 33 198 TREES/A LOW 23 5	17.9 BE WITH E TREES AVG 184 161 298 60 240 400 325 60 265 217 ACRE AVG 25 5	65.7 IIN THE SAN 5 - BF HIGH 209 190 341 70 314 632 464 73 497 237 HIGH 28 6	9,383 MPLE ERRC #	8,789 OR OF TREES 5 381 OF PLOTS	2,001 REO. 7 194 REQ.	1,989 INF. POP. 1 1 1 1 1 9 1 1 1 1 9
LP PINE WHEMLOC TOTAL CONFIDE CONFIDE CL 68.1 SD: 1.0 DOUG FIR GR FIR W LARCH W LARCH W LARCH W LARCH W LARCH W LARCH CL 68.1 SD: 1.0 DOUG FIR DOUG FIR DOUG FIR DOUG FIR CL 68.1	NCE 68.1 L L	2 120 E LIMITS OF TIMES OU COEFF VAR.% 100.1 43.6 87.3 46.4 62.1 83.8 45.7 23.6 93.4 97.6 COEFF VAR.% 161.0 255.0 182.3	.3 66.3 THE SAMP JT OF 100 T S.E.% 14.0 17.7 14.4 16.4 30.9 58.0 42.8 22.1 87.5 8.9 S.E.% 10.6 16.9 12.0	12.7 13.5 LE HE VOLU	75 66 JME WILL 1 SAMPLI LOW 158 133 255 50 166 168 186 47 33 198 TREES/A LOW 23 5 17	17.9 BE WITH E TREES AVG 184 161 298 60 240 400 325 60 265 217 ACRE AVG 25 5 19	65.7 IIN THE SAM 3 - BF HIGH 209 190 341 70 314 632 464 73 497 237 HIGH 28 6 22	9,383 MPLE ERRC #	8,789 OR OF TREES 5 381 OF PLOTS	2,001 REO. 7 194 REQ.	1,989 INF. POP. 1 1 1 1 1 9 1 1 1 1 9
LP PINE WHEMLOC TOTAL CONFIDE CONFIDE CL 68.1 SD: 1.0 DOUG FIR GR FIR W LARCH W LARCH W LARCH W LARCH W LARCH W LARCH CL 68.1 SD: 1.0 DOUG FIR DOUG FIR DOUG FIR DOUG FIR DOUG FIR M LARCH	NCE 68.1 L L X L L	2 120 E LIMITS OF 1 TIMES OU COEFF VAR.% 100.1 43.6 87.3 46.4 62.1 83.8 45.7 23.6 93.4 97.6 COEFF VAR.% 161.0 255.0 182.3 393.1	.3 66.3 THE SAMP JT OF 100 T S.E.% 14.0 17.7 14.4 16.4 30.9 58.0 42.8 22.1 87.5 8.9 S.E.% 10.6 16.9 12.0 26.0	12.7 13.5 LE HE VOLU	75 66 JME WILL 1 SAMPLI LOW 158 133 255 50 166 168 186 47 33 198 TREES/A LOW 23 5 17 6	17.9 BE WITH E TREES AVG 184 161 298 60 240 400 325 60 265 217 ACRE AVG 25 5 19 7	65.7 IIN THE SAM 3 - BF HIGH 209 190 341 70 314 632 464 73 497 237 HIGH 28 6 22 9	9,383 MPLE ERRC #	8,789 OR OF TREES 5 381 OF PLOTS	2,001 REO. 7 194 REQ.	1,989 INF. POP. 1 1 1 1 1 9 1 1 1 1 9
LP PINE WHEMLOC TOTAL CONFIDE CONFIDE CL 68.1 SD: 1.0 DOUG FIR GR FIR W LARCH W LARCH W LARCH W LARCH WHEMLOC TOTAL CL 68.1 SD: 1.0 DOUG FIR DOUG FIR DOUG FIR DOUG FIR CL 68.1	NCE 68.1 L L L L L L	2 120 E LIMITS OF TIMES OU COEFF VAR.% 100.1 43.6 87.3 46.4 62.1 83.8 45.7 23.6 93.4 97.6 COEFF VAR.% 161.0 255.0 182.3 393.1 623.8	.3 66.3 THE SAMP JT OF 100 T S.E.% 14.0 17.7 14.4 16.4 30.9 58.0 42.8 22.1 87.5 8.9 S.E.% 10.6 16.9 12.0 26.0 41.2	12.7 13.5 LE HE VOLU	75 66 JME WILL 1 SAMPLI LOW 158 133 255 50 166 168 186 47 33 198 TREES/A LOW 23 5 17 6 1	17.9 BE WITH E TREES AVG 184 161 298 60 240 400 325 60 265 217 ACRE AVG 25 5 19 7 2	65.7 IIN THE SAM 3 - BF HIGH 209 190 341 70 314 632 464 73 497 237 HIGH 28 6 22 9 3	9,383 MPLE ERRC #	8,789 OR OF TREES 5 381 OF PLOTS	2,001 REO. 7 194 REQ.	1,989 INF. POP. 1 1 1 1 1 9 1 1 1 1 9
LP PINE WHEMLOC TOTAL CONFIDE CL 68.1 SD: 1.0 DOUG FIR GR FIR W LARCH W LARCH W LARCH WR CEDAR P PINE E SPRUCE LP PINE WHEMLOC TOTAL CL 68.1 SD: 1.0 DOUG FIR DOUG FIR DOUG FIR W LARCH W LARCH W LARCH W LARCH	NCE 68.1 L L L L L L	2 120 E LIMITS OF TIMES OU COEFF VAR.% 100.1 43.6 87.3 46.4 62.1 83.8 45.7 23.6 93.4 97.6 COEFF VAR.% 161.0 255.0 182.3 393.1 623.8 479.8	.3 66.3 THE SAMP JT OF 100 T S.E.% 14.0 17.7 14.4 16.4 30.9 58.0 42.8 22.1 87.5 8.9 S.E.% 10.6 16.9 12.0 26.0 41.2 31.7	12.7 13.5 LE HE VOLU	75 66 JME WILL 1 SAMPLI LOW 158 133 255 50 166 168 186 47 33 198 TREES/A LOW 23 5 17 6	17.9 BE WITH E TREES AVG 184 161 298 60 240 400 325 60 265 217 ACRE AVG 25 5 19 7	65.7 IIN THE SAN 3 - BF HIGH 209 190 341 70 314 632 464 73 497 237 HIGH 28 6 22 9 3 4	9,383 MPLE ERRC #	8,789 OR OF TREES 5 381 OF PLOTS	2,001 REO. 7 194 REQ.	1,989 INF. POP. 1 1 1 1 1 9 1 1 1 1 9
LP PINE WHEMLOC TOTAL CONFIDE CONFIDE CL 68.1 SD: 1.0 DOUG FIR GR FIR W LARCH W LARCH W LARCH W LARCH WHEMLOC TOTAL CL 68.1 SD: 1.0 DOUG FIR DOUG FIR DOUG FIR DOUG FIR CL 68.1	NCE 68.1 L L L L L L	2 120 E LIMITS OF TIMES OU COEFF VAR.% 100.1 43.6 87.3 46.4 62.1 83.8 45.7 23.6 93.4 97.6 COEFF VAR.% 161.0 255.0 182.3 393.1 623.8	.3 66.3 THE SAMP JT OF 100 T S.E.% 14.0 17.7 14.4 16.4 30.9 58.0 42.8 22.1 87.5 8.9 S.E.% 10.6 16.9 12.0 26.0 41.2	12.7 13.5 LE HE VOLU	75 66 JME WILL 1 SAMPLI LOW 158 133 255 50 166 168 186 47 33 198 TREES/A LOW 23 5 17 6 1 2	17.9 BE WITH E TREES AVG 184 161 298 60 240 400 325 60 265 217 ACRE AVG 25 5 19 7 2 3	65.7 IIN THE SAM 3 - BF HIGH 209 190 341 70 314 632 464 73 497 237 HIGH 28 6 22 9 3	9,383 MPLE ERRC #	8,789 OR OF TREES 5 381 OF PLOTS	2,001 REO. 7 194 REQ.	1,989 INF. POP. 1 1 1 1 1 9 1 1 1 1 9
LP PINE WHEMLOC TOTAL CONFIDE CONFIDE CL 68.1 SD: 1.0 DOUG FIR DOUG FIR GR FIR W LARCH W LARCH WR CEDAR P PINE E SPRUCE LP PINE WHEMLOC TOTAL CL 68.1 SD: 1.0 DOUG FIR DOUG FIR GR FIR W LARCH W LARCH W LARCH W LARCH W LARCH W LARCH	NCE 68.1 L L L L L L	2 120 E LIMITS OF TIMES OU COEFF VAR.% 100.1 43.6 87.3 46.4 62.1 83.8 45.7 23.6 93.4 97.6 COEFF VAR.% 161.0 255.0 182.3 393.1 623.8 479.8 495.6	.3 66.3 THE SAMP JT OF 100 T S.E.% 14.0 17.7 14.4 16.4 30.9 58.0 42.8 22.1 87.5 8.9 S.E.% 10.6 16.9 12.0 26.0 41.2 31.7 32.8	12.7 13.5 LE HE VOLU	75 66 JME WILL 1 SAMPLI LOW 158 133 255 50 166 168 186 47 33 198 TREES/A LOW 23 5 17 6 1 2 1	17.9 BE WITH E TREES AVG 184 161 298 60 240 400 325 60 265 217 ACRE AVG 25 5 19 7 2 3 1	65.7 IIN THE SAN 3 - BF HIGH 209 190 341 70 314 632 464 73 497 237 HIGH 28 6 22 9 3 4 2 9 3 4 2	9,383 MPLE ERRC #	8,789 OR OF TREES 5 381 OF PLOTS	2,001 REO. 7 194 REQ.	1,989 INF. POP. 1 1 1 1 1 9 1 1 1 1 9
LP PINE WHEMLOC TOTAL CONFIDE CONFIDE CL 68.1 SD: 1.0 DOUG FIR DOUG FIR GR FIR W LARCH W LARCH WR CEDAR P PINE E SPRUCE LP PINE E SPRUCE LP PINE CL 68.1 SD: 1.0 DOUG FIR DOUG FIR DOUG FIR DOUG FIR CL 68.1 SD: 1.0	L L L L L L L L L L	2 120 E LIMITS OF TIMES OU COEFF VAR.% 100.1 43.6 87.3 46.4 62.1 83.8 45.7 23.6 93.4 97.6 COEFF VAR.% 161.0 255.0 182.3 393.1 623.8 479.8 495.6 1075.3	.3 66.3 THE SAMP JT OF 100 T S.E.% 14.0 17.7 14.4 16.4 30.9 58.0 42.8 22.1 87.5 8.9 S.E.% 10.6 16.9 12.0 26.0 41.2 31.7 32.8 71.1	12.7 13.5 LE HE VOLU	75 66 JME WILL 1 SAMPLI LOW 158 133 255 50 166 168 186 47 33 198 TREES/A LOW 23 5 17 6 1 2 1 0	17.9 BE WITH E TREES AVG 184 161 298 60 240 400 325 60 265 217 ACRE AVG 25 5 19 7 2 3 1 0	65.7 IIN THE SAN 3 - BF HIGH 209 190 341 70 314 632 464 73 497 237 HIGH 28 6 22 9 3 4 2 0	9,383 MPLE ERRC #	8,789 OR OF TREES 5 381 OF PLOTS	2,001 REO. 7 194 REQ.	1,989 INF. POP. 1 1 1 1 1 9 1 1 1 1 9
LP PINE WHEMLOC TOTAL CONFIDE CONFIDE CL 68.1 SD: 1.0 DOUG FIR DOUG FIR GR FIR W LARCH W LARCH W LARCH W CEDAR P PINE E SPRUCE LP PINE WHEMLOC TOTAL CL 68.1 SD: 1.0 DOUG FIR DOUG FIR DOUG FIR DOUG FIR CL 68.1 SD: 1.0 DOUG FIR DOUG FIR	L L L L L L L L L L	2 120 E LIMITS OF TIMES OU COEFF VAR.% 100.1 43.6 87.3 46.4 62.1 83.8 45.7 23.6 93.4 97.6 COEFF VAR.% 161.0 255.0 182.3 393.1 623.8 479.8 495.6 1075.3 1067.7	.3 66.3 THE SAMP JT OF 100 T S.E.% 14.0 17.7 14.4 16.4 30.9 58.0 42.8 22.1 87.5 8.9 S.E.% 10.6 16.9 12.0 26.0 41.2 31.7 32.8 71.1 70.6	12.7 13.5 LE HE VOLU	75 66 JME WILL 1 SAMPLI LOW 158 133 255 50 166 168 186 47 33 198 TREES/A LOW 23 5 17 6 1 2 1 0 1	17.9 BE WITH E TREES AVG 184 161 298 60 240 400 325 60 265 217 ACRE AVG 25 5 19 7 2 3 1 0 2 3	65.7 IIN THE SAN 3 - BF HIGH 209 190 341 70 314 632 464 73 497 237 HIGH 28 6 22 9 3 4 2 0 3	9,383 MPLE ERRC #	8,789 OR OF TREES 5 381 OF PLOTS	2,001 REO. 7 194 REQ.	1,989 INF. POP. 1 INF. POP. 1
LP PINE WHEMLOC TOTAL CONFIDE CONFIDE CL 68.1 SD: 1.0 DOUG FIR GR FIR W LARCH W LARCH W LARCH W CEDAR P PINE E SPRUCE LP PINE WHEMLOC TOTAL CL 68.1 SD: 1.0 DOUG FIR DOUG FIR DOUG FIR CL 68.1 SD: 1.0 DOUG FIR DOUG FIR CL 68.1 SD: 1.0 DOUG FIR DOUG FIR CL 68.1		2 120 E LIMITS OF TIMES OU COEFF VAR.% 100.1 43.6 87.3 46.4 62.1 83.8 45.7 23.6 93.4 97.6 COEFF VAR.% 161.0 255.0 182.3 393.1 623.8 479.8 495.6 1075.3 1067.7 1287.3	.3 66.3 THE SAMP JT OF 100 T S.E.% 14.0 17.7 14.4 16.4 30.9 58.0 42.8 22.1 87.5 8.9 S.E.% 10.6 16.9 12.0 26.0 41.2 31.7 32.8 71.1 70.6 85.1	12.7 13.5 LE HE VOLU	75 66 JME WILL 1 SAMPLI LOW 158 133 255 50 166 168 186 47 33 198 TREES/A LOW 23 5 17 6 1 2 17 6 1 2 1 0 1 0	17.9 BE WITH E TREES AVG 184 161 298 60 240 400 325 60 265 217 ACRE AVG 25 5 19 7 2 3 1 0 2 0 66	65.7 IIN THE SAN 3 - BF HIGH 209 190 341 70 314 632 464 73 497 237 HIGH 28 6 22 9 3 4 2 0 3 1 70	9,383 MPLE ERRC #	8,789 OR OF TREES 5 381 OF PLOTS 5	2,001 REO. 7 194 REQ. 7 139	9 1,989 INF. POP. 1 INF. POP. 1 INF. POP.

TC PS	FATS				P	ROJECT project		ISTICS ERFSAL			PAGE DATE	2 1/19/2016
TWP	RGE	SC	TRACT		TYPE		A	CRES	PLOTS	TREES	CuFt	BdFt
29N 29N	38E 38E	07 22	DEER FIRE DEER FIRE		00U4 00U2	THR	1	,037.63	229	575	S	Е
DOU	G FIR		164.1	10.8		23	26	28				
DOU	G FIR-L		250.0	16.5		6	7	8				
GR F	IR		175.5	11.6		20	23	26				
W LA	ARCH		360.8	23.8		2	3	4				
W LA	ARCH-L		623.8	41.2		1	2	2				
WR C	CEDAR		452.4	29.9		2	3	3				
P PIN	ΙE		455.7	30.1		1	1	2				
E SPI	RUCE		1067.7	70.6		0	0	1				
LP PI	NE		1067.7	70.6		0	1	1				
WHE	MLOCK		1102.0	72.8		0	0	0				
TOT	AL		78.5	5.2		62	66	69		247	126	62
CL	68.1		COEFF			NET BI	F/ACRE			# OF PLOTS	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%		LOW	AVG	HIGH		5	7	10
DOU	G FIR		184.3	12.2		2,597	2,958	3,318				
DOU	G FIR-L		252.9	16.7		779	936	1,092				
GR F	IR		180.6	11.9		3,283	3,728	4,173				
WLA	ARCH		367.2	24.3		240	317	394				
WLA	ARCH-L		623.8	41.2		91	154	218				
WR C	CEDAR		479.0	31.7		219	320	422				
P PIN	ΙE		506.8	33.5		119	179	239				
E SPI	RUCE		1091.7	72.1		13	47	80				
LP PI	NE		1067.7	70.6		30	103	176				
WHE	MLOCK		1067.9	70.6		14	47	80				
TOT	AL		90.2	6.0		8,265	8,789	9,312		325	166	81
CL	68.1		COEFF			V BAR	ACRE/			# OF PLOTS	REQ.	INF. POP.
SD:	1.0		VAR.%	S.E.%		LOW	AVG	HIGH		5	7	10
DOU	G FIR					102	116	130				
DOU	G FIR-L					109	131	153				
GR F	IR					143	162	182				
W LA	ARCH		236.6	15.6		76	100	125				
W LA	ARCH-L		94.7	6.3		60	102	144				
WR C	CEDAR		310.8	20.5		84	123	162				
P PIN	νE		258.8	17.1		80	121	161				
E SPI	RUCE		1091.7	72.1		44	156	269				
LP PI	INE		751.6	49.7		44	148	252				
WHE	MLOCK		1070.9	70.8		49	168	287				
TOT	AL		89.6	5.9		126	134	142		321	164	80

T TSPCSTGR

Species, Sort Grade - Board Foot Volumes (Type) Project: DEERFSAL

																Time	: 1	1:39:4	SPIVI
T29N Twp 29N	R38E 8 R3 38	ge	Sec	Tract EER F	IRE	Туре 00U			Plot 58		-	le Tree .86	S	CuFt S	T2 Bd E		38E S	508 TO	0U1
			%					Percent Net Board Foot Volume							A	verag	Logs		
Spp	S _{So} T rt	Gr ad	Net BdFt	Bd. Def%	Ft. per Ac Gross	re Net	Total Net MBF	L 4-5		ale Di 12-16			g Ler 21-32	ngth 33-55 56-99	Ln Ft	Dia In		CF/ Lf	Per /Acre
GF	D	2	29	13.5	2,123	1,835	572			87	13		100		32	14	236	1.69	7.8
GF	D	3	58	1.2	3,613	3,569	1,113		100				100		32	9	112	0.66	31.8
GF	D	4	13	3.9	823	791	247	68	32			24	76		20	6	29	0.33	27.3
GF	Totals		48	5.5	6,559	6,195	1,932	9	62	26	4	3	97		27	8	93	0.70	66.9
DF	D	2	45	3.9	2,256	2,167	676			100			100		32	14	258	1.73	8.4
DF	D	3	49	3.2	2,429	2,351	733		92	8			100		32	9	109	0.82	21.5
DF	D	4	6	11.7	286	253	79	20	80			58	42		17	6	19	0.28	13.0
DF	Totals		37	4.0	4,971	4,771	1,488	1	49	50		3	97		27	9	111	0.93	43.0
RC	D	3	72	9.2	856	778	243		69	31			100		32	11	159	1.14	4.9
RC	D	4	28		289	289	90	67	33			33	67		23	5	30	0.34	9.7
RC	Totals		8	6.9	1,145	1,066	333	18	59	22		9	91		26	7	73	0.67	14.6
WL	D	4	100	23.1	563	432	135	52	48				100		29	5	27	0.16	16.3
WL	Totals	5	3	23.1	563	432	135	52	48				100		29	5	27	0.16	16.3
LP	D	3	31	28.6	149	106	33		100				100		32	7	50	0.41	2.1
LP	D	4	69		237	237	74	100				18	82		28	5	39	0.20	6.0
LP	Totals		3	11.0	385	343	107	69	31			12	88		29	6	42	0.26	8.1
WH	D	3	77		61	61	19		100				100		32	7	70	0.46	.9
WH	D	4	23		18	18	5	100				100			16	5	20	0.20	.9
WH	Totals	5	1		79	79	25	22	78			22	78		24	6	45	0.38	1.8
Туре Т	otals			5.9	13,701	12,887	4,018	10	56	33	2	4	96		27	8	86	0.67	150.6

Т	TSPCST	GR			S	pecies,	Sort G Projec	rade - Boar t: DEF	d Fo ERFS		olun	nes (T	Cype)		Page Date Time	e 1	1 /19/20 L:39:4	
T29N Twj 29N	-	S22 Rge 8E	Г00U2 Sec 22		ract ER FII	RE	Туре 00U2			Plot 48		-	e Trees 12	S CuFt S	T29N F BdFt E	R38E S	522 T(00U2
Spp	S _{So} T rt	Gr ad	% Ne Bdl		Bd. F Def%	't. per Acr Gross	re Net	Total Net MBF		og Sc	Net Bo ale Di 12-10	a.	-	me Length 21-32 33-55 56-99	Averaş Ln Dia Ft In		CF/ Lf	Logs Per /Acre
DF	D	2	21			483	483	90			100			100	32 14	289	1.94	1.7
DF	D	3	40)	3.0	947	919	171		87	13			100	32 9	108	0.74	8.5
DF	D	4	39)	4.0	910	874	162	77	23			43	57	23 5	23	0.30	37.5
DF	Total	s	31		2.7	2,340	2,276	422	29	44	27		17	83	25 6	48	0.48	47.7
DF	LD	3	82	2		1,444	1,444	268		100				100	32 10	140	0.89	10.3
DF	L D	4	18	;		309	309	57	100					100	28 5	30	0.34	10.3
DF	L Tot	als	24	Ļ		1,753	1,753	325	18	82				100	30 8	85	0.63	20.6
GF	D	2	44	Ļ		1,164	1,164	216			100			100	32 14	286	1.48	4.1
GF	D	3	44		5.2	1,249	1,184	220		89	11			100	32 9	122	0.76	9.7
GF	D	4	12	2		294	294	55	65	35			29	71	23 6	32	0.33	9.1
GF	Tota	s	36	5	2.4	2,707	2,642	490	7	44	49		3	97	29 9	115	0.76	22.9
PP	D	4	85		5.7	504	475	88			54	46		100	32 15	322	1.68	1.5
PP	D	5	15	;		83	83	15		100			16	84	27 8	81	0.73	1.0
PP	Total	5	8	; .	4.9	587	558	104		15	46	39	2	98	30 12	223	1.33	2.5
WH	D	2	72	2		93	93	17			100			100	32 15	320	1.60	.3
WH	D	3	28	;		35	35	6		100				100	32 9	120	0.83	.3
WH	Tota	ls	2	2		128	128	24		27	73			100	32 12	220	1.22	.6
Type	Totals				2.1	7,516	7,357	1.365	16	50	31	3	6	94	27 7	78	0.62	94.3

Т	TSPC	STGR	2			Species,	Sort G	rade - Boar	d Fo	oot V	olumes (7	Гуре)				Page	e	1	
							Projec	t: DEH	ERFS	AL						Date Time		/19/20 1:39:4	
T29N Tw 29N	р	SE S1 Rga 38E	e	Sec	Tract DEER FI	IRE	Туре 00U			Plot 58		le Tre 104	es	CuFt S	T2 Bd E		R38E S	510 T(00U3
				%					Per	cent N	Net Board Fo	oot Vol	ume		A	verag	ge Log	5	Logo
Spp	S 5 T 1		Gr ad	Net BdFt	Bd. Def%	Ft. per Acı Gross	re Net	Total Net MBF	L 4-5		ale Dia. 12-16 17+		g Lengt 21-32 33	th 3-55 56-99	Ln Ft	Dia In	Bd Ft	CF/ Lf	Logs Per /Acre
DF])	2	9	20.8	228	180	44			100		100		32	13	190	1.78	.9
DF	J)	3	68	3.9	1,372	1,319	325		100			100		32	9	105	0.81	12.5
DF	1	D	4	23		443	443	109	89	11		10	90		25	5	29	0.32	15.5
DF	Tot	als		37	4.9	2,042	1,942	478	20	70	9	2	98		28	7	67	0.62	28.9
DF	LI)	3	80	5.4	1,119	1,059	261		79	21		100		32	9	111	0.80	9.5
DF	LI)	4	20		259	259	64	37	63		47	53		22	5	29	0.44	8.8
DF	LT	otals		25	4.4	1,378	1,317	324	7	76	17	9	91		27	7	72	0.66	18.4
WL	LI)	3	75	14.3	568	487	120		100			100		32	8	60	0.57	8.1
WL	LI	D	4	25		162	162	40		100		100			18	6	20	0.27	8.1
WL	LΊ	otals	5	12	11.1	730	649	160		100		25	75		25	7	40	0.46	16.2
WL	I)	3	50		173	173	43		100			100		32	7	60	0.35	2.9
WL	1	D	4	50		171	171	42	50	50		50	50		22	5	30	0.28	5.7
WL	To	tals		7		345	345	85	25	75		25	75		25	6	40	0.31	8.6
GF]	D	2	13	29.6	115	81	20			100		100		32	14	190	2.11	.4
GF]	D	3	62	7.5	413	382	94		100			100		32	8	90	0.67	4.2
GF]	D	4	25		150	150	37	100			79	21		17	5	20	0.26	7.6
GF	To	als		12	9.6	678	613	151	24	62	13	19	81		23	6	50	0.55	12.3
PP]	D	5	100		333	333	82		100			100		32	7	70	0.53	4.8
PP	Tot	als		6		333	333	82		100			100		32	7	70	0.53	4.8
Туре	Fotals				5.6	5,506	5,199	1,280	14	77	9	10	90		27	7	58	0.56	89.2

T	TSPCSTO	GR			Species,	Sort G Projec	rade - Boar t: DEF	d Fo RFS		olun	nes (T	Туре)		Pag Dat Tim	e 1	1 /19/20 L:39:4	
T29N Tw 29N		S07 T(ge 3E	Sec	Tract DEER F	IRE	Туре 00U			Plot 26		-	le Trees 39	CuFt S	T29N I BdFt E			0U4
Spp	S _{So} ^T rt	Gr ad	% Net BdFt	Bd. Def%	Ft. per Ac Gross	ere Net	Total Net MBF		og Sca	ale Di	a.	ot Volume Log Le 12-20 21-32	ength 2 33-55 56-99	Avera Ln Dia Ft In	ge Log Bd Ft	CF/ Lf	Logs Per /Acre
DF DF DF	D D D	2 3 4	12 53 35	2.7 5.2	384 1,691 1,117	384 1,646 1,059	46 197 127	43	76 57	100 24		100 100 20 80		32 12 32 9 25 5	127	1.38 0.91 0.47	2.0 12.9 32.4
DF	Totals		21	3.3	3,192	3,089	370	15	60	25		7 93		27 7	65	0.65	47.4
DF DF	L D L D	2 3	67 33		1,822 863	1,822 863	218 103		100	100		100 100		32 12 32 7		1.38 0.53	9.6 9.6
DF	L Tota	ls	18		2,686	2,686	321		32	68		100		32 10	140	0.95	19.2
GF GF GF	D D D	2 3 4	29 62 9	34.7 7.1	3,452 5,049 639	2,253 4,692 639	270 562 77	55	44 45	32 39	68 17	100 100 13 87		32 19 32 10 24 6	157	2.99 1.00 0.38	6.1 29.9 16.8
GF	Totals		52	17.0	9,140	7,584	908	5	31	34	31	1 99		30 10	143	1.08	52.9
WL WL	D D	3 4	57 43	.0	522 393	522 393	62 47	32	100 68			100 32 68		32 7 23 5		0.51 0.30	8.1 13.4
WL	Total	s	6		915	915	109	14	86			14 86		26 6	42	0.40	21.5
ES ES	D D	3 4	88 12		356 48	356 48	43 6	100	57	43		100 24 76		32 12 27 5	191 37	1.37 0.38	1.9 1.3
ES	Totals		3		404	404	48	12	50	38		3 97		30 9	128	1.00	3.2
Туре	Totals			10.2	16,336	14,677	1,757	7	41	36	16	3 97		29 8	102	0.83	144.1

T TSPCSTGR

Species, Sort Grade - Board Foot Volumes (Type) Project: DEERFSAL

T29N Twp 29N		S16 T (ge 8E	Sec	Tract DEER F	IRE	Туре 00U			Plots 39	5	-	le Trees 86	5	CuFt S	T2 Bd E		R38E S	516 T(0U5
			%					Per	cent N	let Bo	oard Fo	ot Volu	me		A	vera	ge Log		Ŧ
	S _{So} Trt		Net BdFt	Bd. Def%	Ft. per Ac Gross	re Net	Total Net MBF	L 4-5	og Sca 6-11		a. 5 17+	-	E Lengt 21-32 33	th -55 56-99	Ln Ft	Dia In	Bd Ft	CF/ Lf	Logs Per /Acre
DF	D	2	23	3.1	429	416	72			53	47		100		32	16	382	2.85	1.1
DF	D	3	18		329	329	57		49	51			100		31	8	107	0.89	3.1
DF	D	4	59		1,041	1,041	182	88	12			12	88		28	5	39	0.35	26.6
DF	Totals		45	.7	1,799	1,785	311	51	16	22	11	7	93		28	6	58	0.51	30.8
GF	D	2	22	29.1	715	507	88			59	41		100		32	17	297	2.21	1.7
GF	D	3	53		1,168	1,168	204		83	17			100		32	8	105	0.67	11.2
GF	D	4	25	17.4	668	552	96	33	67			25	75		25	6	28	0.34	19.5
GF	Totals	5	55	12.7	2,551	2,226	388	8	60	22	9	6	94		28	7	69	0.58	32.3
Туре Т	otals			7.8	4,350	4,012	700	27	40	22	10	7	93		28	6	64	0.55	63.1

T29N R38I T29N R38I T29N R38I	E S08 Ty00	U1 311.7			0	EERFSA 1,037.63	L		Page N Date: Time	No 1 1/19/20 1:39:4	
	s	Total	Total	Total	Net Cul	oic Ft/	CF/	Total (CCF	Total N	1BF
Species	Т	Trees	Logs	Tons	Tree	Log	LF	Gross	Net	Gross	Net
GR FIR		20,188	40,086	23,565	40.74	20.52	0.75	8,225	8,225	4,253	3,869
DOUG FIR		26,364	40,411	21,402	28.38	18.51	0.68	7,509	7,481	3,183	3,069
DOUG FIR	L	5,658	10,645	6,358	39.43	20.96	0.72	2,231	2,231	986	971
WR CEDAR		3,150	4,554	1,868	25.24	17.46	0.67	795	795	357	333
W LARCH		7,745	9,776	1,825	8.56	6.78	0.25	760	663	370	329
P PINE		1,363	1,637	918	28.08	23.38	0.74	383	383	191	186
W LARCH	L	1,998	3,996	1,106	23.06	11.53	0.46	461	461	180	160
LP PINE		1,872	2,535	458	10.20	7.54	0.26	191	191	120	107
WHEMLOCK		328	655	293	27.91	13.95	0.55	91	91	48	48
E SPRUCE		155	378	294	73.09	29.95	1.00	113	113	48	48

Wood Type	Total	Total	Total	Net Cul	bic Ft/	CF/	Total (CCF	Total N	/IBF
Species	Trees	Logs	Tons	Tree	Log	LF	Gross	Net	Gross	Net
С	68,822	114,674	58,087	29.98	17.99	0.66	20,760	20,634	9,736	9,119
Totals	68,822	114,674	58,087	29.98	17.99	0.66	20,760	20,634	9,736	9,119

T29N T T29N Spp T DF DF	FHI R3 5	RU 8E : So	S22 T		4			Drea!									Page		1
Spp 7 DF	Г 1		Cr		2			Acre	ect: es	DEF	ERFSA 1,037								9/2016 9:44PM
DF		rt		Log	Gross	Def	Net	%		I			_		neter in In	ches			
]		de]	Len	MBF	%	MBF	Spc	2-4	5-6	7-10	11-12	13-14 1	5-16	17-18 1	9-20	21-23 24	1-29	30-39 40+
DF		D	2	32	970	4.3	928	30.2				150	422	321		34			
]	D	3	26	5		5	.2		5									
DF	j	D	3	32	1,526	3.1	1,478	48.2		52	967	430	29						
DF]	D	4	12	14	74.1	4	.1		4									
DF	1	D	4	14	24		24	.8		24									
DF]	D	4	16	17		17	.6		15	2								
DF]	D	4	18	56		56	1.8		56									
DF		D	4	20	80	8.4	73	2.4		73									
DF	1	D	4	24	115	2.4	112	3.7		112									
DF		D	4	26	6		6	.2		6									
DF		D	4	30	85	5.1	81	2.6		81									
DF]	D	4	32	285		285	9.3		285									
DF			Totals		3,183	3.6	3,069	33.7		713	969	580	452	321		34			
DF I		D	2	32	218		218	22.5				218							
DF I	LI	D	3	30	25		25	2.6			25								
DF I		D	3	32	622	2.4	607	62.5			552	55							
DF I	LI	D	4	16	13		13	1.3		13									
DF I	LI	D	4	18	11		11	1.1		11									
DF I	LI	D	4	20	6		6	.7		6									
DF I	LI	D	4	28	57		57	5.9		57									
DF I	LI	D	4	32	34		34	3.5		34									
DF			Totals		986	1.5	971	10.6		121	577	273							
WL]	D	3	32	105		105	32.0			105								
WL]	D	4	14	4		4	1.3		4									
WL	li	D	4	16	7		7	2.1		7									
WL	1	D	4	20	25		25	7.6		25									
WL	1	D	4	24	41	100.0													
WL	1	D	4	32	188		188	57.0		167	21								
WL			Totals			11.0	329	3.6		203	126								
WL I		D	3	32	140	14.3	120	75.0			120								
WL I	LI	D	4	18	40		40	25.0		40									
WL			Totals		180	11.1	160	1.8		40	120								
GF	1	D	2	32	1,444	19.2	1,166	30.1				124	418	333		109	182		

TC PLO	OGSTV	В					Log	Stock Table	e - MB	F						
T29N 1 T T29N 1	HRU						Proj Acre		ERFSA 1,037							2 19/2016 39:44PM
S			Log		Def	Net	%]	Net Vol	ume by	Scaling	Dian	neter in I	nches		
Spp Т	rt d	le	Len	MBF	%	MBF	Spc	2-4 5-6	7-10	11-12	13-14 15	5-16	17-18	19-20	21-23 24-29	30-39 40
GF	D	3	32	2,268	3.4	2,192	56.7	36	1388	460	137	74	96			
GF	D	4	12	21		21	.5	21								
GF	D	4	14	10		10	.3	10								
GF	D	4	16	73		73	1.9	59	14							
GF	D	4	18	9		9	.2		9							
GF	D	4	20	24		24	.6	15	10							
GF	D	4	24	220	4.5	210	5.4	143	67							
GF	D	4	26	12		12	.3	12								
GF	D	4	28	33		33	.8	33								
GF	D	4	30	8		8	.2	8								
GF	D	4	32	131	15.6	110	2.9	110								
GF	Т	'ota		4,253	9.0	3,869	42.4	446	1488	584	555	407	96	109	182	
WH	D	2	32	17		17	35.7					17				
WH	D	3	32	26		26	53.0		26							
WH	D	4	16	5		5	11.3	5								
WH	Г	'ota	ls	48		48	.5	5	26			17				
RC	D	3	32	267	9.2	243	72.9		168		38	36				
RC	D	4	16	25		25	7.6	25								
RC	D	4	18	4		4	1.2	4								
RC	D	4	28	26		26	8.0	26								
RC	D	4	32	34		34	10.3	34								
RC	Г	'ota	ls	357	6.9	333	3.6	90	168		38	36				
ES	D	3	32	43		43	88.2		10	15	18					
ES	D	4	20	1		1	2.8	1								
ES	D	4	32	4		4	9.0	4								
ES	Г	'ota	ls	48		48	.5	6	10	15	18					
LP	D	3	32	46	28.6	33	31.0		33							
LP	D	4	20	13		13	12.4	13								
LP	D	4	32	60		60	56.6	60								
LP	Г	'ota	ls	120	11.0	107	1.2	74	33							
PP	D	4	32	94	5.7	88	47.5		1	18		29	41			
PP	D	5	20	3		3	1.3		3							
	1		2			-										

TC PL	0	GST	VB					Log	Stock	x Table	- MB	F								
,	TH	IRU		Ty00U Ty00U				Proj Acre		DEI	ERFSA 1,037						Page Date Time	-	3 9/2010 39:44F	
:	s	So	Gr	Log	Gross	Def	Net	%		Ν	let Volu	ıme by	Scalin	g Dian	neter in I	Inches				
Spp	Т	rt	de	Len	MBF	%	MBF	Spc	2-4	5-6	7-10	11-12	13-14	15-16	17-18	19-20	21-23	24-29	30-39	40+
PP		D	5	32	95		95	51.1			95									
PP			Tota	ls	191	2.8	186	2.0			97	18		29	41					
Total		All	Spec	ies	9,736	6.3	9,119	100.0		1699	3614	1469	1064	811	137	143	182			

TC PLO	OGST	VT_S	ED]	Project	Log Sto	ock Tal	ole - TO	NS(SI	ED)					
T29N H T T29N H	HRU	l					Proj Acre		DEERF 1,03]	Page Date Time	1 1/19/20 1:39:4	
s	So	Gr	Log					I	Tons	by Scalin	g Diam	eter in 1	Inches			1	
Spp Т			Len	SED	TONS	2-4	5-6	7-10	11-12	13-14		17-18	19-20	21-23	24-29	30-39	40+
DF	D	2	32	13.7	5,849				941	2441	2258		208				
DF DF	D D	3 3	26 32		41 10,043		41 363	6600	2882	197							
DF DF	D D	4 4	12 14		111 186		111 186										
DF	D	4	16	5.3	102		85	16									
DF	D	4	18		374		374										
DF	D	4	20	5.2	630		630										
DF	D	4	24		937		937										
DF	D	4	26	5.0	56		56										
DF	D	4	30	5.0	1,010		1010										
DF	D	4	32	5.5	2,063		2063										
Graded					21402		5857	6616	3823	2638	2258		208				
DF		Total		6.9	21,402		5857	6616	3823	2638	2258		208				
DF L	D	2	32	12.0	1,442				1442								
DF L DF L		3 3	30 32		145 3,653			145 3275	378								
DF L	D	4	16	5.0	83		83										
DF L	D	4	18		82		82										
DF L	D	4	20		91		91										
DF L		4	28		520		520										
DF L	D	4	32	6.0	342		342										
Graded					6358		1118	3421	1819								
DF		Total	s	8.1	6,358		1118	3421	1819								
WL	D	3	32	7.3	573			573									
WL WL	D D	4 4	14 16		35 27		35 27										
WL	D	4	20		122		122										
WL	D	4	24		236		236										
WL	D	4	32		833		724	109									
Graded					1825		1143	682									
WL		Total	s	5.8	1,825	ļ	1143	682									
WL L	D	3	32	8.0	870			870									
WL L Graded	D	4	18	6.0	235 1106		235 235	870									

T29N F T T29N F	HRU						Proj Acre		DEERF; 1,03]	Page Date Time	2 1/19/201 1:39:44	
S		Gr							Tons	by Scalin	g Diam	eter in I	nches	1		ł	
Spp Т	rt	de	Len	SED	TONS	2-4	5-6	7-10	11-12	13-14	15-16	17-18	19-20	21-23	24-29	30-39	40+
WL		Totals		7.0	1,106		235	870									
GF	D	2	32	15.7	7,613				762	2329	2099		1071	1352			
GF	D	3	32	9.2	12,364		263	8038	2417	896	347	403					
GF	D	4	12		169		169										
GF	D	4	14		88		88										
GF	D	4	16		434		346	88									
GF	D	4	18		74			74									
GF	D	4	20		178		84	94									
GF	D	4	24		1,281		856	425									
GF	D	4	26		108		108										
GF	D	4	28		282		282										
GF	D	4	30		56		56										
GF	D	4	32	5.7	919		919										
Graded					23565		3171	8718	3179	3225	2445	403	1071	1352			
GF		Totals		8.3	23,565		3171	8718	3179	3225	2445	403	1071	1352			
WH	D	2	32	15.0	88						88						
WH	D	3	32	7.5	176			176									
WH Graded	D	4	16	5.0	28 293		28 28	176			88						
WH		Totals		7.5	293		28	176			88						
RC	D	3	32	10.9	1,305			740		280	284						
RC RC	D D	4 4	16 18		129 32		129 32										
RC	D	4	28		198		198										
RC	D	4	32		205		205										
Graded					1868		564	740		280	284						
RC		Totals		7.3	1,868		564	740		280	284					1	
ES	D	3	32	11.6	253			46	102	105							
ES	D	4	20	5.0	12		12										
ES	D	4	32	5.0	29		29										
Graded					294		41	46	102	105							
ES		Totals		8.9	294		41	46	102	105						1	
LP	D	3	32	7.0	207			207									

TC PLC	OGS	TVT_S	ED]	Project	Log Sto	ck Tal	ole - TC	NS(SF	ED)			
T29N F T T29N F	HR	U					Proj Acre		DEERF 1,03					Page Date Time	3 1/19/2016 1:39:44PM
S	S	o Gr	Log						Tons	by Scaliı	ng Diam	eter in I	nches		I
Spp T	r	t de	Len	SED	TONS	2-4	5-6	7-10	11-12	13-14	15-16	17-18	19-20	21-23 24-29	30-39 40+
LP LP	D D		20 32		64 188		64 188								
Graded					458		252	207							
LP		Tota	ls	5.5	458		252	207							
PP	D	4	32	15.0	355				82		132	141			
PP PP	D D		20 32		21 543			21 543							
Graded					918			564	82		132	141			
РР		Tota	ls	8.8	918			564	82		132	141			
Total	A	ll Spec	ies		58,087		12409	22040	9006	6249	5208	544	1279	1352	

	FATS			Р	STA ROJEC	ATIST	TICS deerfsai			PAGE DATE 1	1 /19/2016
rwp	RGE	SECT 7	FRACT	Т	YPE	AC	RES	PLOTS	TREES	CuFt	BdFt
29N	38E	08 I	DEER FIRE	0	0U1	,	311.79	58	186	S	Е
					EES		ESTIMATED TOTAL	S	PERCENT		
		PLOTS	TREES	PEI	R PLOT		TREES	Т	REES		
TOTA		58	186		3.2						
	COUNT	29	35		1.2		26,137		.1		
COUN	OREST NT	23	69		3.0						
BLAN		6	07		5.0						
100 %		0									
				STAND	SUMM	IARY					
		SAMPLE	TREES	AVG B	OLE	REL	BASAL	GROSS	NET	GROSS	NET
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
GR F		11	31.8	14.6	75	9.7	37.1	6,559	6,195	1,274	1,274
	G FIR	12	18.8	18.1	76	7.9	33.6	4,971	4,771	1,100	1,092
	CEDAR	6	10.1	12.6	48	2.5	8.7	1,145	1,066	255	255
	ARCH	3	16.3	7.7	70	1.9	5.2	563	432	104	73
LP PI		2	6.0	8.4	77	0.8	2.3	385	343	61	61
	MLOCK	1	.9	11.0	75	0.2	.6	79	79	16	16
TOT	AL	35	83.8	13.8	71	23.5	87.5	13,701	12,887	2,811	2,772
CON			F THE SAMPL F OF 100 THE Y		ILL BE '	WITHIN	THE SAMP	LE ERROR			
CL:	68.1 [%]	COEF	F	S	AMPLE	E TREES	5 - BF	#	OF TREES	REQ.	INF. POP.
SD:	1.0	VAR.9	% S.E.%	LOW	r	AVG	HIGH		5	7	1
GR F	IR	57.3	18.1	2	15	263	210				
							310				
	G FIR	47.0	14.2	20	51	304	347				
WR C	CEDAR	62.1	14.2 30.9	20 10	51 56	304 240	347 314				
WR C W LA	CEDAR ARCH	62.1 88.2	14.2 30.9 61.1	20 10	51 56 12	304 240 30	347 314 48				
WR C W LA LP PI	CEDAR ARCH	62.1	14.2 30.9	20 10	51 56	304 240	347 314				
WR C W LA LP PI	CEDAR ARCH INE EMLOCK	62.1 88.2	14.2 30.9 61.1	20	51 56 12	304 240 30	347 314 48		177	90	4
WR C W LA LP PI WHE TOTA	CEDAR ARCH INE EMLOCK	62.1 88.2 23.6	14.2 30.9 61.1 22.1 11.4	20 10 20	51 56 12 47 09	304 240 30 60 236	347 314 48 73				
WR C W LA LP PI WHE TOTA	CEDAR ARCH INE EMLOCK AL	62.1 88.2 23.6 66.5	14.2 30.9 61.1 22.1 <i>11.4</i> F	20 10 20	51 56 12 47 09 REES/ A	304 240 30 60 236	347 314 48 73	#	<i>177</i> ≠ OF PLOTS 5		4 INF. POP. 1
WR C W LA LP PI WHE TOT CL: SD: GR F	CEDAR ARCH INE EMLOCK AL 68.1 % 1.0 IR	62.1 88.2 23.6 66.5 COEF VAR.9 129.6	14.2 30.9 61.1 22.1 <i>11.4</i> F <u>% S.E.%</u> 17.0	20 10 20 20 T LOW	51 56 12 47 09 (REES /A 26	304 240 30 60 236 ACRE AVG 32	347 314 48 73 263 HIGH 37	#	OF PLOTS	REQ.	INF. POP.
WR C W LA LP PI WHE TOTA CL: SD: GR F DOUG	CEDAR ARCH INE EMLOCK AL 68.1 % 1.0 IR G FIR	62.1 88.2 23.6 66.5 COEF VAR.9 129.6 156.9	14.2 30.9 61.1 22.1 <i>11.4</i> F <u>% S.E.%</u> 17.0 20.6	20 10 20 20 T LOW	51 56 12 47 09 REES/A 26 15	304 240 30 60 236 ACRE AVG 32 19	347 314 48 73 263 <u>HIGH</u> 37 23	#	OF PLOTS	REQ.	INF. POP.
WR C W LA LP PI WHE TOTA CL: SD: GR FI DOUG	CEDAR ARCH INE EMLOCK AL 68.1 % 1.0 TIR G FIR CEDAR	62.1 88.2 23.6 66.5 COEF VAR.9 129.6 156.9 226.9	14.2 30.9 61.1 22.1 <i>11.4</i> F % <u>S.E.%</u> 17.0 20.6 29.8	20 10 20 20 T LOW	51 56 12 47 09 (REES/A 7	304 240 30 60 236 ACRE AVG 32 19 10	347 314 48 73 263 HIGH 37 23 13	#	OF PLOTS	REQ.	INF. POP.
WR C W LA LP PI WHE TOTA CL: SD: GR FI DOUG WR C W LA	CEDAR ARCH INE EMLOCK AL 68.1 % 1.0 TIR G FIR CEDAR ARCH	62.1 88.2 23.6 66.5 COEF VAR.9 129.6 156.9 226.9 265.9	14.2 30.9 61.1 22.1 <i>11.4</i> F <u>% S.E.%</u> 17.0 20.6 29.8 34.9	20 10 20 20 T LOW	51 56 12 47 79 REES/A 7 11	304 240 30 60 236 ACRE AVG 32 19 10 16	347 314 48 73 263 HIGH 37 23 13 22	#	OF PLOTS	REQ.	INF. POP.
WR C W LA LP PI WHE TOTA CL: SD: GR FI DOUG WR C W LA LP PI	CEDAR ARCH INE EMLOCK AL 68.1 % 1.0 TIR G FIR CEDAR ARCH INE	62.1 88.2 23.6 66.5 COEF VAR.9 129.6 156.9 226.9 265.9 533.8	14.2 30.9 61.1 22.1 <i>11.4</i> F <u>% S.E.%</u> 17.0 20.6 29.8 34.9 70.1	20 10 20 20 T LOW	51 56 12 47 09 (REES/A 7	304 240 30 60 236 ACRE AVG 32 19 10	347 314 48 73 263 HIGH 37 23 13 22 10	#	OF PLOTS	REQ.	INF. POP.
WR C W LA LP PI WHE TOTA CL: SD: GR FI DOUG WR C W LA LP PI	CEDAR ARCH INE EMLOCK AL 68.1 % 1.0 IR G FIR CEDAR ARCH INE EMLOCK	62.1 88.2 23.6 66.5 COEF VAR.9 129.6 156.9 226.9 265.9	14.2 30.9 61.1 22.1 <i>11.4</i> F <u>% S.E.%</u> 17.0 20.6 29.8 34.9 70.1 100.0	20 10 20 T LOW	51 566 12 47 79 REES/A 7 11 2	304 240 30 60 236 ACRE AVG 32 19 10 16 6	347 314 48 73 263 HIGH 37 23 13 22	#	OF PLOTS	REQ.	INF. POP.
WR C W LA LP PI WHE TOTA CL: SD: GR FI DOUG WR C W LA LP PI WHE TOTA	CEDAR ARCH INE EMLOCK AL 68.1 % 1.0 IR G FIR CEDAR ARCH INE EMLOCK	62.1 88.2 23.6 66.5 COEF VAR.5 129.6 156.9 226.9 265.9 533.8 761.6	14.2 30.9 61.1 22.1 <i>11.4</i> F <u>% S.E.%</u> 17.0 20.6 29.8 34.9 70.1 100.0 7.8	20 10 20 T LOW	51 56 12 47 99 REES/A 7 11 2 0 77	304 240 30 60 236 ACRE AVG 32 19 10 16 6 1	347 314 48 73 263 HIGH 37 23 13 22 10 2 90		FOF PLOTS	7 REQ. 7 72	INF. POP. 1
WR C W LA LP PI WHE TOTA SD: GR FI DOUG WR C W LA LP PI WHE TOTA CL: SD:	CEDAR ARCH INE EMLOCK AL 68.1 % 1.0 TIR G FIR CEDAR ARCH INE EMLOCK AL 68.1 % 1.0	62.1 88.2 23.6 66.5 COEF VAR.9 226.9 265.9 533.8 761.6 59.5 COEF VAR.9	14.2 30.9 61.1 22.1 11.4 F <u>% S.E.%</u> 17.0 20.6 29.8 34.9 70.1 100.0 7.8 F % S.E.%	20 10 20 T LOW	51 56 12 47 79 REES/A 7 11 2 0 77 ASAL A	304 240 30 60 236 ACRE AVG 32 19 10 16 6 1 84 AREA/A AVG	347 314 48 73 263 HIGH 37 23 13 22 10 2 90		e of plots 5 141	7 REQ. 7 72	INF. POP. 1 3 INF. POP.
WR C WLA LP PI WHE TOTA CL: SD: GR FI DOUG WR C WLA LP PI WHE TOTA CL: SD: GR FI	CEDAR ARCH INE EMLOCK AL 68.1 % 1.0 TR G FIR CEDAR ARCH INE EMLOCK AL 68.1 % 1.0 TR	62.1 88.2 23.6 66.5 COEF VAR.5 129.6 156.9 226.9 265.9 533.8 761.6 59.5 COEF VAR.5 127.8	14.2 30.9 61.1 22.1 11.4 F % S.E.% 17.0 20.6 29.8 34.9 70.1 100.0 7.8 F % S.E.% 16.8	20 10 20 T LOW	51 56 12 47 79 REES/A 7 11 2 0 77 7 ASAL A 31	304 240 30 60 236 ACRE AVG 32 19 10 16 6 1 84 AREA/A AVG 37	347 314 48 73 263 <u>HIGH</u> 37 23 13 22 10 2 90 CRE HIGH 43		€ OF PLOTS 5 141 € OF PLOTS	7 7 72 REQ.	INF. POP 1 3 INF. POP
WR C W LA LP PI WHE TOTA CL: SD: GR FI DOUG WR C W LA LP PI WHE TOTA CL: SD: GR FI DOUG	CEDAR ARCH INE EMLOCK AL 68.1 % 1.0 IR G FIR CEDAR ARCH INE EMLOCK AL 68.1 % 1.0 IR G FIR	62.1 88.2 23.6 66.5 COEF VAR.5 129.6 156.9 226.9 265.9 533.8 761.6 59.5 COEF VAR.5 COEF	14.2 30.9 61.1 22.1 <i>11.4</i> F <u>% S.E.%</u> 17.0 20.6 29.8 34.9 70.1 100.0 7.8 F <u>% S.E.%</u> 16.8 20.4	20 10 20 T LOW	51 56 12 47 09 REES/A 7 REES/A 7 11 2 0 77 ASAL A 31 27	304 240 30 60 236 ACRE AVG 32 19 10 16 6 1 84 AVG 37 34	347 314 48 73 263 <u>HIGH</u> 37 23 13 22 10 2 90 CRE HIGH 43 40		€ OF PLOTS 5 141 € OF PLOTS	7 7 72 REQ.	INF. POP 1 3 INF. POP
WR C W LA LP PI WHE TOTA CL: SD: GR FI DOUG WR C WLA LP PI WHE TOTA CL: SD: GR FI DOUG WR C	CEDAR ARCH INE EMLOCK AL 68.1 % 1.0 IR G FIR CEDAR ARCH INE EMLOCK AL 68.1 % 1.0 IR G FIR CEDAR	62.1 88.2 23.6 66.5 COEF VAR.5 129.6 156.9 226.9 265.9 533.8 761.6 59.5 COEF VAR.5 127.8 155.6 211.9	14.2 30.9 61.1 22.1 <i>11.4</i> F <u>% S.E.%</u> 17.0 20.6 29.8 34.9 70.1 100.0 7.8 F <u>% S.E.%</u> 16.8 20.4 27.8	20 10 20 T LOW	51 56 12 47 09 REES/A 7 15 7 11 20 0 77 ASAL A 31 27 6	304 240 30 60 236 ACRE AVG 32 19 10 16 6 1 84 AVG 37 34 9	347 314 48 73 263 HIGH 37 23 13 22 10 2 90 CRE HIGH 43 40 11		€ OF PLOTS 5 141 € OF PLOTS	7 7 72 REQ.	INF. POP 1 3 INF. POP
WR C WLA LP PI WHE TOTA CL: SD: GR FI OUC WR C WLA CL: SD: GR FI DOUC WR C WR C	CEDAR ARCH INE EMLOCK AL 68.1 % 1.0 IR G FIR CEDAR ARCH INE EMLOCK AL 68.1 % 1.0 IR G FIR CEDAR ARCH	62.1 88.2 23.6 66.5 COEF VAR.9 226.9 265.9 533.8 761.6 59.5 COEF VAR.9 127.8 155.6 211.9 264.5	14.2 30.9 61.1 22.1 <i>11.4</i> F <u>% S.E.%</u> 17.0 20.6 29.8 34.9 70.1 100.0 7.8 F <u>% S.E.%</u> 16.8 20.4 27.8 34.7	20 10 20 T LOW	51 56 12 47 09 REES/A 7 7 11 2 0 77 ASAL A 3 3	304 240 30 60 236 ACRE AVG 32 19 10 16 6 1 84 AREA/A AVG 37 34 9 5	347 314 48 73 263 HIGH 37 23 13 22 10 2 90 CRE HIGH 43 40 11 7		€ OF PLOTS 5 141 € OF PLOTS	7 7 72 REQ.	INF. POP. 1 3 INF. POP.
WR C W LA LP PI WHE TOTA CL: SD: GR FI DOUC WR C WLA CL: SD: GR FI DOUC WR C WLA LP PI	CEDAR ARCH INE EMLOCK AL 68.1 % 1.0 IR G FIR CEDAR ARCH INE 68.1 % 1.0 IR G FIR CEDAR ARCH INE	62.1 88.2 23.6 66.5 COEF VAR.9 226.9 265.9 533.8 761.6 59.5 COEF VAR.9 127.8 155.6 211.9 264.5 533.8	14.2 30.9 61.1 22.1 11.4 F % S.E.% 17.0 20.6 29.8 34.9 70.1 100.0 7.8 F % S.E.% 16.8 20.4 27.8 34.7 70.1	20 10 20 T LOW	51 56 12 47 09 REES/A 7 15 7 11 20 0 77 ASAL A 31 27 6	304 240 30 60 236 ACRE AVG 32 19 10 16 6 1 84 AVG 37 34 9	347 314 48 73 263 HIGH 37 23 13 22 10 2 90 CRE HIGH 43 40 11		€ OF PLOTS 5 141 € OF PLOTS	7 7 72 REQ.	INF. POP. 1 3 INF. POP.
WR C W LA LP PI WHE TOTA CL: SD: GR FI DOUC WR C WLA CL: SD: GR FI DOUC WR C WLA LP PI	CEDAR ARCH INE CMLOCK AL 68.1 % 1.0 IR G FIR CEDAR ARCH INE 68.1 % 1.0 IR G FIR CEDAR ARCH INE CEDAR ARCH INE CEDAR	62.1 88.2 23.6 66.5 COEF VAR.9 226.9 265.9 533.8 761.6 59.5 COEF VAR.9 127.8 155.6 211.9 264.5	14.2 30.9 61.1 22.1 11.4 F % S.E.% 17.0 20.6 29.8 34.9 70.1 100.0 7.8 F % S.E.% 16.8 20.4 27.8 34.7 70.1 100.0	20 10 20 T LOW	51 56 12 47 09 REES/A 7 15 7 11 22 0 77 ASAL A 3 1	304 240 30 60 236 ACRE AVG 32 19 10 16 6 1 84 AVG 37 34 9 5 2	347 314 48 73 263 HIGH 37 23 13 22 10 2 90 CRE HIGH 43 40 11 7 4		€ OF PLOTS 5 141 € OF PLOTS	7 7 72 REQ.	INF. POP. 1 3 INF. POP. 1
WR C W LA LP PI WHE TOTA SD: GR FI DOUG WR C WLA LP PI WHE TOTA CL: SD: GR FI DOUG WR C U WR C CL: SD: TOTA	CEDAR ARCH INE EMLOCK AL 68.1 % 1.0 IR G FIR CEDAR ARCH INE EMLOCK AL G FIR CEDAR ARCH INE CEDAR AL CEDAR AL CEDAR AL	62.1 88.2 23.6 66.5 COEF VAR.9 226.9 265.9 265.9 533.8 761.6 59.5 COEF VAR.9 127.8 155.6 211.9 264.5 533.8 761.6	14.2 30.9 61.1 22.1 11.4 F <u>% S.E.%</u> 17.0 20.6 29.8 34.9 70.1 100.0 7.8 F <u>% S.E.%</u> 16.8 20.4 27.8 34.7 70.1 100.0 7.2	20 10 20 T LOW	51 56 12 47 79 REES/A 7 26 15 7 7 11 2 0 77 ASAL A 31 27 6 3 1 0 87	304 240 30 60 236 ACRE AVG 32 19 10 16 6 1 84 AVG 37 34 9 5 2 1 88	347 314 48 73 263 HIGH 37 23 13 22 10 2 90 CRE HIGH 43 40 11 7 4 1	#	[#] OF PLOTS 5 <i>141</i> [#] OF PLOTS 5 <i>120</i>	72 72 72 72 7 7 61	INF. POP. 1 3 INF. POP. 1 3 3
WR C WLA LP PI WHE TOTA CL: SD: GR FI DOUC WR C WLA LP PI WHE TOTA CL: SD: GR FI DOUC WR C WLA LP PI WHE TOTA	CEDAR ARCH INE SMLOCK AL 68.1 % 1.0 IR G FIR CEDAR ARCH INE SMLOCK AL 68.1 % CEDAR ARCH INE G FIR CEDAR ARCH INE SMLOCK AL 68.1 %	62.1 88.2 23.6 66.5 COEF VAR.9 226.9 265.9 533.8 761.6 59.5 COEF VAR.9 127.8 155.6 211.9 264.5 533.8 761.6 54.8 COEF	14.2 30.9 61.1 22.1 <i>11.4</i> F <u>% S.E.%</u> 17.0 20.6 29.8 34.9 70.1 100.0 7.8 F <u>% S.E.%</u> 16.8 20.4 27.8 34.7 70.1 100.0 7.2 F	20 10 20 T LOW	51 56 12 47 REES/A 7 REES/A 7 226 15 7 7 11 2 0 77 ASAL A 3 1 27 6 3 1 0 83 ET BF /.	304 240 30 60 236 ACRE AVG 32 19 10 16 6 1 84 AREA/A AVG 37 34 9 5 2 1 88 ACRE	347 314 48 73 263 HIGH 37 23 13 22 10 2 90 CRE HIGH 43 40 11 7 4 1 94	#	* OF PLOTS 5 141 * OF PLOTS 5 120 * OF PLOTS	72 72 72 72 7 7 61 61 8 REQ.	INF. POP 1 3 INF. POP 1 3 INF. POP
WR C W LA LP PI WHE TOTA CL: SD: GR FI DOUC WR C W LA LP PI WHE TOTA CL: SD: GR FI DOUC WR C W LA LP PI WHE TOTA	CEDAR ARCH INE SMLOCK AL 68.1 % 1.0 IR G FIR CEDAR ARCH INE SMLOCK AL 68.1 % 1.0 IR G FIR CEDAR ARCH INE SMLOCK AL 68.1 % 1.0	62.1 88.2 23.6 66.5 COEF VAR.9 226.9 265.9 265.9 533.8 761.6 59.5 COEF VAR.9 127.8 155.6 211.9 264.5 533.8 761.6 54.8 COEF VAR.9	14.2 30.9 61.1 22.1 11.4 F % S.E.% 17.0 20.6 29.8 34.9 70.1 100.0 7.8 F % S.E.% 16.8 20.4 27.8 34.7 70.1 100.0 7.2 F % S.E.%	20 10 20 T LOW 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	51 56 12 47 79 REES/A 7 20 15 7 7 11 2 0 77 ASAL A 7 31 27 6 3 1 0 81 ET BF /.	304 240 30 60 236 ACRE AVG 32 19 10 16 6 1 84 AREA/A AVG 37 34 9 5 2 1 88 ACRE AVG	347 314 48 73 263 HIGH 37 23 13 22 10 2 90 CRE HIGH 43 40 11 7 4 1 94 HIGH	#	[#] OF PLOTS 5 <i>141</i> [#] OF PLOTS 5 <i>120</i>	72 72 72 72 7 7 61	INF. POP. 1
WR C W LA LP PI WHE TOTA CL: SD: GR FI OUU WR C W LA LP PI WHE TOTA CL: SD: GR FI DOUC WR C W LA LP PI WHE TOTA CL: SD: CL: SD: GR FI DOUC	CEDAR ARCH INE SMLOCK AL 68.1 % 1.0 IR G FIR CEDAR ARCH INE SMLOCK AL 68.1 % 1.0 IR G FIR CEDAR ARCH INE SMLOCK AL 68.1 % 1.0	62.1 88.2 23.6 66.5 COEF VAR.9 226.9 265.9 533.8 761.6 59.5 COEF VAR.9 127.8 155.6 211.9 264.5 533.8 761.6 54.8 COEF	14.2 30.9 61.1 22.1 11.4 F % S.E.% 17.0 20.6 29.8 34.9 70.1 100.0 7.8 F % S.E.% 16.8 20.4 27.8 34.7 70.1 100.0 7.2 F % S.E.% 16.8	20 10 20 T LOW 20 20 20 20 20 20 20 20 20 20	51 56 12 47 79 REES/A 7 226 15 7 7 11 2 2 0 77 ASAL A 7 31 27 6 3 1 0 87 ET BF /. 5 3	304 240 30 60 236 ACRE AVG 32 19 10 16 6 1 84 AREA/A AVG 37 34 9 5 2 1 88 ACRE	347 314 48 73 263 HIGH 37 23 13 22 10 2 90 CRE HIGH 43 40 11 7 4 1 94	#	* OF PLOTS 5 141 * OF PLOTS 5 120 * OF PLOTS	72 72 72 72 7 7 61 61 8 REQ.	INF. POP. 1 3 INF. POP. 1 3 INF. POP.
WR C WLA LP PI WHE TOTA CL: SD: GR FI DOUC WR C WLA LP PI WHE TOTA CL: SD: GR FI DOUC WR C WLA LP PI CL: SD: SD: SD: SD: SD: SD: SD: SD: SD: SD	CEDAR ARCH INE SMLOCK AL 68.1 % 1.0 IR G FIR CEDAR ARCH INE SMLOCK AL 68.1 % 1.0 IR G FIR CEDAR ARCH INE SMLOCK AL 68.1 % 1.0 INE SMLOCK AL 68.1 % 1.0 INE	62.1 88.2 23.6 66.5 COEF VAR.9 226.9 265.9 265.9 533.8 761.6 59.5 COEF VAR.9 127.8 155.6 211.9 264.5 533.8 761.6 54.8 COEF VAR.9	14.2 30.9 61.1 22.1 11.4 F % S.E.% 17.0 20.6 29.8 34.9 70.1 100.0 7.8 F % S.E.% 16.8 20.4 27.8 34.7 70.1 100.0 7.2 F % S.E.% 16.8 20.5	20 10 20 T LOW 5 8 LOW 5,11 3,79	51 56 12 47 7 REES/A 7 REES/A 7 15 7 ASAL A 7 ASAL A 7 ASAL A 7 ET BF /A 7 5 3 1 0 8 7 7 ASAL A 7 5 3 1 0 8 7 7 ASAL A 7 5 7 7 ASAL A 7 5 7 ASAL A 7 5 7 ASAL A 7 ASAL A 7 5 7 5 7 5 7 6 3 1 0 5 7 5 7 6 3 1 6 5 7 7 7 7 7 7 7 7	304 240 30 60 236 ACRE AVG 32 19 10 16 6 1 84 AVG 37 34 9 5 2 1 88 ACRE AVG 6,195	347 314 48 73 263 HIGH 37 23 13 22 10 2 90 CRE HIGH 43 40 11 7 4 1 94 HIGH 7,237	#	* OF PLOTS 5 141 * OF PLOTS 5 120 * OF PLOTS	72 72 72 72 7 7 61 61 8 REQ.	INF. POP 1 3 INF. POP 1 3 INF. POP
WR C W LA LP PI WHE TOTA CL: SD: GR FI DOUC WR C WLA LP PI WHE TOTA CL: SD: GR FI DOUC WR C WLA LP PI CL: SD: GR FI DOUC WR C CL: SD: GR FI DOUC WR C WLA	CEDAR ARCH INE SMLOCK AL 68.1 % 1.0 IR G FIR CEDAR ARCH INE SMLOCK AL 68.1 % 1.0 IR G FIR CEDAR ARCH INE SMLOCK AL 68.1 % 1.0 IR G 68.1 % I.0 IR G 68.1 % I.0 IR G 68.1 % I.0 IR G 68.1 % I.0 IR G 68.1 % I.0 IR CEDAR	62.1 88.2 23.6 66.5 COEF VAR.9 226.9 265.9 265.9 533.8 761.6 59.5 COEF VAR.9 127.8 155.6 211.9 264.5 533.8 761.6 54.8 COEF VAR.9 127.8 155.6 211.9 264.5 533.8 761.6 54.8	14.2 30.9 61.1 22.1 11.4 F % S.E.% 17.0 20.6 29.8 34.9 70.1 100.0 7.8 F % S.E.% 16.8 20.4 27.8 34.7 70.1 100.0 7.2 F % S.E.% 16.8 20.5 29.7	20 10 20 20 T LOW 20 20 20 20 20 20 20 20 20 20	51 56 12 47 79 REES/A 7 7 11 2 0 77 ASAL A 7 ASAL A 7 ASAL A 7 ET BF /A 5 3 1 0 8 7 7 7 7 7 7 7 7 7 7 7 7 7	304 240 30 60 236 ACRE AVG 32 19 10 16 6 1 84 AVG 37 34 9 5 2 1 88 ACRE AVG 6,195 4,771	347 314 48 73 263 HIGH 37 23 13 22 10 2 90 CRE HIGH 43 40 11 7 4 1 94 HIGH 7,237 5,748	#	* OF PLOTS 5 141 * OF PLOTS 5 120 * OF PLOTS	72 72 72 72 7 7 61 61 8 REQ.	INF. POP. 1 3 INF. POP. 1 3 INF. POP.

TC TST	`ATS			PRO	STATIS DJECT	STICS DEERFS	AL		PAGE DATE	2 1/19/2016
TWP	RGE	SECT	TRACT	TYI	PE A	ACRES	PLOTS	TREES	CuFt	BdFt
29N	38E	08	DEER FIRE	00U	1	311.79	58	186	S	Е
CL:	68.1%	COE	FF	NET	F BF/ACRI	Ξ		# OF PL	OTS REQ.	INF. POP
SD:	1.0	VAR	. S.E.%	LOW	AVG	HIGH		5	7	10
WHE	MLOCK	761.6	5 100.0	0	79	158				
TOTA	AL	59.4	4 7.8	11,883	12,887	13,892		141	72	35
CL:	68.1 %	COE	FF	V-B	AR/ACRE			# OF PLOT	'S REQ.	INF. POP.
SD:	1.0	VAR	.% S.E.%	LOW	AVG	HIGH		5	7	10
GR FI	IR			139	167	195				
DOU	G FIR			113	142	171				
WR C	EDAR	131.1	1 17.2	86	123	159				
W LA	RCH	150.6	5 19.8	52	83	114				
LP PI	NE	370.6	6 48.7	44	148	252				
WHE	MLOCK	761.6	5 100.0	0	136	273				
TOTA	AL	515.2	2 67.7	136	147	159		10,618	5,418	2,655

	ATS				ST. PROJEC	ATIST	TICS deerfsai				1 /19/2016
ГWP	RGE	SECT 1	ГRACT		ТҮРЕ	AC	RES	PLOTS	TREES	CuFt	BdFt
29N	38E	22 1	DEER FIRE		00U2		185.54	48	112	S	Е
				т	REES		ESTIMATED TOTAL		PERCENT		
		PLOTS	TREES		ER PLOT		TREES		REES		
TOTA	AL.	48	112		2.3						
CRUI		16	23		1.4		11,486		.2		
DBH	COUNT										
REFO	OREST										
COUN	NT	18	30		1.7						
BLAN		14									
100 %)										
				STAN	ID SUMM	IARY					
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
DOT		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOU		11	41.1	10.3	52 80	7.4	23.7	2,340	2,276	561	560
GR FI	G FIR-L	1 8	10.3 9.1	14.7 15.6	80 90	3.2 3.1	12.2 12.2	1,753 2,707	1,753 2,642	391 499	391 499
P PIN		8	9.1 1.0	15.6 22.7	90 79	3.1 0.6	2.9	2,707	2,642 558	499 100	499 100
	e MLOCK	2	.3	19.1	79 75	0.0	2.9 .6	128	128	23	23
TOTA		23	.5 61.9	12.4	63	14.7	.0 51.5	7,516	7,357	1,573	1,573
	68.1	TIMES OUT	F THE SAMPL Γ OF 100 THE `								
	68.1 %	COEF			SAMPLE			#	OF TREES	•	INF. POP.
SD: DOU	1.0	VAR.		LO		AVG	HIGH		5	7	1
	G FIR-L	140.6	44.4		77	139	201				
GR FI		59.5	22.5		290	374	458				
P PIN	Е	43.8	41.1		333						
			41.1		555	565	797				
	MLOCK										
TOT	AL	88.5	18.9		221	565 272	324		328	167	82
TOTA CL:	AL 68.1 %		<i>18.9</i> F			272		+	328 # OF PLOTS		-
TOTA CL: SD:	AL 68.1 % 1.0	88.5 COEF VAR.4	18.9 F % S.E.%	LO	221 TREES /A	272 ACRE AVG	<i>324</i> HIGH				INF. POP.
TOTA CL: SD: DOUG	AL 68.1 % 1.0 G FIR	88.5 COEF VAR.9 163.5	18.9 F % <u>S.E.%</u> 23.6		221 TREES/A WW 31	272 ACRE AVG 41	324 HIGH 51		OF PLOTS	REQ.	INF. POP.
TOTA CL: SD: DOUC	AL 68.1 % 1.0 G FIR G FIR-L	88.5 COEF VAR. 163.5 193.9	18.9 F % S.E.% 23.6 28.0		221 TREES/A W 31 7	272 ACRE AVG 41 10	324 HIGH 51 13	ħ	OF PLOTS	REQ.	INF. POP.
TOTA CL: SD: DOUG	AL 68.1 % 1.0 G FIR G FIR-L IR	88.5 COEF VAR.9 163.5	18.9 F % S.E.% 23.6 28.0 34.4		221 TREES/A WW 31	272 ACRE AVG 41	324 HIGH 51	#	OF PLOTS	REQ.	INF. POP.
CL: SD: DOUC GR FI P PIN	AL 68.1 % 1.0 G FIR G FIR-L IR	88.5 COEF VAR. 163.5 193.9 238.1	18.9 F % S.E.% 23.6 28.0 34.4 51.6		221 TREES/A W 31 7 6	272 ACRE AVG 41 10 9	324 HIGH 51 13 12	#	OF PLOTS	REQ.	INF. POP.
CL: SD: DOUC GR FI P PIN	AL 68.1 % 1.0 G FIR G FIR-L IR E MLOCK	88.5 COEF VAR. 163.5 193.9 238.1 357.3	18.9 F % S.E.% 23.6 28.0 34.4 51.6 100.0		221 TREES/A WW 31 7 6 0	272 ACRE AVG 41 10 9 1	324 HIGH 51 13 12 2	#	OF PLOTS	REQ.	8. INF. POP. 1
TOTA CL: SD: DOUC GR FI P PIN WHE TOTA	AL 68.1 % 1.0 G FIR G FIR-L IR E MLOCK	88.5 COEF VAR.0 163.5 193.9 238.1 357.3 692.8	18.9 F % S.E.% 23.6 28.0 34.4 51.6 100.0 16.5		221 TREES/A W 31 7 6 0 0	272 ACRE 41 10 9 1 0 62	324 HIGH 51 13 12 2 1 72		ŧ OF PLOTS 5	5 REQ. 7 266	INF. POP.
TOTA SD: DOUC GR FI P PIN WHEI TOTA CL: SD:	AL 68.1 % 1.0 G FIR G FIR-L IR E MLOCK AL 68.1 % 1.0	88.5 COEF VAR.0 163.5 193.9 238.1 357.3 692.8 114.2 COEF VAR.0	18.9 F % S.E.% 23.6 28.0 34.4 51.6 100.0 16.5 F % S.E.%		221 TREES/A W 31 7 6 0 0 52 BASAL A W	272 ACRE AVG 41 10 9 1 0 62 AREA/A AVG	324 HIGH 51 13 12 2 1 72 CRE HIGH		F OF PLOTS 5	5 REQ. 7 266	INF. POP. 1 13 INF. POP.
TOTA SD: DOUC GR FI P PIN WHEI TOTA CL: SD: DOUC	AL 68.1 % 1.0 G FIR G FIR-L IR E MLOCK AL 68.1 % 1.0 G FIR	88.5 COEF VAR.0 163.5 193.9 238.1 357.3 692.8 114.2 COEF VAR.0 162.0	18.9 F % S.E.% 23.6 28.0 34.4 51.6 100.0 16.5 F % S.E.% 23.4	LO	221 TREES/A W 31 7 6 0 0 52 BASAL A W 18	272 ACRE AVG 41 10 9 1 0 62 AREA/A AVG 24	324 HIGH 51 13 12 2 1 72 CRE HIGH 29		[≠] OF PLOTS 5 522 [↓] OF PLOTS	3 REQ. 7 266 3 REQ.	INF. POP. 1 13 INF. POP.
TOTA CL: SD: DOUC GR FI P PIN WHEI TOTA CL: SD: DOUC DOUC	AL 68.1 % 1.0 G FIR G FIR-L IR E MLOCK AL 68.1 % 1.0 G FIR G FIR-L	88.5 COEF VAR.4 163.5 193.9 238.1 357.3 692.8 114.2 COEF VAR.4 162.0 193.9	18.9 F % S.E.% 23.6 28.0 34.4 51.6 100.0 16.5 F % S.E.% 23.4 23.4 28.0	LO	221 TREES/A W 31 7 6 0 0 52 BASAL A W 18 9	272 ACRE AVG 41 10 9 1 0 62 AREA/A AVG 24 12	324 HIGH 51 13 12 2 1 72 CRE HIGH 29 16		[≠] OF PLOTS 5 522 [↓] OF PLOTS	3 REQ. 7 266 3 REQ.	INF. POP. 1 13 INF. POP.
TOTA CL: SD: DOUC GR FI P PIN WHEI TOTA CL: SD: DOUC GR FI	AL 68.1 % 1.0 G FIR G FIR-L IR E MLOCK AL 68.1 % 1.0 G FIR G FIR-L IR	88.5 COEF VAR.4 163.5 193.9 238.1 357.3 692.8 114.2 COEF VAR.4 162.0 193.9 235.3	18.9 F % S.E.% 23.6 28.0 34.4 51.6 100.0 16.5 F % S.E.% 23.4 28.0 34.0	LO	221 TREES/A W 31 7 6 0 0 52 BASAL A W 18 9 8	272 ACRE AVG 41 10 9 1 0 62 AREA/A AVG 24 12 12	324 HIGH 51 13 12 2 1 72 CRE HIGH 29 16 16		[≠] OF PLOTS 5 522 [↓] OF PLOTS	3 REQ. 7 266 3 REQ.	INF. POP. 1 13 INF. POP.
TOTA CL: SD: DOUC GR FI P PIN WHEI TOTA CL: SD: DOUC GR FI P PIN	AL 68.1 % 1.0 G FIR G FIR-L IR E MLOCK AL 68.1 % 1.0 G FIR G FIR-L IR	88.5 COEF VAR.4 163.5 193.9 238.1 357.3 692.8 114.2 COEF VAR.4 162.0 193.9	18.9 F % S.E.% 23.6 28.0 34.4 51.6 100.0 16.5 F 23.4 23.6 23.4 23.4 23.4 23.0 34.0 51.4 51.4	LO	221 TREES/A W 31 7 6 0 0 52 BASAL A W 18 9	272 ACRE AVG 41 10 9 1 0 62 AREA/A AVG 24 12	324 HIGH 51 13 12 2 1 72 CRE HIGH 29 16		[≠] OF PLOTS 5 522 [↓] OF PLOTS	3 REQ. 7 266 3 REQ.	INF. POP. 1 13 INF. POP.
TOTA CL: SD: DOUC GR FI P PIN WHEI TOTA CL: SD: DOUC GR FI P PIN	AL 68.1 % 1.0 G FIR G FIR-L IR E MLOCK AL 68.1 % 1.0 G FIR G FIR-L IR E MLOCK	88.5 COEF VAR.4 163.5 193.9 238.1 357.3 692.8 114.2 COEF VAR.4 162.0 193.9 235.3 356.4	18.9 F 23.6 28.0 34.4 51.6 100.0 16.5 F % S.E.% 23.4 23.4 28.0 34.0 51.4 100.0	LO	221 TREES/A W 31 7 6 0 0 52 BASAL A W 18 9 8 1	272 ACRE AVG 41 10 9 1 0 62 AVG 24 12 12 3	324 HIGH 51 13 12 2 1 72 CRE HIGH 29 16 16 16 4		[≠] OF PLOTS 5 522 [↓] OF PLOTS	3 REQ. 7 266 3 REQ.	INF. POP. 1 13 INF. POP. 1
TOTA CL: SD: DOUC GR FJ P PIN WHE TOTA CL: SD: DOUC GR FJ P PIN WHE TOTA	AL 68.1 % 1.0 G FIR G FIR-L IR E MLOCK AL 68.1 % 1.0 G FIR G FIR-L IR E MLOCK	88.5 COEF VAR.4 163.5 193.9 238.1 357.3 692.8 114.2 COEF VAR.4 162.0 193.9 235.3 356.4 692.8	18.9 F 23.6 28.0 34.4 51.6 100.0 16.5 F % S.E.% 23.4 23.4 28.0 34.0 51.4 100.0 14.0	LO	221 TREES/A W 31 7 6 0 0 52 BASAL A W 18 9 8 1 0 44	272 ACRE AVG 41 10 9 1 0 62 AVG 24 12 12 3 1 52	324 HIGH 51 13 12 2 1 72 CRE HIGH 29 16 16 16 4 1	#	≠ OF PLOTS 5 522 ≠ OF PLOTS 5 376	3 REQ. 7 266 3 REQ. 7 192	INF. POP. 1 130 INF. POP. 1 9
TOTA CL: SD: DOUG GR FI P PIN WHEI TOTA CL: SD: DOUG GR FI P PIN WHEI DOUG GR FI P PIN WHEI TOTA CL: CDUG GR FI P PIN WHEI TOTA CL:	AL 68.1 % 1.0 G FIR G FIR-L IR E MLOCK AL G FIR G FIR-L IR E MLOCK AL	88.5 COEF VAR.4 163.5 193.9 238.1 357.3 692.8 114.2 COEF VAR.4 162.0 193.9 235.3 356.4 692.8 97.0	18.9 F % S.E.% 23.6 28.0 34.4 51.6 100.0 16.5 F 23.4 28.0 34.0 51.4 100.0 14.0 F	LO	221 TREES/A W 31 7 6 0 0 52 BASAL A W 18 9 8 1 0 44 NET BF/	272 ACRE AVG 41 10 9 1 0 62 AVG 24 12 12 3 1 52	324 HIGH 51 13 12 2 1 72 CRE HIGH 29 16 16 16 4 1	#	≠ OF PLOTS 5 522 ≠ OF PLOTS 5	3 REQ. 7 266 3 REQ. 7 192	INF. POP. 1 13 INF. POP. 1 9. INF. POP.
TOTA CL: SD: DOUC GR FI P PIN WHEI TOTA CL: SD: DOUC GR FI P PIN WHEI TOTA CL: SD: CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: CD: CL: SD: DOUC CD: SD: CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: CD: SD: CD: SD: CD: SD: CD: SD: CD: SD: CD: SD: CD: SD: CD: SD: CD: SD: SD: CD: SD: SD: SD: SD: SD: SD: SD: S	AL 68.1 % 1.0 G FIR G FIR-L IR E MLOCK AL 68.1 % 1.0 G FIR-L IR E MLOCK AL 68.1 % 1.0 G FIR-L IR E MLOCK AL 68.1 %	88.5 COEF VAR.4 163.5 193.9 238.1 357.3 692.8 114.2 COEF VAR.4 162.0 193.9 235.3 356.4 692.8 97.0 COEF VAR.4 166.3	18.9 F % S.E.% 23.6 28.0 34.4 51.6 100.0 16.5 F % S.E.% 23.4 28.0 34.0 51.4 100.0 14.0 F % S.E.% 24.0 24.0	L0 L0 L0 1	221 TREES/A W 31 7 6 0 0 52 BASAL A W 18 9 8 1 0 44 NET BF/ W 730	272 ACRE AVG 41 10 9 1 0 62 AREA/A AVG 24 12 12 3 1 52 ACRE	324 HIGH 51 13 12 2 1 72 CRE HIGH 29 16 16 16 4 1 59 HIGH 2,822	#	# OF PLOTS 5 5 5 5 5 376 # OF PLOTS 5	5 REQ. 7 266 5 REQ. 7 192 5 REQ.	INF. POP. 1 13 INF. POP. 1 9. INF. POP.
TOTA CL: SD: DOUC GR FI P PIN WHE TOTA CL: SD: DOUC GR FI P PIN WHE TOTA CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CL: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: SD: DOUC CD: CD: SD: CD: SD: CD: SD: CD: SD: CD: SD: CD: CD: SD: CD: CD: SD: CD: CD: SD: CD: CD: SD: CD: CD: SD: CD: CD: SD: CD: CD: SD: CD: CD: SD: CD: SD: CD: SD: CD: SD: CD: SD: CD: SD: CD: SD: CD: SD: CD: SD: CD: SD: SD: CD: SD: SD: SD: SD: SD: SD: SD: S	AL 68.1 % 1.0 G FIR G FIR-L IR E MLOCK AL 68.1 % 1.0 G FIR-L IR E MLOCK AL 68.1 % 1.0 G FIR-L G FIR-L G FIR-L G FIR-L G FIR-L	88.5 COEF VAR.4 163.5 193.9 238.1 357.3 692.8 114.2 COEF VAR.4 162.0 193.9 235.3 356.4 692.8 97.0 COEF VAR.4 166.3 193.9	18.9 F % S.E.% 23.6 28.0 34.4 51.6 100.0 16.5 F % S.E.% 23.4 28.0 34.0 51.4 100.0 14.0 F % S.E.% 24.0 28.0	L0 L0	221 TREES/A W 31 7 6 0 0 52 BASAL A W 18 9 8 1 0 44 NET BF/ W 730 ,263	272 ACRE AVG 41 10 9 1 0 62 AVG 24 12 12 3 1 52 ACRE AVG 2,276 1,753	324 HIGH 51 13 12 2 1 72 CRE HIGH 29 16 16 16 4 1 59 HIGH 2,822 2,244	#	# OF PLOTS 5 5 5 5 5 376 # OF PLOTS 5	5 REQ. 7 266 5 REQ. 7 192 5 REQ.	INF. POP. 1 13 INF. POP. 1 9. INF. POP.
TOT/ CL: SD: DOUG GR FI P PIN WHEI TOT/ SD: DOUG GR FI P PIN WHEI TOT/ SD: DOUG GR FI P PIN WHEI TOT/ SD: DOUG GR FI P OUG GR FI DOUG GR FI DOUG GR FI DOUG GR FI	AL 68.1 % 1.0 G FIR G FIR-L IR E MLOCK AL 68.1 % 1.0 G FIR-L IR E MLOCK AL 68.1 % 1.0 G FIR-L IR 68.1 % 1.0 G FIR-L IR	88.5 COEF VAR.4 163.5 193.9 238.1 357.3 692.8 114.2 COEF VAR.4 162.0 193.9 235.3 356.4 692.8 97.0 COEF VAR.4 162.8 97.0 COEF VAR.4 163.5 193.9 239.0	18.9 F 23.6 28.0 34.4 51.6 100.0 16.5 F % S.E.% 23.4 28.0 34.0 51.4 100.0 14.0 F % S.E.% 24.0 28.0 34.5	L0 L0	221 TREES/A W 31 7 6 0 0 52 BASAL A W 18 9 8 1 0 44 NET BF/ W ,730 ,263 ,731	272 ACRE AVG 41 10 9 1 0 62 AVG 24 12 12 3 1 52 ACRE AVG 2,276 1,753 2,642	324 HIGH 51 13 12 2 1 72 CRE HIGH 29 16 16 4 1 59 HIGH 2,822 2,244 3,553	#	# OF PLOTS 5 5 5 5 5 376 # OF PLOTS 5	5 REQ. 7 266 5 REQ. 7 192 5 REQ.	INF. POP. 1 13 INF. POP. 1 9. INF. POP.
TOTA CL: SD: DOUC GR FI P PIN WHE TOTA CL: SD: DOUC GR FI P PIN WHE TOTA CL: SD: CL: SD: DOUC GR FI P PIN	AL 68.1 % 1.0 G FIR G FIR-L IR E MLOCK AL 68.1 % 1.0 G FIR G FIR-L IR E MLOCK AL 68.1 % 1.0 G FIR-L IR E 68.1 % 1.0 G FIR-L IR E 68.1 % 1.0 G FIR G FIR-L IR G FIR G FIR-L IR G FIR G FIR-L IR G FIR-L IR G FIR-L IR G FIR-L IR E	88.5 COEF VAR.4 163.5 193.9 238.1 357.3 692.8 114.2 COEF VAR.4 162.0 193.9 235.3 356.4 692.8 97.0 COEF VAR.4 166.3 193.9 239.0 358.4	18.9 F % S.E.% 23.6 28.0 34.4 51.6 100.0 16.5 F % S.E.% 23.4 28.0 34.0 51.4 100.0 14.0 14.0 F % S.E.% 24.0 28.0 34.5 51.7	L0 L0	221 TREES/A W 31 7 6 0 52 BASAL A W 18 9 8 1 0 44 NET BF/ W ,730 ,263 ,731 269	272 ACRE AVG 41 10 9 1 0 62 AVG 24 12 12 3 1 52 ACRE AVG 2,276 1,753 2,642 558	324 HIGH 51 13 12 2 1 72 CRE HIGH 29 16 16 4 1 59 HIGH 2,822 2,244 3,553 847	#	# OF PLOTS 5 5 5 5 5 376 # OF PLOTS 5	5 REQ. 7 266 5 REQ. 7 192 5 REQ.	INF. POP. 1 13 INF. POP. 1 9. INF. POP.
TOTA CL: SD: DOUC GR FI P PIN WHE TOTA CL: SD: DOUC GR FI P PIN WHE TOTA CL: SD: DOUC GR FI P PIN WHE TOTA	AL 68.1 % 1.0 G FIR G FIR-L IR 68.1 % 1.0 G FIR MLOCK	88.5 COEF VAR.4 163.5 193.9 238.1 357.3 692.8 114.2 COEF VAR.4 162.0 193.9 235.3 356.4 692.8 97.0 COEF VAR.4 166.3 193.9 239.0 358.4 692.8	18.9 F 23.6 28.0 34.4 51.6 100.0 16.5 F % S.E.% 23.4 28.0 34.4 51.6 100.0 16.5 F % S.E.% 24.0 28.0 34.5 51.7 100.0	L0 L0	221 TREES/A W 31 7 6 0 52 BASAL A W 18 9 8 1 0 44 NET BF/ W ,730 ,263 ,731 269 0	272 ACRE AVG 41 10 9 1 0 62 AVG 24 12 12 3 1 52 ACRE AVG 2,276 1,753 2,642 558 128	324 HIGH 51 13 12 2 1 72 CRE HIGH 29 16 16 4 1 59 HIGH 2,822 2,244 3,553 847 256	#		5 REQ. 7 266 5 REQ. 7 192 5 REQ. 7	INF. POP. 1 13 13 13 10 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1
TOTA CL: SD: DOUG GR FI P PIN WHEI TOTA CL: SD: DOUG GR FI P PIN WHEI TOTA CL: SD: DOUG GR FI P PIN WHEI TOTA	AL 68.1 % 1.0 G FIR G FIR-L IR E MLOCK AL 68.1 % 1.0 G FIR-L IR E MLOCK AL 68.1 % 1.0 G FIR-L IR E MLOCK AL 68.1 %	88.5 COEF VAR.4 163.5 193.9 238.1 357.3 692.8 114.2 COEF VAR.4 162.0 193.9 235.3 356.4 692.8 97.0 COEF VAR.4 166.3 193.9 239.0 358.4 692.8 107.0	18.9 F 23.6 28.0 34.4 51.6 100.0 16.5 F % S.E.% 23.4 28.0 34.0 51.4 100.0 14.0 F % S.E.% 24.0 28.0 34.5 51.7 100.0 15.4	L0 L0	221 TREES/A W 31 7 6 0 0 52 BASAL A W 18 9 8 1 0 44 NET BF/ W ,730 ,263 ,731 269 0 221	272 ACRE AVG 41 10 9 1 0 62 AVG 24 12 12 3 1 52 ACRE AVG 2,276 1,753 2,642 558 128 7,357	324 HIGH 51 13 12 2 1 72 CRE HIGH 29 16 16 4 1 59 HIGH 2,822 2,244 3,553 847	#	 # OF PLOTS 5 522 # OF PLOTS 5 376 # OF PLOTS 5 458 	5 REQ. 7 266 5 REQ. 7 192 5 REQ. 7 234	INF. POP. 1 INF. POP. 1 9 INF. POP. 1 1 1 1 1
TOT/ CL: SD: DOUG GR FI P PIN WHEI TOT/ CL: SD: DOUG GR FI P PIN WHEI TOT/ CL:	AL 68.1 % 1.0 G FIR G FIR-L IR 68.1 % 1.0 G FIR MLOCK	88.5 COEF VAR.4 163.5 193.9 238.1 357.3 692.8 114.2 COEF VAR.4 162.0 193.9 235.3 356.4 692.8 97.0 COEF VAR.4 166.3 193.9 239.0 358.4 692.8	18.9 F 23.6 28.0 34.4 51.6 100.0 16.5 F % S.E.% 23.4 28.0 34.0 51.4 100.0 14.0 F % S.E.% 24.0 28.0 34.5 51.7 100.0 15.4 F	L0 L0	221 TREES/A W 31 7 6 0 0 52 BASAL A W 18 9 8 1 0 44 NET BF/ W 730 263 731 269 0 221 V V V V V V V V	272 ACRE AVG 41 10 9 1 0 62 AVG 24 12 12 3 1 52 ACRE AVG 2,276 1,753 2,642 558 128 7,357	324 HIGH 51 13 12 2 1 72 CRE HIGH 29 16 16 4 1 59 HIGH 2,822 2,244 3,553 847 256	#		5 REQ. 7 266 5 REQ. 7 192 5 REQ. 7 234	INF. POP. 10 13

TC TSTATS				STATIS DJECT	TICS DEERFS	SAL		PAGE DATE	2 1/19/2016
TWP RGE	SECT	TRACT	ТҮР	E A	CRES	PLOTS	TREES	CuFt	BdFt
29N 38E	22	DEER FIRE	00U	2	185.54	48	112	S	Е
CL: 68.1 %	5 COI	EFF	V-B	AR/ACRE			# OF PLO	OTS REQ.	INF. POP.
SD: 1.0	VAI	R. S.E.%	LOW	AVG	HIGH		5	7	10
DOUG FIR-L			104	144	185				
GR FIR	69	.8 10.1	142	217	292				
P PINE	174	.4 25.2	93	193	293				
WHEMLOCK	692		0	221	442				
TOTAL	518.	.0 74.8	121	143	165		10,734	5,476	2,683

291 382 10 DEER FIRE 0013 246.20 58 104 S F TREES PR PLOT TREES PTOTAL 58 104 S. F TOTAL 58 104 1.8 TREES AVG BOD RET REGO REFAC REFAC REFAC CFAC	TC TSTATS	S				ST projec	ATIST	TICS deerfsai	Ĺ		PAGE DATE	1 1/19/2016	
PLOTS TREES FSTMATED TOTAL PERCENT SAMPLE SAMPLE TOTAL 58 104 1.8 ISE	GWP R	GE	SECT	TRACT		ТҮРЕ	AC	CRES	PLOTS	TREES	CuFt	BdFt	
TOTAL SAMPLE TOTAL SAMPLE TOTAL 58 014 1.8 IREES IREES IREES TOTAL 58 014 1.2 2.0 IREES <	<u>29N 3</u>	88E	10	DEER FIRE		00U3		246.20	58	104	S	Е	
PLOTSTREESPER PLOTTREESTREESTOTAL581041.8CRUISE1622DBI COUNT27542.0COUNT27542.0IBANKS77542.0DOUG TR78NCRBOLERELBASALGROSSNETGROSS100*TREESAVGBOLERELBASALBRASBRASBRAS512100514.5003.212.21.3183.43502512OLIG TR816.415.9724.717.42.0421.942512VLARCH10.514.5603.212.21.3183.333.671.6WLARCH34.319.98.20.72.33.453.661.61.8WLARCH34.3112.07.81.86.41.333.333.891.6PINE5.21.31.86.41.75.86786131.31.8PINE5.21.3.01.3.34.8.15.066.131.31.8 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>TREES</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>						TREES							
CRUISE 16 23 1.4 12.846 2 DBUI COUNT 27 54 2.0 COUNT 27 54 2.0 BLANKS 15 00" 0.0<			PLOTS	TREES									
DBH COUNT REFOREST COUNT 27 54 2.0 BLANKS 15 SAMPLE TRFES AVG BOLE RFL BASAL GROSS NFT GROSS TRFES /// CRE DBH LEN DEN AREA BF/AC CF/AC CC DOUG FIR. 8 16.4 13.9 72 4.7 17.4 2.042 1.942 50.2 DOUG FIR. 3 13.3 9 62 0.7 2.3 343 343 13.3 W LARCH 3 43.3 9.9 62 0.7 2.3 343 343 13.3 W LARCH 3 43.8 12.5 62 1.1 4.1 333 333 13.5 TOTAL 2.3 5.2.2 13.0 67 1.3.3 4.8.1 5.506 5.199 1.31 CONEDENCE LIMITS OF THE SAMPLE SAMPLE TREES - BF 4 OF TREES REO. NF. SDD 1.0 VAR.% S.E.%	TOTAL		58	3 104		1.8							
REPRESET COUNT 2.0 STAND SUMMENT SUMMENT STAND SUMMENT CONFIDENCE LIMITS OF THE SAMPLE SAMPLE TREES F # OF TREES REV NMENT SUMMENT TREES/MENT SAMPLE TREES F OUGFIRE # OF TREES REV NMENT SEAM LET TREES/ ACM NOT MENT SUMMENT SAMPLE TREES SAMPLE <th cols<="" td=""><td>CRUISE</td><td></td><td>16</td><td>5 23</td><td></td><td>1.4</td><td></td><td>12,846</td><td></td><td>.2</td><td></td><td></td></th>	<td>CRUISE</td> <td></td> <td>16</td> <td>5 23</td> <td></td> <td>1.4</td> <td></td> <td>12,846</td> <td></td> <td>.2</td> <td></td> <td></td>	CRUISE		16	5 23		1.4		12,846		.2		
COUNTY 27 54 2.0 BLANKS 15 TREES AVG BOLE REL BASAL GROS NF GROS SAMPLE TREES AVG BOLE REL BASAL GROS NFA GROS CP/AC CC DOUG FIR 8 16.4 13.9 72 4.7 17.4 2.042 1.942 502 DOUG FIR 5 10.5 14.5 60 3.2 1.2.2 1.978 1.31 3.28 W LARCH 3 4.3 12.0 78 1.8 6.44 730 649 187 GR FIR 5.8 6.11 15.4 64 1.7 5.8 613 133 48.0 CONFIDENCE LIMITS OT THE SAMPLE SAMPLE TREES - BF # OF TREES REQ. INF. SDI 10 VAR.% S.E.% IOW AVG HIGH 5 7 DOUG FIR 1.0 VAR.% S.E.% IOW	DBH CO	UNT											
BLANKS 100% 15 SAMPLE TREES TREES ACCE AVG PAC BOLE DUG REL PEN BASAL PEN GROSS PEN NET PEN CROSS PEN NET PEN PEN PEN <th< td=""><td></td><td></td><td></td><td>,</td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>				,		•							
STAND SUMLARY STAND SUMLARY SAMPLE TREES ACCEE BOLE REL BASAL GROSS NET GROSS DOUG FIR 8 16.4 13.9 7.2 4.7 17.4 2.042 1.942 502 DOUG FIR 8 16.4 13.9 7.2 4.7 17.4 2.042 1.942 502 DOUG FIR 5 10.5 14.5 60 3.2 1.2.2 1.38 1.317 328 W LARCH 1 8.1 12.0 7.8 1.8 6.4 730 649 1.87 GR FIR 5 8.0 11.5 4.6 1.1 4.1 333 333 33 5 TOTAL 2.3 5.2.2 1.3.0 6.7 1.3.3 48.1 5.506 5.199 1.318 TOTAL 2.3 5.2.2 1.3.0 1.6 1.57 7 5 7 5 7						2.0							
STAND SUMMARY SAMPLE TREES ACRE DRH BASAL GROSS NET GROSS OPEN CRACE BFAC BFAC BFAC CRACE CFAC C DOUG FIR 8 164 139 72 4.7 174 2.042 1.942 502 DOUG FIR. 5 10.5 14.5 60 3.2 12.2 1.378 1.317 328 W LARCH. 1 8.1 12.0 78 18 6.4 730 649 187 GR FIR 5 8.0 11.5 46 1.7 5.8 678 613 153 TOTAL 2.3 52.2 13.0 67 1.3.3 48.1 5.506 5.109 1.318 CONFIDENCE LIMITS OF THE SAMPLE 68.1 TIMES OUT OF 100 THE VOLUME WILL BE WITHIN THE SAMPLE ERROR 7 000G FIR 51.6 19.5 116 144 172 7 000G FIR 51.6 19.5 116 144 <		5	1.)									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	100 %				STA		ларv						
TREES /ACRE DBH LEN DEN AREA BF/AC BF/AC CF/AC C DOUG FIR 8 164 13.9 72 4.7 17.4 2.042 1.942 502 DOUG FIR 3 4.3 9.9 82 0.7 2.3 3.81 1.31 328 W LARCH 1 8.1 12.0 78 1.8 6.4 730 649 1.87 GR FIR 5 8.0 11.5 4.6 1.7 5.8 6.13 3.33 3.33 80 CONFIDENCE LIMITS OF "HE SAMPLE 6.2 1.3 4.8.1 5.50 5.19 1.31 6.7 7 SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5.50 7 7 DOUG FIR 51.6 19.5 11.6 144 172 5 7 7 DOUG FIR 4.08 20.3 108 164 164 164			SAMPLE	E TREES				BASAL	GROSS	NET	GROSS	NET	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												CF/AC	
WLARCH 3 4.3 9.9 82 0.7 2.3 345 345 67 WLARCH-L 1 8.1 12.0 78 1.8 6.4 73.0 649 187 GR FIR 5 8.0 11.5 46 1.7 5.8 678 613 153 PPINE 1 4.8 12.5 62 1.1 4.1 333 333 80 CONTORL 23 52.2 13.0 67 13.3 48.1 5.506 5.199 1.318 CONTORL 23 52.2 13.0 67 13.3 48.1 5.506 5.199 1.318 CONTORL 23 52.0 10 VLARCH-L 5.76 7 7 7.8 7	DOUG F	IR							2,042	1,942			
WLARCH-L 1 8.1 12.0 78 1.8 6.4 730 649 187 GR FIR 5 8.0 11.5 46 1.7 5.8 678 613 153 PPINE 1 4.8 12.5 62 1.1 4.1 313 333 380 TOTAL 23 52.2 13.0 67 13.3 48.1 5.506 5.199 1.318 CONFIDENCE LIMITS OF THE SAMPLE 68.1 TIMES OUT OF 100 THE VOLUME WILL BE WITHIN THE SAMPLE ERROR COEFF SAMPLE TREES - F # OF TREES REQ. INF. SOUT OF 100 THE VOLUME WILL BE WITHIN THE SAMPLE ERROR DOUG FIR. 51.6 19.5 116 144 172 7 7 DOUG FIR. 40.8 20.3 108 136 164 175 7 7 DOUG FIR. 78.8 39.2 78 128 178 7 7 7 PINE 78 11.9 110 124 139 131 67 7	DOUG F	IR-L		5 10.5	14.5	60	3.2	12.2	1,378	1,317	328	328	
GR FIR 5 8.0 11.5 46 1.7 5.8 678 613 153 PPINE 1 4.8 12.5 62 1.1 4.1 333 333 80 CONFIDENCE LIMITS OF THE SAMPLE 23 52.2 1.0 67 13.3 48.1 5,50 5,199 1,31 CONFIDENCE LIMITS OF THE SAMPLE ENTHESAMPLE TREES - BE # OF TREES REO. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 51.6 19.5 116 144 172 7 7 DOUG FIR 78.8 39.2 78 128 178 7 7 TOTAL 55.9 11.9 110 124 139 131 67 CC: 68.1% COEFF TREES/ACC # OF PLOTS REO. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 ODUG FIR 182.6 24.0 12 16 20 <	W LARC	CH		3 4.3	9.9	82	0.7	2.3	345	345	67	67	
PPINE 1 4.8 12.5 62 1.1 4.1 333 333 80 TOTAL 23 52.2 13.0 67 13.3 48.1 5.506 5.199 1.318 CONFIDENCE LIMITS OF THE SAMPLE BAMPLE TREES - BF # OF TREES REO. INF. SAMPLE TREES - BF # OF TREES REO. INF. DOUG FIR 5.16 19.5 116 144 172 DOUG FIR 5.16 19.5 164 172 DOUG FIR 5.16 19.5 131 67 DOUG FIR 7.8 39.2 7.8 103 67 DOUG FIR 7.8 10.1 131 67 COLE TREES/ACRE # OF PLOTS REO. 101 <th colspa<="" td=""><td></td><td>CH-L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td>CH-L</td> <td></td>		CH-L										
TOTAL 23 5.2 13.0 67 13.3 48.1 5,506 5,199 1,318 CONFIDENCE LIMITS OF THE SAMPLE 68.1 TIMES OUT OF 100 THE VOLUME WILL BE WITHIN THE SAMPLE ERROR. CL: 68.1 % COEFF SAMPLE TREES - BF # OF TREES REO. INF. SD: 1.0 VAR.% 8.E.% LOW AVG HIGH 5 7 DOUG FIR.1 40.8 20.3 108 136 164 WLARCH 80 80 80 WLARCH 80 <td></td>													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
68.1 TIMES OUT OF 100 THE VOLUME WILL BE WITHIN THE SAMPLE ERROR. CL: 68.1 % COEFF # OF TREES REO. INF. SAMPLE TREES - BF # OF TREES REO. INF. DOUG FIR. 51.6 19.5 116 144 172 DOUG FIR. 40.8 20.3 108 130 64 WLARCH 80 80 80 80 80 CL: 68.1 % COEFF TREES/ACRE # OF PLOTS REO. INF. DOUG FIR. 182.6 24.0 12 16 DOUG FIR. 182.6 24.0 12 16 DOUG FIR. 182.6 24.0 12 16 DOUG FIR. 182.6 24.0 16 20 DOUG FIR. <th colspa<="" td=""><td>TOTAL</td><td></td><td>2</td><td></td><td>13.0</td><td>67</td><td>13.3</td><td>48.1</td><td>5,506</td><td>5,199</td><td>1,318</td><td>1,317</td></th>	<td>TOTAL</td> <td></td> <td>2</td> <td></td> <td>13.0</td> <td>67</td> <td>13.3</td> <td>48.1</td> <td>5,506</td> <td>5,199</td> <td>1,318</td> <td>1,317</td>	TOTAL		2		13.0	67	13.3	48.1	5,506	5,199	1,318	1,317
BD: I.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 51.6 19.5 116 144 172 7 DOUG FIR 40.8 20.3 108 136 164 172 DOUG FIR 40.8 20.3 108 136 164 172 DOUG FIR 40.8 20.3 108 136 164 172 WLARCH 80 80 80 80 80 80 WLARCH 78.8 39.2 78 128 178 171 TOTAL 55.9 11.9 1110 124 139 131 67 CL: 68.1% COEFF TREES/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR. 192.6 25.3 8 11 13 14 14 14 14 15						E WILL BE	WITHIN	THE SAMP	LE ERROR				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CL: 68	8.1 %	CO	EFF		SAMPL	E TREE	S - BF	#	# OF TREES	S REQ.	INF. POP	
DOUG FIR-L 40.8 20.3 108 136 164 W LARCH 80 80 80 W LARCH-L 78 39.2 78 128 178 P PINE 78.8 39.2 78 128 178 TOTAL 55.9 11.9 110 124 139 131 67 CL: 68.1% COEFF TREES/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR. 192.6 25.3 8 11 13 14 13 14 14 W LARCH 370.6 48.7 2 4 6 14 <td></td> <td></td> <td></td> <td></td> <td>L</td> <td></td> <td></td> <td></td> <td></td> <td>5</td> <td>7</td> <td></td>					L					5	7		
W LARCH 80 80 80 80 W LARCH-L GR FIR 78.8 39.2 78 128 178 GR FIR 78.8 39.2 78 128 178 TOTAL 55.9 11.9 110 124 139 131 67 CL: 68.1% COEFF TREES/ACRE # OF PLOTS REQ. INF. DOUG FIR. 182.6 24.0 12 16 20 16 20 DOUG FIR. 192.6 25.3 8 11 13 17 18 16 17 18 17 17													
GR FIR P PINE 78.8 39.2 78 128 178 TOTAL 55.9 11.9 110 124 139 131 67 CL: 68.1% COEFF TREES/ACRE # 0F PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR. 182.6 24.0 12 16 20 7 DOUG FIR. 192.6 25.3 8 11 13 W LARCH 30.3 39.9 5 8 11 GR FIR 252.9 33.2 5 6 248 127 CL: 68.8 10.3 47 52 58 248 127 CL: 68.8 10.3 47 52 58 248 127 CL: 68.8 10.3 47 52 58 248 127 CL: 68.1% COEFF BASAL AREA/-CRE # 0F PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW			40										
P PINE TOTAL 55.9 11.9 110 124 139 131 67 CL: 68.1 % COEFF TREES/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 182.6 24.0 12 16 20 20 4 6 7 7 DOUG FIR 192.6 25.3 8 11 13 7	W LARC	CH-L											
TOTAL 55.9 11.9 110 124 139 131 67 CL: 68.1 % COEFF TREES/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 182.6 24.0 12 16 20 16 20 16 20 16 20 16 20 17 16 20 16 20 16 20 16 20 16 20 16 20 16 20 16 20 16 20 16 20 16 17 16 17 17 16 16 17 17 16 17 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 17 17 16 17 17 17 17 17 17 17 17 17 17 17 17<			78	3.8 39.2		78	128	178					
CL: 68.1% COEFF TREES/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 182.6 24.0 12 16 20 10 DOUG FIR.L 192.6 25.3 8 11 13 W LARCH 370.6 48.7 2 4 6 6 6 12 16 20 GR FIR 252.9 33.2 5 8 11 7 6 12 16 20 CL: 68.1 % COEFF BASAL AREA/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 181.9 23.9 13 17 22 23 16 9 12 15 10 VAR.% S.E.% LOW AVG HIGH 5 7 100UG FIR 181.9 23.9 13 17 2.3 3 4 6 9 12.1 14 12.			55	0 110		110	124	120		121	67	-	
BD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 182.6 24.0 12 16 20 DOUG FIR-L 192.6 25.3 8 11 13 W LARCH 370.6 48.7 2 4 6 W LARCH 303.7 39.9 5 8 11 GR FIR 252.9 33.2 5 8 11 P PINE 272.3 35.8 3 5 6 TOTAL 78.8 10.3 47 52 58 248 127 CL: 68.1 % COEFF BASAL AREA/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 181.9 23.9 13 17 22 3 1 2 3 DOUG FIR 191.5 25.1 9 12 15 1 1 2 3 W LARCH 370.6 48.7 1								139				5	
DOUG FIR 182.6 24.0 12 16 20 DOUG FIR-L 192.6 25.3 8 11 13 W LARCH 370.6 48.7 2 4 6 W LARCH 303.7 39.9 5 8 11 GR FIR 252.9 33.2 5 8 11 P PINE 272.3 35.8 3 5 6 TOTAL 78.8 10.3 47 52 58 248 127 CL: 68.1 % COEFF BASAL AREA/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 181.9 23.9 13 17 22 3 3 4 6 9 GR FIR 221.0 29.0 4 6 9 6 7 7 7 7 7 123 3 4 6 7 7 7 7 123 123 107AL 77.6 10.2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td></td><td></td><td>INF. POP</td></td<>									4			INF. POP	
DOUG FIR-L 192.6 25.3 8 11 13 W LARCH 370.6 48.7 2 4 6 W LARCH-L 303.7 39.9 5 8 11 GR FIR 252.9 33.2 5 8 11 P PINE 272.3 35.8 3 5 6 TOTAL 78.8 10.3 47 52 58 248 127 CL: 68.1 % COEFF BASAL AREA/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 181.9 23.9 13 17 22 3 4 6 9 GR FIR 221.0 29.0 4 6 7 9 12 15 W LARCH 303.7 39.9 4 6 7 9 12 15 GR FIR 221.0 29.0 4 6 7 9 12 15 TOTAL 77.6 10.2 </td <td></td> <td></td> <td></td> <td></td> <td>L</td> <td></td> <td></td> <td></td> <td></td> <td>5</td> <td>1</td> <td>1</td>					L					5	1	1	
W LARCH 370.6 48.7 2 4 6 W LARCH-L 303.7 39.9 5 8 11 GR FIR 252.9 33.2 5 8 11 P PINE 272.3 35.8 3 5 6 TOTAL 78.8 10.3 47 52 58 248 127 CL: 68.1 % COEFF BASAL AREA/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 181.9 23.9 13 17 22 3 4 6 9 GR FIR 191.5 25.1 9 12 15 4 6 9 W LARCH 303.7 39.9 4 6 9 6 7 7 P PINE 272.3 35.8 3 4 6 7 7 P PINE 272.3 35.8 3 4 6 7 7 P PINE 272.3 <													
GR FIR 252.9 33.2 5 8 11 P PINE 272.3 35.8 3 5 6 TOTAL 78.8 10.3 47 52 58 248 127 CL: 68.1 % COEFF BASAL AREA/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 181.9 23.9 13 17 22 7 7 7 7 7 DOUG FIR 191.5 25.1 9 12 15 7 <													
P PINE 272.3 35.8 3 5 6 TOTAL 78.8 10.3 47 52 58 248 127 CL: 68.1 % COEFF BASAL AREA/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 181.9 23.9 13 17 22 3 DOUG FIR. 191.5 25.1 9 12 15 4 6 9 6 9 7		CH-L											
TOTAL 78.8 10.3 47 52 58 248 127 CL: 68.1 % COEFF BASAL AREA/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 181.9 23.9 13 17 22 15 1000000000000000000000000000000000000													
CL: 68.1% COEFF BASAL AREA/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 181.9 23.9 13 17 22 7 7 7 DOUG FIR 191.5 25.1 9 12 15 7 7 7 W LARCH 370.6 48.7 1 2 3 7 7 7 GR FIR 221.0 29.0 4 6 7 7 7 7 P PINE 272.3 35.8 3 4 6 7 7 7 CL: 68.1 % COEFF NET BF/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 184.5 24.2 1,471 1,942 2,412 123 17 DOUG FIR 184.5 24.2 1,471 1,942 2,412 17 184.5 17 1651										248	127	e	
SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 181.9 23.9 13 17 22 DOUG FIR 191.5 25.1 9 12 15 W LARCH 370.6 48.7 1 2 3 W LARCH 303.7 39.9 4 6 9 GR FIR 221.0 29.0 4 6 7 P PINE 272.3 35.8 3 4 6 TOTAL 77.6 10.2 43 48 53 241 123 CL: 68.1 % COEFF NET BF/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 184.5 24.2 1,471 1,942 2,412 141 145 DOUG FIR-L 192.7 25.3 984 1,317 1,651 145 148.7 177 345 512													
DOUG FIR 181.9 23.9 13 17 22 DOUG FIR-L 191.5 25.1 9 12 15 W LARCH 370.6 48.7 1 2 3 W LARCH 303.7 39.9 4 6 9 GR FIR 221.0 29.0 4 6 7 P PINE 272.3 35.8 3 4 6 TOTAL 77.6 10.2 43 48 53 241 123 CL: 68.1 % COEFF NET BF/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 184.5 24.2 1,471 1,942 2,412 DOUG FIR-L 192.7 25.3 984 1,317 1,651 W LARCH 370.6 48.7 177 345 512					т				7			INF. POP	
DOUG FIR-L 191.5 25.1 9 12 15 W LARCH 370.6 48.7 1 2 3 W LARCH-L 303.7 39.9 4 6 9 GR FIR 221.0 29.0 4 6 7 P PINE 272.3 35.8 3 4 6 TOTAL 77.6 10.2 43 48 53 241 123 CL: 68.1 % COEFF NET BF/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 184.5 24.2 1,471 1,942 2,412 14 14 DOUG FIR-L 192.7 25.3 984 1,317 1,651 14 145 14 14 W LARCH 370.6 48.7 177 345 512 14 14					L					5	1		
W LARCH-L 303.7 39.9 4 6 9 GR FIR 221.0 29.0 4 6 7 P PINE 272.3 35.8 3 4 6 TOTAL 77.6 10.2 43 48 53 241 123 CL: 68.1 % COEFF NET BF/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 184.5 24.2 1,471 1,942 2,412 DOUG FIR-L 192.7 25.3 984 1,317 1,651 W LARCH 370.6 48.7 177 345 512						9							
GR FIR 221.0 29.0 4 6 7 P PINE 272.3 35.8 3 4 6 TOTAL 77.6 10.2 43 48 53 241 123 CL: 68.1 % COEFF NET BF/ACRE #OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 184.5 24.2 1,471 1,942 2,412 14 14 DOUG FIR-L 192.7 25.3 984 1,317 1,651 14 <													
P PINE 272.3 35.8 3 4 6 TOTAL 77.6 10.2 43 48 53 241 123 CL: 68.1 % COEFF NET BF/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 184.5 24.2 1.471 1.942 2.412 DOUG FIR-L 192.7 25.3 984 1.317 1.651 W LARCH 370.6 48.7 177 345 512		CH-L											
TOTAL 77.6 10.2 43 48 53 241 123 CL: 68.1 % COEFF NET BF/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 184.5 24.2 1,471 1,942 2,412 141 141 141 DOUG FIR-L 192.7 25.3 984 1,317 1,651 143 145 143 145 143 145 143 145 143 145 143 145 143 1						-							
CL: 68.1 % COEFF NET BF/ACRE # OF PLOTS REQ. INF. SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 184.5 24.2 1,471 1,942 2,412 DOUG FIR-L 192.7 25.3 984 1,317 1,651 W LARCH 370.6 48.7 177 345 512										241	123	Ċ	
SD: 1.0 VAR.% S.E.% LOW AVG HIGH 5 7 DOUG FIR 184.5 24.2 1,471 1,942 2,412 1<													
DOUG FIR184.524.21,4711,9422,412DOUG FIR-L192.725.39841,3171,651W LARCH370.648.7177345512					т			HIGH	7			INF. POP	
DOUG FIR-L192.725.39841,3171,651W LARCH370.648.7177345512					L					5	1	-	
WIADCHI 3037 300 200 640 009													
W LARCH-L 303.7 39.9 390 649 908 GR FIR 225.9 29.7 431 613 794	W LARC	CH-L				390	649	908					

TC TST	TATS			S PROJI	TATIS ect	TICS DEERFS	AL		PAGE DATE	2 1/19/2016
TWP	RGE	SECT 7	FRACT	ТҮРЕ	Α	CRES	PLOTS	TREES	CuFt	BdFt
29N	38E	10 I	DEER FIRE	00U3		246.20	58	104	S	Е
CL:	68.1%	COEF	F	NET B	F/ACRE			# OF PI	LOTS REQ.	INF. POP.
SD:	1.0	VAR.	S.E.%	LOW	AVG	HIGH		5	7	10
P PIN	Е	272.3	35.8	214	333	452				
TOTA	AL	83.3	10.9	4,630	5,199	5,767		277	142	69
CL:	68.1 %	COEF	F	V-BAH	R/ACRE			# OF PLOT	LS REQ.	INF. POP.
SD:	1.0	VAR.9	% S.E.%	LOW	AVG	HIGH		5	7	10
DOU	G FIR	35.5	4.7	85	112	139				
DOU	G FIR-L			81	108	136				
W LA	RCH	317.0	41.6	76	149	221				
W LA	RCH-L			61	102	142				
GR FI	IR	146.6	19.3	74	106	137				
P PIN	Е	43.2	5.7	53	82	112				
TOTA	AL	441.1	57.9	96	108	120		7,782	3,971	1,946

IC TSTATS				ST proje	ATIST	TICS deerfsai			PAGE DATE	1 1/19/2016
TWP RGE	SECT	TRACT		ТҮРЕ		RES	PLOTS	TREES	CuFt	BdFt
29N 38E	07	DEER FIRE		00U4		119.68	26	87	S	E
				TREES		ESTIMATED TOTAL	I	PERCENT		2
	PLOTS	TREES		PER PLOT		TREES		FREES		
TOTAL	26	87		3.3						
CRUISE DBH COUNT REFOREST COUNT	13			1.6 2.7		10,079		.2		
BLANKS 100 %	1									
			STA	ND SUMN	ARY					
	SAMPLE TREES	TREES /ACRE	AVG DBH	BOLE LEN	REL DEN	BASAL AREA	GROSS BF/AC	NET BF/AC	GROSS CF/AC	NET CF/AC
DOUG FIR		9 34.5	13.4	52	9.2	33.6	3,192	3,089	853	852
DOUG FIR-L		1 9.6	18.6	72	4.2	18.1	2,686	2,686	584	
GR FIR		6 25.5	18.3	64	10.9	46.5	9,140	7,584	1,696	
W LARCH		3 13.4	11.1	70	2.7	9.0	915	915	226	
E SPRUCE		2 1.3	19.1	72	0.6	2.6	404	404	94	9
TOTAL	2	1 84.2	15.5	61	27.9	109.9	16,336	14,677	3,454	3,452
CL: 68.1 %	COI		_		E TREES		4	# OF TREE	-	
SD: 1.0	VAI	R.% S.E.%	L	OW	AVG	HIGH	#	# OF TREE 5	S REQ. 7	
SD: 1.0 DOUG FIR DOUG FIR-L	VAI 79	R.% S.E.% .6 28.1	L	OW 90	AVG 126	HIGH 161	4		-	
SD: 1.0 DOUG FIR DOUG FIR-L GR FIR	VAI 79 87	R.% S.E.% .6 28.1 .7 39.1	L	OW 90 314	AVG 126 515	HIGH 161 716	\$		-	
SD: 1.0 DOUG FIR DOUG FIR-L	VAI 79	R.% S.E.% .6 28.1 .7 39.1 .7 17.1	L	OW 90	AVG 126	HIGH 161	4		-	
SD: 1.0 DOUG FIR DOUG FIR-L GR FIR W LARCH	VAI 79 87 24	R.% S.E.% .6 28.1 .7 39.1 .7 17.1 .7 42.8	L	OW 90 314 58	AVG 126 515 70	HIGH 161 716 82	4		-	
SD: 1.0 DOUG FIR DOUG FIR-L GR FIR W LARCH E SPRUCE	VAI 79 87 24 45	R.% S.E.% .6 28.1 .7 39.1 .7 17.1 .7 42.8 .3 26.2	L	OW 90 314 58 186 <i>188</i>	AVG 126 515 70 325 255	HIGH 161 716 82 464		5	7 295].
SD: 1.0 DOUG FIR DOUG FIR-L GR FIR W LARCH E SPRUCE TOTAL	VAI 79 87 24 45 <i>117</i> .	R.% S.E.% .6 28.1 .7 39.1 .7 17.1 .7 42.8 .3 26.2		OW 90 314 58 186	AVG 126 515 70 325 255	HIGH 161 716 82 464		5	7 295	14 INF. POP
SD: 1.0 DOUG FIR DOUG FIR-L GR FIR W LARCH E SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR	VAI 79 87 24 45 <i>117.</i> COF VAI 90	R.% S.E.% .6 28.1 .7 39.1 .7 17.1 .7 42.8 .3 26.2 EFF R.% S.E.% .1		OW 90 314 58 186 188 TREES/ OW 28	AVG 126 515 70 325 255 ACRE AVG 34	HIGH 161 716 82 464 322 HIGH 41		5 578 # OF PLOT	7 295 S REQ.	INF. POP
SD: 1.0 DOUG FIR DOUG FIR-L GR FIR W LARCH E SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR DOUG FIR DOUG FIR DOUG FIR	VAI 79 87 24 45 <i>117.</i> COF VAI 90 141	R.% S.E.% .6 28.1 .7 39.1 .7 17.1 .7 42.8 .3 26.2 EFF R.% S.E.% .1 18.0 .2 28.3		OW 90 314 58 186 188 TREES/ OW 28 7	AVG 126 515 70 325 255 ACRE AVG 34 10	HIGH 161 716 82 464 322 HIGH 41 12		5 578 # OF PLOT	7 295 S REQ.	14 INF. POP
SD: 1.0 DOUG FIR DOUG FIR-L GR FIR W LARCH E SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR DOUG FIR-L GR FIR	VAI 79 87 24 45 <i>117.</i> COI VAI 90 141 91	R.% S.E.% .6 28.1 .7 39.1 .7 17.1 .7 42.8 .3 26.2 EFF R.% S.E.% .1 .1 18.0 .2 28.3 .6 18.3		OW 90 314 58 186 <i>I</i> 88 TREES/ OW 28 7 21	AVG 126 515 70 325 255 ACRE AVG 34 10 25	HIGH 161 716 82 464 322 HIGH 41 12 30		5 578 # OF PLOT	7 295 S REQ.	14 INF. POP
SD: 1.0 DOUG FIR DOUG FIR-L GR FIR W LARCH E SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR DOUG FIR DOUG FIR W LARCH	VAI 79 87 24 45 <i>117.</i> COI VAI 90 141 91 199	R.% S.E.% .6 28.1 .7 39.1 .7 17.1 .7 42.8 .3 26.2 EFF R.% R.% S.E.% .1 18.0 .2 28.3 .6 18.3 .3 39.9		OW 90 314 58 186 <i>I</i> 88 TREES/ OW 28 7 21 8	AVG 126 515 70 325 255 ACRE AVG 34 10 25 13	HIGH 161 716 82 464 322 HIGH 41 12 30 19		5 578 # OF PLOT	7 295 S REQ.	14 INF. POP
SD: 1.0 DOUG FIR DOUG FIR-L GR FIR W LARCH E SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR DOUG FIR DOUG FIR DOUG FIR-L GR FIR	VAI 79 87 24 45 <i>117.</i> COF VAI 90 141 91 199 356	R.% S.E.% .6 28.1 .7 39.1 .7 17.1 .7 42.8 .3 26.2 EFF R.% S.E.% .1 18.0 .2 28.3 .6 18.3 .3 39.9 .0 71.2		OW 90 314 58 186 <i>I</i> 88 TREES/ OW 28 7 21	AVG 126 515 70 325 255 ACRE AVG 34 10 25 13 1	HIGH 161 716 82 464 322 HIGH 41 12 30		5 578 # OF PLOT	7 295 S REQ.	14 INF. POP
SD:1.0DOUG FIRDOUG FIR-LGR FIRW LARCHE SPRUCETOTALCL: 68.1% SD:1.0DOUG FIRDOUG FIRDOUG FIR-LGR FIRW LARCHE SPRUCETOTAL	VAI 79 87 24 45 <i>117.</i> COF VAI 90 141 91 199 356 <i>12.</i>	R.% S.E.% .6 28.1 .7 39.1 .7 17.1 .7 42.8 .3 26.2 EFF R.% S.E.% .1 18.0 .2 28.3 .6 18.3 .3 39.9 .0 71.2 .8 2.6		OW 90 314 58 186 188 TREES/ OW 28 7 21 8 0 82	AVG 126 515 70 325 255 ACRE AVG 34 10 25 13 1 84	HIGH 161 716 82 464 322 HIGH 41 12 30 19 2 86	4	5 578 # OF PLOT 5	7 295 S REO. 7 4	14 INF. POP
SD: 1.0 DOUG FIR DOUG FIR-L GR FIR W LARCH E SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR DOUG FIR DOUG FIR QR FIR W LARCH E SPRUCE TOTAL	VAI 79 87 24 45 <i>117.</i> COF 90 141 91 90 141 91 99 356 <i>12.</i> COF	R.% S.E.% .6 28.1 .7 39.1 .7 17.1 .7 42.8 .3 26.2 EFF R.% S.E.% .1 18.0 .2 28.3 .6 18.3 .3 39.9 .0 71.2 .8 2.6	L	OW 90 314 58 186 <i>I</i> 88 TREES/ OW 28 7 21 8 0 82 BASAL	AVG 126 515 70 325 255 ACRE AVG 34 10 25 13 1 84 AREA/A	HIGH 161 716 82 464 322 HIGH 41 12 30 19 2 86 CRE	4	5 578 # OF PLOT 5 7 # OF PLOT	7 295 S REQ. 7 4 S REQ.	Ja INF. POP
$\begin{array}{c c} SD: & 1.0\\ DOUG FIR\\ DOUG FIR-L\\ GR FIR\\ W LARCH\\ E SPRUCE\\ TOTAL\\ \hline \\ CL: & 68.1 \%\\ SD: & 1.0\\ \hline \\ DOUG FIR\\ DOUG FIR\\ DOUG FIR\\ W LARCH\\ E SPRUCE\\ TOTAL\\ \hline \\ \\ CL: & 68.1 \%\\ \\ \\ \\ SD: & 1.0\\ \hline \end{array}$	VAI 79 87 24 45 <i>117.</i> COF VAI 90 141 91 199 356 <i>12.</i> COF VAI	R.% S.E.% .6 28.1 .7 39.1 .7 17.1 .7 42.8 .3 26.2 EFF 28.3 .6 18.3 .3 39.9 .0 71.2 .8 2.6 EFF 28.3	L	OW 90 314 58 186 188 TREES/ OW 28 7 21 8 0 82	AVG 126 515 70 325 255 ACRE AVG 34 10 25 13 1 84	HIGH 161 716 82 464 322 HIGH 41 12 30 19 2 86	4	5 578 # OF PLOT 5	7 295 S REO. 7 4	Ja INF. POP
SD: 1.0 DOUG FIR DOUG FIR-L GR FIR W LARCH E SPRUCE TOTAL CL: 68.1 % SD: 1.0 DOUG FIR DOUG FIR DOUG FIR QR FIR W LARCH E SPRUCE TOTAL	VAI 79 87 24 45 <i>117.</i> COF 90 141 91 90 141 91 99 356 <i>12.</i> COF	R.% S.E.% .6 28.1 .7 39.1 .7 17.1 .7 42.8 .3 26.2 EFF R.% S.E.% .1 18.0 .2 28.3 .6 18.3 .3 39.9 .0 71.2 .8 2.6 EFF .8 2.6	L	OW 90 314 58 186 <i>I</i> 88 TREES/ OW 28 7 21 8 0 82 BASAL OW	AVG 126 515 70 325 255 ACRE AVG 34 10 25 13 1 84 AREA/A AVG	HIGH 161 716 82 464 322 HIGH 41 12 30 19 2 86 CRE HIGH	4	5 578 # OF PLOT 5 7 # OF PLOT	7 295 S REQ. 7 4 S REQ.	<i>I</i> // INF. POF
$\begin{array}{c c} SD: & 1.0\\ DOUG FIR\\ DOUG FIR-L\\ GR FIR\\ W LARCH\\ E SPRUCE\\ TOTAL\\ \hline CL: & 68.1 \%\\ SD: & 1.0\\ \hline DOUG FIR\\ DOUG FIR-L\\ GR FIR\\ W LARCH\\ E SPRUCE\\ TOTAL\\ \hline CL: & 68.1 \%\\ SD: & 1.0\\ \hline DOUG FIR\\ \hline ODUG FIR\\ \hline \end{array}$	VAI 79 87 24 45 <i>117.</i> COH 90 141 91 99 356 <i>12.</i> COH VAI 93 141 86	R.% S.E.% .6 28.1 .7 39.1 .7 17.1 .7 42.8 .3 26.2 EFF R.% S.E.% .1 18.0 .2 28.3 .6 18.3 .3 39.9 .0 71.2 .8 2.6 EFF .8 2.6 EFF .9 17.4	L	OW 90 314 58 186 188 TREES/ OW 28 7 21 8 0 82 BASAL OW 27	AVG 126 515 70 325 255 ACRE AVG 34 10 25 13 1 84 AREA/A AVG 34	HIGH 161 716 82 464 322 HIGH 41 12 30 19 2 86 CRE HIGH 40 23 55	4	5 578 # OF PLOT 5 7 # OF PLOT	7 295 S REQ. 7 4 S REQ.	<i>I</i> // INF. POF
SD:1.0DOUG FIRDOUG FIR-LGR FIRW LARCHE SPRUCETOTSD:1.0DOUG FIRDOUG FIR-LGR FIRW LARCHE SPRUCETOTCL:68.1 %SD:1.0DOUG FIR-LCL:68.1 %DOUG FIRDOUG FIRDOUG FIRMUARCHSD:1.0DOUG FIRMUARCHMUARCHSD:MUARCHMUARCH	VAI 79 87 24 45 <i>117.</i> COI 90 141 91 99 356 <i>12.</i> COI VAI 93 141 86 198	R.% S.E.% .6 28.1 .7 39.1 .7 17.1 .7 42.8 .3 26.2 EFF R.% S.E.% .1 18.0 .2 28.3 .6 18.3 .3 39.9 .0 71.2 .8 2.6 EFF .8 18.8 .2 28.3 .9 17.4 .2 39.7	L	OW 90 314 58 186 188 TREES/ OW 28 7 21 8 0 82 BASAL OW 27 13 38 5 5	AVG 126 515 70 325 255 ACRE AVG 34 10 25 13 1 84 AREA/A AVG 34 18 47 9	HIGH 161 716 82 464 322 HIGH 41 12 30 19 2 86 CRE HIGH 40 23 55 13	4	5 578 # OF PLOT 5 7 # OF PLOT	7 295 S REQ. 7 4 S REQ.	Ja INF. POP
SD:1.0DOUG FIRDOUG FIR-LGR FIRW LARCHE SPRUCETOTALCL: $68.1 \ \%$ DOUG FIR-LGR FIRW LARCHE SPRUCETOTALCL: $68.1 \ \%$ DOUG FIR-LGR FIRU LARCHE SPRUCETOTALCL: $68.1 \ \%$ SD:1.0DOUG FIRDOUG FIRU LARCHE SPRUCEM LARCHE SPRUCEW LARCHE SPRUCE	VAI 79 87 24 45 <i>117.</i> COH 90 141 91 99 356 <i>12.</i> COH VAI 93 141 86	R.% S.E.% .6 28.1 .7 39.1 .7 17.1 .7 42.8 .3 26.2 EFF R.% S.E.% .1 18.0 .2 28.3 .6 18.3 .3 39.9 .0 71.2 .8 2.6 EFF .8 18.8 .2 28.3 .9 17.4 .2 39.7	L	OW 90 314 58 186 188 TREES/OW 28 7 21 8 0 82 BASAL OW 27 13 38 5 1	AVG 126 515 70 325 255 ACRE AVG 34 10 25 13 1 84 AREA/A AVG 34 18 47 9 3	HIGH 161 716 82 464 322 HIGH 41 12 30 19 2 86 CRE HIGH 40 23 55 13 4	4	5 578 # OF PLOT 5 7 # OF PLOT	7 295 S REQ. 7 4 S REQ.	<i>I</i> // INF. POF
SD:1.0DOUG FIRDOUG FIR-LGR FIRW LARCHE SPRUCETOTALCL: 68.1 %SD:1.0DOUG FIRDOUG FIRCK: 68.1 %SD:1.0CL: 68.1 %SD:1.0DOUG FIR-LGR FIRCL: 68.1 %SD:1.0DOUG FIR-LGR FIRDOUG FIRDOUG FIRDOUG FIR-LGR FIRW LARCHE SPRUCEMUCETOTAL	VAI 79 87 24 45 117. COI VAI 90 141 91 199 356 12. COI VAI 93 141 86 198 353	R.% S.E.% .6 28.1 .7 39.1 .7 17.1 .7 42.8 .3 26.2 EFF R.% S.E.% .1 18.0 .2 28.3 .6 18.3 .3 39.9 .0 71.2 .8 2.6 EFF .8 2.6 EFF .3 39.9 .0 71.2 .8 2.6 EFF .8 18.8 .2 28.3 .9 17.4 .2 39.7 .3 70.7	L	OW 90 314 58 186 188 TREES/ OW 28 7 21 8 0 82 BASAL OW 27 13 38 5 5	AVG 126 515 70 325 255 ACRE AVG 34 10 25 13 1 84 AREA/A AVG 34 18 47 9	HIGH 161 716 82 464 322 HIGH 41 12 30 19 2 86 CRE HIGH 40 23 55 13	4	5 578 # OF PLOT 5 7 # OF PLOT	7 295 S REQ. 7 4 S REQ.	<i>I</i> // INF. POF
SD:1.0DOUG FIRDOUG FIR-LGR FIRW LARCHE SPRUCETOTALCL: $68.1 \ \%$ DOUG FIRDOUG FIRCL: $68.1 \ \%$ SD:1.0DOUG FIR-LGR FIRW LARCHE SPRUCETOTALCL: $68.1 \ \%$ SD:1.0DOUG FIRDOUG FIRUCL: $68.1 \ \%$ SD:1.0DOUG FIRDOUG FIRCL: $68.1 \ \%$ CL: $68.1 \ \%$	VAI 79 87 24 45 117. COI VAI 90 141 91 199 356 12. COI VAI 93 141 86 198 353	R.% S.E.% .6 28.1 .7 39.1 .7 17.1 .7 42.8 3 26.2 EFF R.% S.E.% .1 18.0 .2 28.3 .6 18.3 .3 39.9 .0 71.2 .8 2.6 EFF .8 2.6 EFF .8 2.6 EFF .8 2.6 EFF .8 18.8 .2 28.3 .9 17.4 .2 39.7 .3 70.7	L	OW 90 314 58 186 188 TREES/ OW 28 7 21 8 0 82 BASAL OW 27 13 38 5 1 110 NET BF	AVG 126 515 70 325 255 ACRE AVG 34 10 25 13 1 84 AREA/A AVG 34 18 47 9 3 110 /ACRE	HIGH 161 716 82 464 322 HIGH 41 12 30 19 2 86 CRE HIGH 40 23 55 13 4 110	4	5 578 FOF PLOT 5 FOF PLOT 5 FOF PLOT 5	7 295 S REQ. 7 4 S REQ. 7	J. INF. POF INF. POF
SD:1.0DOUG FIRDOUG FIR-LGR FIRW LARCHE SPRUCETOTCL: $68.1 \ \%$ ODUG FIRDOUG FIRDOUG FIRCL: $68.1 \ \%$ SD:1.0CL: $68.1 \ \%$ GR FIRW LARCHE SPRUCETOTCL: $68.1 \ \%$ SD:1.0DOUG FIRDOUG FIRW LARCHE SPRUCETOTCL: $68.1 \ \%$ W LARCHE SPRUCETOTCL: $68.1 \ \%$ CL: $68.1 \ \%$ SD:1.0	VAI 79 87 24 45 117. COI VAI 90 141 91 90 141 91 93 356 12. COI VAI 86 198 353 COI VAI	R.% S.E.% .6 28.1 .7 39.1 .7 17.1 .7 42.8 .3 26.2 EFF R.% S.E.% .1 18.0 .2 28.3 .6 18.3 .3 39.9 .0 71.2 .8 2.6 EFF .8 2.6 EFF .8 2.6 EFF .8 2.6 EFF .8 18.8 .2 28.3 .9 17.4 .2 39.7 .3 70.7 EFF R.% S.E.%	L	OW 90 314 58 186 188 TREES/ OW 28 7 21 8 0 82 BASAL OW 27 13 38 5 1 110 NET BF OW 0	AVG 126 515 70 325 255 ACRE AVG 34 10 25 13 1 84 AREA/A AVG 34 18 47 9 3 110 /ACRE AVG	HIGH 161 716 82 464 322 HIGH 41 12 30 19 2 86 CRE HIGH 40 23 55 13 4 <i>J10</i> HIGH	4	5 578 \$ OF PLOT 5 7 \$ OF PLOT 5	7 295 S REQ. 7 4 S REQ. 7	J. INF. POF INF. POF
SD:1.0DOUG FIRDOUG FIR-LGR FIRW LARCHE SPRUCETOTALCL: $68.1 \ \%$ SD:1.0DOUG FIRDOUG FIRDOUG FIRCL: $68.1 \ \%$ SD:1.0CL: $68.1 \ \%$ GR FIRW LARCHE SPRUCETOTALCL: $68.1 \ \%$ DOUG FIRDOUG FIRDOUG FIRCL: $68.1 \ \%$ SD:1.0CL: $68.1 \ \%$ SD:1.0CL: $68.1 \ \%$ SD:1.0CL: $68.1 \ \%$ SD:1.0IOUUG FIRCL: $68.1 \ \%$ SD:1.0SD:1.0SD:1.0SD:1.0SD:1.0	VAI 79 87 24 45 117. COI VAI 90 141 90 141 91 93 356 12. COI VAI 93 141 86 198 353 COI VAI	R.% S.E.% .6 28.1 .7 39.1 .7 17.1 .7 42.8 3 26.2 EFF R.% S.E.% .1 18.0 .2 28.3 .6 18.3 .3 39.9 .0 71.2 8 2.6 EFF R.% S.E.% .8 18.8 .2 28.3 .9 17.4 .2 39.7 .3 70.7 EFF .8 18.8 .2 39.7 .3 70.7		OW 90 314 58 186 188 TREES/ OW 28 7 21 8 0 82 BASAL OW 27 13 38 5 1 110 NET BF OW 2,408	AVG 126 515 70 325 255 ACRE AVG 34 10 25 13 1 84 AREA/A AVG 34 18 47 9 3 110 /ACRE AVG 34 18 47 9 3 110 /ACRE AVG 34 18 47 9 3 110 /ACRE AVG 34 18 47 9 3 100 /ACRE AVG 34 100 25 13 100 /ACRE AVG 34 100 25 13 100 20 20 20 20 20 20 20 20 20	HIGH 161 716 82 464 322 HIGH 41 12 30 19 2 86 CRE HIGH 40 23 55 13 4 <i>J10</i> HIGH 3,769	4	5 578 FOF PLOT 5 FOF PLOT 5 FOF PLOT 5	7 295 S REO. 7 4 S REO. 7 S REO.	J. INF. POF INF. POF
SD:1.0DOUG FIRDOUG FIR-LGR FIRW LARCHE SPRUCETOTALCL: $68.1 \ \%$ SD:1.0DOUG FIRDOUG FIRDOUG FIRCL: $68.1 \ \%$ SD:1.0DOUG FIR-LGR FIRW LARCHE SPRUCETOTALCL: $68.1 \ \%$ DOUG FIRDOUG FIRDOUG FIRCL: $68.1 \ \%$ SD:1.0DOUG FIRCL: $68.1 \ \%$ SD:1.0DOUG FIRDOUG FIRDOUG FIRDOUG FIRDOUG FIRCL: $68.1 \ \%$ SD:1.0DOUG FIRDOUG FIR	VAI 79 87 24 45 117. COH VAI 90 141 90 141 90 141 90 141 86 198 353 COH VAI 86 198 353	R.% S.E.% .6 28.1 .7 39.1 .7 17.1 .7 42.8 3 26.2 EFF R.% S.E.% .1 18.0 .2 28.3 .6 18.3 .3 39.9 .0 71.2 8 2.6 EFF R.% S.E.% .8 18.8 .2 28.3 .9 17.4 .2 39.7 .3 70.7 EFF R.% S.E.% .2 22.0 .2 28.3		OW 90 314 58 186 188 TREES/ OW 28 7 21 8 0 82 BASAL OW 27 13 38 5 1 110 NET BF OW 2,408 1,926 1	AVG 126 515 70 325 255 ACRE AVG 34 10 25 13 1 84 AREA/A AVG 34 18 47 9 3 110 /ACRE AVG 34 18 47 9 3 110 /ACRE AVG 34 18 47 9 3 110 /ACRE AVG 34 18 47 9 3 100 25 25 25 25 25 25 25 25 25 25	HIGH 161 716 82 464 322 HIGH 41 12 30 19 2 86 CRE HIGH 40 23 55 13 4 110 HIGH 3,769 3,445	4	5 578 FOF PLOT 5 FOF PLOT 5 FOF PLOT 5	7 295 S REO. 7 4 S REO. 7 S REO.	J. INF. POF INF. POF
SD:1.0DOUG FIRDOUG FIR-LGR FIRW LARCHE SPRUCETOTALCL: $68.1 \ \%$ BDUG FIR-LGR FIRW LARCHE SPRUCETOTALCL: $68.1 \ \%$ BD:1.0DOUG FIR-LGR FIRW LARCHE SPRUCETOTALCL: $68.1 \ \%$ DOUG FIRDOUG FIRDOUG FIRCL: $68.1 \ \%$ SD:1.0DOUG FIRCL: $68.1 \ \%$ SD:1.0DOUG FIRDOUG FIRDOUG FIRDOUG FIRDOUG FIRCL: $68.1 \ \%$ SD:1.0DOUG FIRDOUG FIRDOUG FIRGR FIRDOUG FIRDOUG FIRDOUG FIRDOUG FIRDOUG FIRDOUG FIRDOUG FIR	VAI 79 87 24 45 117. COI VAI 90 141 90 141 91 90 356 12. COI VAI 93 141 86 198 353 253 COI VAI 86 198 353	R.% S.E.% .6 28.1 .7 39.1 .7 17.1 .7 42.8 .3 26.2 EFF R.% S.E.% .1 18.0 .2 28.3 .6 18.3 .3 39.9 .0 71.2 .8 2.6 EFF .8 2.8 .9 17.4 .2 39.7 .3 70.7 EFF .8 18.8 .2 28.3 .9 17.4 .2 39.7 .3 70.7 EFF .2 22.0 .2 28.3 .8 17.6		OW 90 314 58 186 188 TREES/ OW 28 7 21 8 0 82 BASAL OW 27 13 38 5 1 110 NET BF OW 2,408 1,926 6,251	AVG 126 515 70 325 255 ACRE AVG 34 10 25 13 1 84 AREA/A AVG 34 18 47 9 3 110 /ACRE AVG 34 18 47 9 3 110 /ACRE AVG 34 18 47 9 3 110 /ACRE AVG 34 18 47 9 3 110 /ACRE AVG 34 18 47 9 3 110 /ACRE AVG 34 18 47 9 3 100 25 25 25 25 25 25 25 25 25 25	HIGH 161 716 82 464 322 HIGH 41 12 30 19 2 86 CRE HIGH 40 23 55 13 4 110 HIGH 3,769 3,445 8,917	4	5 578 FOF PLOT 5 FOF PLOT 5 FOF PLOT 5	7 295 S REO. 7 4 S REO. 7 S REO.	INF. POP
SD:1.0DOUG FIRDOUG FIR-LGR FIRW LARCHE SPRUCETOTALCL: $68.1 \ \%$ GR FIRW LARCHE SPRUCETOTALCL: $68.1 \ \%$ SD:1.0DOUG FIR-LGR FIRW LARCHE SPRUCETOTALCL: $68.1 \ \%$ SD:1.0DOUG FIRDOUG FIRCL: $68.1 \ \%$ SD:1.0CL: $68.1 \ \%$ SD:1.0DOUG FIRDOUG FIRDOUG FIRDOUG FIRDOUG FIRCL: $68.1 \ \%$ SD:1.0DOUG FIRDOUG FIR	VAI 79 87 24 45 117. COH VAI 90 141 90 141 90 141 90 141 86 198 353 COH VAI 86 198 353	R.% S.E.% .6 28.1 .7 39.1 .7 17.1 .7 42.8 .3 26.2 EFF R.% S.E.% .1 18.0 .2 28.3 .6 18.3 .3 39.9 .0 71.2 .8 2.6 EFF .8 18.8 .2 28.3 .9 17.4 .2 39.7 .3 70.7 EFF .8 18.8 .2 28.3 .9 17.4 .2 39.7 .3 70.7 EFF .2 22.0 .2 28.3 .8 17.6 .0 39.8		OW 90 314 58 186 188 TREES/ OW 28 7 21 8 0 82 BASAL OW 27 13 38 5 1 110 NET BF OW 2,408 1,926 1	AVG 126 515 70 325 255 ACRE AVG 34 10 25 13 1 84 AREA/A AVG 34 18 47 9 3 110 /ACRE AVG 34 18 47 9 3 110 /ACRE AVG 34 18 47 9 3 110 /ACRE AVG 34 18 47 9 3 100 25 25 25 25 25 25 25 25 25 25	HIGH 161 716 82 464 322 HIGH 41 12 30 19 2 86 CRE HIGH 40 23 55 13 4 110 HIGH 3,769 3,445	4	5 578 FOF PLOT 5 FOF PLOT 5 FOF PLOT 5	7 295 S REO. 7 4 S REO. 7 S REO.	14 INF. POP

TC TST	TATS				PRO	STATI: DJECT	STICS DEERFS	SAL		PAGE DATE	2 1/19/2016
TWP	RGE	SECT	TRAC	T	TYF	E A	ACRES	PLOTS	TREES	CuFt	BdFt
29N	38E	07	DEEF	R FIRE	00U	4	119.68	26	87	S	Е
CL:	68.1%	CO	EFF		V-B	AR/ACRE			# OF PL	OTS REQ.	INF. POP.
SD:	1.0	VA	R.	S.E.%	LOW	AVG	HIGH		5	7	10
CL:	68.1 [%]	CO	EFF		V-B	AR/ACRE	1		# OF PLOT	S REQ.	INF. POP.
SD:	1.0	VA	R.%	S.E.%	LOW	AVG	HIGH		5	7	10
DOU	G FIR				72	92	112				
DOU	G FIR-L				106	148	190				
GR F	IR				134	163	192				
W LA	ARCH	80	.6	16.1	61	101	141				
E SPF	RUCE	361	.8	72.4	43	156	269				
TOT	AL	448.	.6	89.8	128	134	139		8,383	4,277	2,096

	ATS				ST proje	ATIST	'ICS deerfsai	L		PAGE DATE 1	1 /19/2016
TWP	RGE	SECT T	RACT		TYPE		RES	PLOTS	TREES	CuFt	BdFt
29N	38E	16 D	EER FIRE		00U5		174.42	39	86	S	Е
					TREES		ESTIMATED FOTAL		ERCENT AMPLE		
		PLOTS	TREES]	PER PLOT		TREES	Т	REES		
TOTA	\L	39	86		2.2						
CRUI	SE	15	18		1.2		8,274		.2		
DBH	COUNT										
REFO	REST										
COUN	T	11	32		2.9						
BLAN		13									
100 %)										
				STA	ND SUMN	MARY					
		SAMPLE	TREES	AVG	BOLE	REL	BASAL	GROSS	NET	GROSS	NET
		TREES	/ACRE	DBH	LEN	DEN	AREA	BF/AC	BF/AC	CF/AC	CF/AC
DOU	G FIR	11	27.0	11.3	52	5.6	19.0	1,799	1,785	447	447
GR FI	IR	7	20.4	12.4	67	4.9	17.2	2,551	2,226	527	527
TOTA	AL.	18	47.4	11.8	58	10.5	36.2	4,350	4,012	974	974
CL:	68.1 %	COEFF	7								
0.0	1.0			•		E TREES		#	OF TREES	•	INF. POP.
SD:	1.0 G FIR	VAR.%	5 S.E.%	LO	W	AVG	HIGH	#	OF TREES 5	REQ. 7	
SD: DOUC GR FI	G FIR	VAR.% 155.1	5 S.E.% 49.0	LO		AVG 174		#		•	
DOU	G FIR IR	VAR.%	5 S.E.%	LO	OW 88	AVG	HIGH 259	#		•	10
DOUG GR FI TOTA	G FIR IR	VAR.% 155.1 100.9	5 S.E.% 49.0 41.1 <i>31.5</i>	L	OW 88 119	AVG 174 201 <i>184</i>	HIGH 259 284		5	7 365	10
DOUC GR FI TOTA CL: SD:	G FIR IR AL 68.1 % 1.0	VAR.% 155.1 100.9 129.9	5 S.E.% 49.0 41.1 31.5		DW 88 119 126	AVG 174 201 <i>184</i>	HIGH 259 284		5 715	7 365	1(179 INF. POP.
DOUC GR FI TOTA CL: SD: DOUC	G FIR IR AL 68.1 % 1.0 G FIR	VAR.% 155.1 100.9 129.9 COEFF VAR.% 165.7	5 S.E.% 49.0 41.1 31.5 5 S.E.% 26.5		DW 88 119 126 TREES/ DW 20	AVG 174 201 184 ACRE AVG 27	HIGH 259 284 243 HIGH 34		5 715 OF PLOTS	7 365 REQ.	10
DOUC GR FI TOTA CL: SD: DOUC GR FI	G FIR IR AL 68.1 % 1.0 G FIR IR	VAR.% 155.1 100.9 129.9 COEFF VAR.% 165.7 205.0	5 S.E.% 49.0 41.1 31.5 5 S.E.% 26.5 32.8		20W 88 119 126 TREES/ 20W 20 14	AVG 174 201 184 ACRE AVG 27 20	HIGH 259 284 243 HIGH 34 27		5 715 OF PLOTS 5	7 365 REQ. 7	10 179 INF. POP. 10
DOUG GR FI TOTA CL: SD: DOUG	G FIR IR AL 68.1 % 1.0 G FIR IR	VAR.% 155.1 100.9 129.9 COEFF VAR.% 165.7	5 S.E.% 49.0 41.1 31.5 5 S.E.% 26.5		DW 88 119 126 TREES/ DW 20	AVG 174 201 184 ACRE AVG 27	HIGH 259 284 243 HIGH 34		5 715 OF PLOTS	7 365 REQ.	10 179 INF. POP. 10
DOUC GR FI TOTA CL: SD: DOUC GR FI TOTA	G FIR IR AL 68.1 % 1.0 G FIR IR AL 68.1 %	VAR.% 155.1 100.9 129.9 COEFF VAR.% 165.7 205.0	5 S.E.% 49.0 41.1 31.5 5 S.E.% 26.5 32.8 18.4		DW 88 119 126 TREES/ DW 20 14 39 BASAL	AVG 174 201 184 ACRE AVG 27 20 47 AREA/A	HIGH 259 284 243 HIGH 34 27 56	#	5 715 OF PLOTS 5	7 365 REQ. 7 268	10 179 INF. POP. 10
DOUC GR FI TOTA CL: SD: DOUC GR FI TOTA CL: SD:	G FIR IR AL 68.1 % 1.0 G FIR IR AL 68.1 % 1.0	VAR.% 155.1 100.9 129.9 COEFF VAR.% 165.7 205.0 114.7 COEFF VAR.%	S.E.% 49.0 41.1 31.5 5 5 26.5 32.8 18.4 5 5	L	DW 88 119 126 TREES/ DW 20 14 39 BASAL DW	AVG 174 201 184 ACRE AVG 27 20 47 AREA/A AVG	HIGH 259 284 243 HIGH 34 27 56 CRE HIGH	#	5 715 OF PLOTS 5 526	7 365 REQ. 7 268	10 179 INF. POP. 10 132 INF. POP.
DOUC GR FI TOTA CL: SD: DOUC GR FI TOTA CL: SD: DOUC	G FIR IR 68.1 % 1.0 G FIR IR 68.1 % 1.0 G FIR	VAR.% 155.1 100.9 129.9 COEFF VAR.% 165.7 205.0 114.7 COEFF VAR.% 156.4	S.E.% 49.0 41.1 31.5 5 5 26.5 32.8 18.4 5 5 5.E.% 25.0	L	DW 88 119 126 TREES/ DW 20 14 39 BASAL DW 14	AVG 174 201 184 ACRE AVG 27 20 47 AREA/A AVG 19	HIGH 259 284 243 HIGH 34 27 56 CRE HIGH 24	#	5 715 OF PLOTS 5 526 OF PLOTS	7 365 REQ. 7 268	10 179 INF. POP. 10 132 INF. POP.
DOUC GR FI TOTA CL: SD: DOUC GR FI TOTA CL: SD: DOUC GR FI	G FIR IR AL 68.1 % 1.0 G FIR IR AL 68.1 % 1.0 G FIR IR	VAR.% 155.1 100.9 129.9 COEFF VAR.% 165.7 205.0 114.7 COEFF VAR.% 156.4 199.4	S.E.% 49.0 41.1 31.5 3 5 26.5 32.8 18.4 3 5 S.E.% 26.5 32.8 18.4 3 31.9	L	DW 88 119 126 TREES/ DW 20 14 39 BASAL DW 14 12 14	AVG 174 201 184 ACRE AVG 27 20 47 AREA/A AVG 19 17	HIGH 259 284 243 HIGH 34 27 56 CRE HIGH 24 23	#	5 715 OF PLOTS 5 526 OF PLOTS 5	7 365 REQ. 7 268 REQ. 7	10 179 INF. POP. 10 132 INF. POP. 10
DOUG GR FI TOT/ CL: SD: DOUG GR FI TOT/ CL: SD: DOUG GR FI TOT/	G FIR R AL 68.1 % 1.0 G FIR R 68.1 % 1.0 G FIR IR AL AL	VAR.% 155.1 100.9 129.9 COEFF VAR.% 165.7 205.0 114.7 COEFF VAR.% 156.4 199.4 107.3	S.E.% 49.0 41.1 31.5 5 5 26.5 32.8 18.4 5 5 25.0 31.9 17.2	L	DW 88 119 126 TREES/ DW 20 14 39 BASAL DW 14 12 30	AVG 174 201 184 ACRE AVG 27 20 47 AREA/A AVG 19 17 36	HIGH 259 284 243 HIGH 34 27 56 CRE HIGH 24	#	5 715 OF PLOTS 5 526 OF PLOTS 5 461	7 365 REQ. 7 268 REQ. 7 235	10 179 INF. POP. 10 132 INF. POP. 10
DOUG GR FI TOT/ SD: DOUG GR FI TOT/ SD: DOUG GR FI TOT/ CL:	G FIR IR 4L 68.1 % 1.0 G FIR IR 4L 68.1 % 1.0 G FIR IR 4L 68.1 %	VAR.% 155.1 100.9 129.9 COEFF VAR.% 165.7 205.0 114.7 COEFF VAR.% 156.4 199.4 107.3 COEFF	S.E.% 49.0 41.1 31.5 5 5 26.5 32.8 18.4 5 5 25.0 31.9 17.2	L	DW 88 119 126 TREES/ DW 20 14 39 BASAL DW 14 33 NET BF	AVG 174 201 184 ACRE AVG 27 20 47 AREA/A AVG 19 17 36 /ACRE	HIGH 259 284 243 HIGH 34 27 56 CRE HIGH 24 23 42	#	5 715 OF PLOTS 5 526 OF PLOTS 5 461 OF PLOTS	7 365 REQ. 7 268 REQ. 7 235 REQ.	10 179 INF. POP. 132 INF. POP. 115 INF. POP.
DOUG GR FI TOT/ SD: DOUG GR FI TOT/ CL: SD: DOUG GR FI TOT/ CL: SD:	G FIR IR AL 68.1 % 1.0 G FIR IR AL 68.1 % 1.0 G FIR IR AL 68.1 % 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	VAR.% 155.1 100.9 129.9 COEFF VAR.% 165.7 205.0 114.7 COEFF VAR.% 156.4 199.4 107.3 COEFF VAR.%	S.E.% 49.0 41.1 31.5 5 5 26.5 32.8 18.4 5 5.E.% 25.0 31.9 17.2 5 S.E.%		DW 88 119 126 TREES/ DW 20 14 39 BASAL DW 14 12 30 NET BF DW DW	AVG 174 201 184 ACRE AVG 27 20 47 AREA/A AVG 19 17 36 /ACRE AVG	HIGH 259 284 243 HIGH 34 27 56 CRE HIGH 24 23 42 HIGH	#	5 715 OF PLOTS 5 526 OF PLOTS 5 461	7 365 REQ. 7 268 REQ. 7 235	10 179 INF. POP. 132 INF. POP. 115 INF. POP.
DOUG GR FI TOT SD: DOUG GR FI TOT CL: SD: DOUG GR FI TOT CL: SD: DOUG	G FIR IR 4L 68.1 % 1.0 G FIR IR 4L 68.1 % 1.0 G FIR IR 4L 68.1 % 1.0 G FIR IR 4L 68.1 % 1.0 G FIR IR	VAR.% 155.1 100.9 129.9 COEFF VAR.% 165.7 205.0 114.7 COEFF VAR.% 156.4 199.4 107.3 COEFF VAR.% 159.7	S.E.% 49.0 41.1 31.5 5 5 26.5 32.8 18.4 5 5 25.0 31.9 17.2 5 S.E.% 25.0 31.9 17.2 5 5.E.% 25.6		DW 88 119 126 TREES/ DW 20 14 39 BASAL DW 14 12 30 NET BF DW 1,329	AVG 174 201 184 ACRE AVG 27 20 47 AREA/A AVG 19 17 36 /ACRE AVG 1,785	HIGH 259 284 243 HIGH 34 27 56 CRE HIGH 24 23 42 HIGH 2,242	#	5 715 OF PLOTS 5 526 OF PLOTS 5 461 OF PLOTS	7 365 REQ. 7 268 REQ. 7 235 REQ.	10 179 INF. POP. 132 INF. POP. 115 INF. POP.
DOUG GR FI TOT/ SD: DOUG GR FI TOT/ CL: SD: DOUG GR FI TOT/ CL: SD:	G FIR IR 68.1 % 1.0 G FIR IR 68.1 % 1.0 G FIR IR 68.1 % 1.0 G FIR IR 68.1 % 1.0 G FIR IR	VAR.% 155.1 100.9 129.9 COEFF VAR.% 165.7 205.0 114.7 COEFF VAR.% 156.4 199.4 107.3 COEFF VAR.%	S.E.% 49.0 41.1 31.5 5 5 26.5 32.8 18.4 5 5.E.% 25.0 31.9 17.2 5 S.E.%		DW 88 119 126 TREES/ DW 20 14 39 BASAL DW 14 12 NET BF DW 1,329 1,509	AVG 174 201 184 ACRE AVG 27 20 47 AREA/A AVG 19 17 36 /ACRE AVG	HIGH 259 284 243 HIGH 34 27 56 CRE HIGH 24 23 42 HIGH	#	5 715 OF PLOTS 5 526 OF PLOTS 5 461 OF PLOTS	7 365 REQ. 7 268 REQ. 7 235 REQ.	10 179 INF. POP. 132 INF. POP. 115 INF. POP. 10
DOUG GR FI TOT/ CL: SD: DOUG GR FI TOT/ CL: SD: DOUG GR FI TOT/ CL: SD: DOUG GR FI TOT/	G FIR IR 68.1 % 1.0 G FIR IR 68.1 % 1.0 G FIR IR 68.1 % 1.0 G FIR IR 68.1 % 1.0 G FIR IR	VAR.% 155.1 100.9 129.9 COEFF VAR.% 165.7 205.0 114.7 COEFF VAR.% 156.4 199.4 107.3 COEFF VAR.% 159.7 201.1	S.E.% 49.0 41.1 31.5 5 5 26.5 32.8 18.4 5 5 25.0 31.9 17.2 5 S.E.% 25.6 32.2 18.6		DW 88 119 126 TREES/ DW 20 14 39 BASAL DW 14 12 30 NET BF DW 1,329 1,509 8,267	AVG 174 201 184 ACRE AVG 27 20 47 AVG 19 17 36 /ACRE AVG 1,785 2,226 4,012	HIGH 259 284 243 HIGH 34 27 56 CRE HIGH 24 23 42 HIGH 2,242 2,943	#	5 715 OF PLOTS 5 526 OF PLOTS 5 461 OF PLOTS 5 5 38	7 365 REQ. 7 268 REQ. 7 235 REQ. 7 274	10 179 INF. POP. 10 132 INF. POP. 10 112 INF. POP. 10 132 132
DOUG GR FI TOT/ CL: SD: DOUG GR FI TOT/ CL: SD: DOUG GR FI TOT/ CL: SD: DOUG GR FI TOT/	G FIR IR 4L 68.1 % 1.0 G FIR IR 4L 68.1 % 1.0 G FIR IR 4L 68.1 % 1.0 G FIR IR 4L 68.1 % 1.0 G FIR IR 4L 68.1 %	VAR.% 155.1 100.9 129.9 COEFF VAR.% 165.7 205.0 114.7 COEFF VAR.% 156.4 199.4 107.3 COEFF VAR.% 159.7 201.1 115.9	S.E.% 49.0 41.1 31.5 3 26.5 32.8 18.4 3 5 5 S.E.% 26.5 32.8 18.4 3 5 S.E.% 25.0 31.9 17.2 3 5 S.E.% 25.6 32.2 18.6 3	L(L(3	DW 88 119 126 TREES/ DW 20 14 39 BASAL DW 14 12 30 NET BF DW 1,329 1,509 1,509	AVG 174 201 184 ACRE AVG 27 20 47 AVG 19 17 36 /ACRE AVG 1,785 2,226 4,012	HIGH 259 284 243 HIGH 34 27 56 CRE HIGH 24 23 42 HIGH 2,242 2,943	#	5 715 OF PLOTS 5 526 OF PLOTS 5 461 OF PLOTS 5	7 365 REQ. 7 268 REQ. 7 235 REQ. 7 274	10 179 INF. POP. 132 INF. POP. 10 115 INF. POP. 134 INF. POP.
DOUC GR FI TOT SD: DOUC GR FI TOT CL: SD: DOUC GR FI TOT CL: SD: DOUC GR FI TOT CL:	G FIR IR 4L 68.1 % 1.0 G FIR IR 4L 68.1 % 1.0 G FIR IR 4L 68.1 % 1.0 G FIR IR 4L 68.1 % 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	VAR.% 155.1 100.9 129.9 COEFF VAR.% 165.7 205.0 114.7 COEFF VAR.% 156.4 199.4 107.3 COEFF VAR.% 159.7 201.1 115.9 COEFF	S.E.% 49.0 41.1 31.5 3 26.5 32.8 18.4 3 5 5 S.E.% 26.5 32.8 18.4 3 5 S.E.% 25.0 31.9 17.2 3 5 S.E.% 25.6 32.2 18.6 3	L(L(3	DW 88 119 126 TREES/ DW 20 14 39 BASAL DW 14 12 30 NET BF DW 1,329 1,509 2,267 V-BAR//	AVG 174 201 184 ACRE AVG 27 20 47 AREA/A AVG 19 17 36 /ACRE AVG 1,785 2,226 4,012 ACRE	HIGH 259 284 243 HIGH 34 27 56 CRE HIGH 24 23 42 HIGH 2,242 2,943 4,756	#	5 715 OF PLOTS 5 526 OF PLOTS 5 461 OF PLOTS 5 538 OF PLOTS	7 365 REQ. 7 268 REQ. 7 235 REQ. 7 274 REQ.	10 179 INF. POP. 132 INF. POP. 10 115 INF. POP. 134 INF. POP.
DOUC GR FI TOT SD: DOUC GR FI TOT SD: DOUC GR FI TOT CL: SD: DOUC GR FI TOT CL: SD: DOUC GR FI TOT	G FIR IR 4L 68.1 % 1.0 G FIR IR 4L 68.1 % 1.0 G FIR IR 4L 68.1 % 1.0 G FIR IR 4L 68.1 % 1.0 G FIR IR 4L 68.1 % 1.0 G FIR IR 68.1 % 1.0 G FIR	VAR.% 155.1 100.9 129.9 COEFF VAR.% 165.7 205.0 114.7 COEFF VAR.% 156.4 199.4 107.3 COEFF VAR.% 159.7 201.1 115.9 COEFF VAR.%	S.E.% 49.0 41.1 31.5 5 5 26.5 32.8 18.4 5 5 5 31.9 17.2 5 5 5 32.8 18.4 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5	L(L(3	DW 88 119 126 TREES/ DW 20 14 39 BASAL DW 14 12 30 NET BF DW 1,329 1,509 2,267 V-BAR//DW	AVG 174 201 184 ACRE AVG 27 20 47 AREA/A AVG 19 17 36 /ACRE AVG 1,785 2,226 4,012 ACRE AVG	HIGH 259 284 243 HIGH 34 27 56 CRE HIGH 24 23 42 HIGH 2,242 2,943 4,756 HIGH	#	5 715 OF PLOTS 5 526 OF PLOTS 5 461 OF PLOTS 5 538 OF PLOTS	7 365 REQ. 7 268 REQ. 7 235 REQ. 7 274 REQ.	10 179 INF. POP. 10 132 INF. POP. 10 115 INF. POP. 10 134

TC TS	TNDSU	М					Stand	l Table	Summa	nry					
							Proj	ect	DEERF	SAL					
T29N Twp 29N	R38E Rge 38E	S08 T(Sec 08)0U1 Tract DEE		RE		[°] ype 0U1		cres 1.79	Plots 58	Sample 7 186		T29N R Page: Date: Time:	38E S08 7 1 1/19/207 1:04:07	1(
s	5	Sample	e FF	Av Ht	Trees/	BA/	Logs	Avera Net	age Log Net	Tons/	Net Cu.Ft.	Net Bd.Ft.	Т	otals	
Spc 7		Trees	16'	Tot	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
GF GF	8 9	3 5	85 85	17 17	4.965 6.535	1.74 2.90									
GF	10	6	86	29	6.514	3.48	2.08	10.1	60.0	.60	21	125	187	65	39
GF	11	7	86	23	6.139	4.06	1.72	8.6	40.0	.43	3 15	69	133	46	22
GF	12	5	85	17	3.766	2.90	1.00	10.1				0.5			
GF GF	13 14	4 9	87 86	29 35	2.566 4.916	2.32 5.22	1.32 2.27	12.1 17.9	65.0 89.4	.40 1.10		86 203	143 363	50 127	27 63
GF	14	3	86	55 17	4.916 1.450	3.22 1.74	2.27	17.9	69.4	1.10	5 41	205	505	127	03
GF	16	4	86	34	1.646	2.32	.86	22.8	110.0	.50	5 20	95	176	61	30
GF	17	2	85	53	.749	1.16	.72	28.8	140.0	.59	21	101	185	65	31
GF	18	3	86	17	.980	1.74									
GF	19	2	87	94	.614	1.16	1.53	28.7	142.2	1.20		218	393	137	68
GF GF	20 22	2 1	87 85	59 17	.534 .212	1.16 .58	.78	29.8	140.0	.67	7 23	109	208	73	34
GF	22	2	85	17	.405	1.16									
GF	24	1	85	17	.184	.58									
GF	25	2	85	17	.340	1.16									
GF	29	2	85	17	.258	1.16									
GF	32	1	74	87	.105	.58	.21	90.2	285.0	.54	4 19	60	169	59	19
GF	Totals	64	86	26	42.881	37.09	11.49	19.1	92.6	6.28	3 219	1,065	1,957	683	332
DF	9	3	82	17	3.965	1.74									
DF	10	2	82	17	2.045	1.16									
DF	11	3	83	17	2.634	1.74									
DF	12	2	80	42	1.382	1.16	1.38	9.5	35.0	.42	2 13	48	132	41	15
DF DF	13 14	3 6	83 81	17 25	1.957 3.171	1.74 3.48	1.02	14.6	50.0	.42	2 15	51	133	46	16
DF	15	3	83	17	1.417	1.74	1.02	14.0	50.0	12	2 15	51	155	40	10
DF	16	4	83	17	1.698	2.32									
DF	17	7	82	40	2.570	4.06	1.82	23.3	110.0	1.20		200	376	132	62
DF	18	4	84	38	1.327	2.32	.99	22.1	123.3	.63		123	195	68	38
DF	19	4	80	35	1.175	2.32	.61	29.6	115.0	.51		70	160	56	22
DF DF	20 21	6 4	81 83	41 36	1.597 .955	3.48 2.32	1.06 .72	35.3 27.9	136.5 133.3	1.07		145 96	334 179	117 63	45 30
DF	21	1	83	17	.216	.58	.72	21.9	155.5	.5	20	20	175	05	50
DF	23	3	83	68	.589	1.74	.98	40.8	202.0	1.14	4 40	198	355	124	62
DF	24	1	82	17	.183	.58									
DF	25	1	82	17	.177	.58			10						. –
DF	27	1	72	87	.151	.58	.30	59.9	185.0	.52	2 18	56	161	56	17
DF	Totals	58	82	27	27.205	33.61	8.89	25.4	111.0	6.49	9 226	987	2,023	705	308
RC	7	1	72	17	2.168	.58									
RC	8	2	75	22	3.508	1.16	1.62	4.4	20.0	.17	7 7	32	52	22	10
RC	10	1	73	17	.982	.58	<u></u>	10 -	5 0 0				~~	<u> </u>	
RC RC	11 14	2 2	77 89	31 80	1.824 1.132	1.16 1.16	.88 2.26	12.7 17.7	50.0 85.0	.20		44 192	82 293	35 125	14 60
RC	14	2	89 72	80 17	.852	1.16	2.20	1/./	65.0	.94	т 40	192	293	123	00
RC	20	1	82	103	.258	.58	.77	30.6	116.7	.50	5 24	90	174	74	28
RC	21	2	72	17	.484	1.16									
RC	23	1	72	17	.199	.58									
RC	26	1	72	91	.154	.58	.31	65.1	220.0	.47	7 20	68	147	62	21
RC	Totals	15	76	30	11.561	8.69	5.84	17.5	73.0	2.40	0 102	427	747	318	133
	+														
								-		-					

TC TS	STN	NDSUN	1					Stand	l Table	Summa	ry					
								Proje	ect	DEERF	SAL					
T29N Twp 29N	F	38E Rge 38E		0U1 Tract DEE		RE		'ype 0U1		cres 1.79	Plots 58	Sample T 186		T29N R Page: Date: Time:	38E S08 7 2 1/19/201 1:04:07	L(
	S		Sample		Av Ht	Trees/		Logs	Net	age Log Net	Tons/	Net Cu.Ft.	Net Bd.Ft.		otals	
Spc 7	T			16'	Tot	Acre	Acre	Acre		Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
LP LP		7 9	1 1	90 85	76 17	1.940 1.437	.58 .58	1.94	6.5	50.0	.30	13	97	94	39	30
LP		10	1	88	80	1.437	.58	2.12	8.5	35.0	.43	18	74	135	56	23
LP		11	1	84	17	.862	.58	2.112	010	2010		10		100	20	20
LP	1	Totals	4	87	51	5.302	2.32	4.07	7.5	42.2	0.74	31	171	229	96	53
WL		7	1	85	60	2.168	.58	2.17	.0		.25	0		79	0	
WL		8	3	87	40	5.251	1.74	1.89	6.5	40.0	.29		76	91	38	24
WL		9	1	87 87	74	1.372	.58	1.37	8.7	50.0	.29	12	69	90	37	21
WL WL		10 11	2 2	87 87	17 17	2.125 1.811	1.16 1.16									
WL	1	Totals	9	87	40	12.727	5.22	5.43	4.5	26.6	0.83	24	144	259	76	45
WH		11	1	84	75	.878	.58	1.76	9.0	45.0	.51	16	79	158	49	25
WH	1	Totals	1	84	75	.878	.58	1.76	9.0	45.0	0.51	16	79	158	49	25
DF	L	13	1	82	17	.592	.58									
	L	14	1	82	17	.574	.58									
	L	15	3	83	17	1.502	1.74									
	L L	16 17	2 4	82 82	17 17	.815 1.458	1.16 2.32									
	L	18	- 3	83	17	1.438	1.74									
	L	19	3	83	17	.893	1.74									
	L	21	2	83	17	.489	1.16									
	L L	22 23	1 1	83	17 17	.222 .201	.58 .58									
	L	23 24	1	82 82	17	.184	.58									
DF	_	Totals	22	83	17	7.944										
GF	L	17	1	85	17	.368	.58									
	L	28	1	85	17	.136	.58									
GF	1	Totals	2	85	17	.503	1.16									
PP	L	22	1	85	17	.224	.58									
PP	1	Totals	1	85	17	.224	.58									
RC	L	20	1	72	17	.266	.58									
RC	1	Totals	1	72	17	.266	.58									
WL	L	12	2	87	17	1.476	1.16									
	L	13	2	86	17	1.229	1.16									
	L L	14 15	4 1	87 86	17 17	2.201 .472	2.32 .58									
WL	_	Totals	9	87	17	5.378	5.22									
WL Totals	-	i otalis	186	87	28	5.578 114.868		37.48	16.5	76.7	17.24	618	2,873	5,374	1,926	896
Totals			100	04	20	114.008	107.78	37.48	10.3	/0./	17.24	018	2,073	5,574	1,920	090

Take trees per acre - 100.553 Leave trees per acre - 14.315

TC TS	TNDSU	М					Stand	l Table	Summa	ıry					
							Proj	ect	DEERF	SAL					
T29N Twp 29N	R38E Rge 38E	S22 T(Sec 22	00U2 Tract DEE		RE		Cype OU2		cres 5.54	Plots 48	Sample T 112		T29N R Page: Date: Time:	38E S22 7 1 1/19/20 1:04:07	1(
s		Sample	e FF	Av Ht	Trees/	BA/	Logs	Net	age Log Net	Tons/	Net Cu.Ft.	Net Bd.Ft.	Т	otals	
Spc 7		I Trees	16'	Tot	Acre	Acre	Acre		Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
GF GF	11 13	2 2	83 85	49 17	1.773 1.218	1.16 1.16	1.85	9.0	40.0	.48	8 17	74	89	31	14
GF	13	2	86	50	1.131	1.16	1.11	17.7	75.0	.56	5 20	84	105	37	16
GF	15	3	84	39	1.424	1.74	.89	21.0	90.0	.54		81	100	35	15
GF	16		87	41	1.682	2.32	1.18	23.6	140.0	.80		166	148	52	31
GF	18	2	92	111	.644	1.16	1.93	26.6	146.7	1.47		284	273	95 50	53
GF GF	19 21	2 1	89 86	68 17	.585 .234	1.16 .58	.91	29.7	180.0	.78	3 27	164	144	50	30
GF	21	1	80	140	.234	.58	.84	34.0	185.0	.82	2 29	155	152	53	29
GF	23	2	86	17	.372	1.16	.01	51.0	105.0		>	155	152	55	29
GF	Totals	21	86	47	9.272	12.15	8.73	21.8	115.3	5.45	5 190	1,006	1,011	353	187
DF	8	5	81	29	8.568	2.89	3.63	4.2	20.0	.43		73	81	28	13
DF	9	4	78	40	5.742	2.32	4.27	7.1	23.2	.86		99	160	56	18
DF	10	1	87	66	.981	.58	.98	13.0	70.0	.36		69 25	67 52	24	13
DF DF	11 12	1 1	71 82	38 17	.846 .775	.58 .58	.85	11.8	30.0	.28	3 10	25	53	18	5
DF	12	3	82 82	17	1.986	.38 1.74									
DF	14	3	83	17	1.579	1.74									
DF	15	1	73	76	.484	.58	.97	17.7	55.0	.49) 17	53	92	32	10
DF	16	3	82	17	1.286	1.74									
DF	17	3	81	40	1.146	1.74	.75	24.4	85.0	.52	2 18	64	97	34	12
DF	18	1	83	17	.317	.58									
DF DF	19 20	1 3	83 84	17 48	.291 .820	.58 1.74	.82	28.9	156.7	.68	3 24	129	125	44	24
DF	20	2	82	17	.486	1.16	.02	20.9	150.7	.00	, 24	127	125		24
DF	22	2	82	17	.445	1.16									
DF	23	2	82	17	.403	1.16									
DF	25	2	77	69	.344	1.16	.52	43.7	190.0	.65	5 23	99	121	42	18
DF	27	1	83	17	.143	.58									
DF	29	2	82	17	.255	1.16									
DF	Totals		81	32	26.898		12.79	11.8	47.7	4.29	9 150	611	796	279	113
PP	20		86	17 91	.265	.58	16	28.0	105.0	40) 10	00	20	22	17
PP PP	21 23	1 2	93 86	91 17	.232 .405	.58 1.16	.46	38.9	195.0	.43	3 18	90	80	33	17
PP	23		92		.180	.58	.54	40.6	246.7	.53	3 22	133	98	41	25
РР	Totals	5	88	48	1.082	2.89	1.00	39.8	222.8	0.96	5 40	223	178	74	41
WH	19	1	90	92	.291	.58	.58	38.9	220.0	.72	2 23	128	134	42	24
WH	Totals	1	90	92	.291	.58	.58	38.9	220.0	0.72	2 23	128	134	42	24
DF I	L 12	1	82	17	.701	.58									
	L 13	1	83	17	.658	.58									
	L 14		82	17	.557	.58									
DF I			82	50	.944	1.16	.98	19.0	85.0	.53	3 19	83	98	35	15
	L 16 L 17		82 82	17 17	.409 .350	.58 .58									
	L 17 L 18		82 82	17	.350	.58 .58									
	L 19		82	17	.898	1.74									
	L 20		83	17	.544	1.16									
	L 21	1	83	17	.252	.58									
DF I	L 24	2	82	17	.381	1.16									

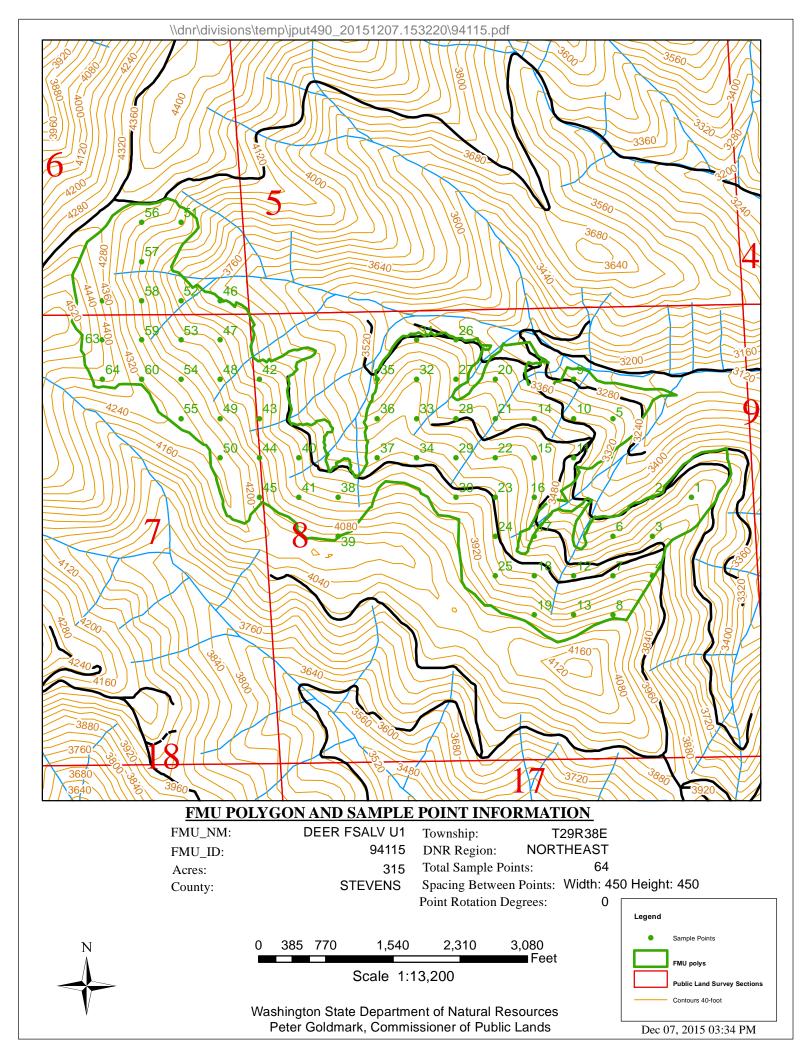
TC	TST	NDSUN	M					Stand	l Table	Summa	ry					
								Proje	ect	DEERF	SAL					
T29 Twp 29N		R38E Rge 38E		0U2 Tract DEE		RE		Гуре 0U2		cres 5.54	Plots \$	Sample T 112		T29N R Page: Date: Time:	38E S22 T 2 1/19/201 1:04:07	L(
Spc	S T		Sample Trees	e FF 16'	Av Ht Tot	Trees/ Acre	BA/ Acre	Logs Acre	Net	age Log Net Bd.Ft.	Tons/ Acre	Net Cu.Ft. Acre	Net Bd.Ft. Acre	T o Tons	o t a l s Cunits	MBF
DF DF DF	L L L	26 27 30	3 1 1	82 82 82	17 17 17	.477 .146 .118	1.74 .58 .58									
DF		Totals	21	82	22	6.780	12.15	.98	19.0	85.0	0.53	19	83	98	35	15
GF GF	L L	27 28	1 1	85 85	17 17	.142 .132	.58 .58									
GF		Totals	2	85	17	.274	1.16									
PP PP PP PP PP	L L L L	17 18 19 21 23	2 3 1 1	85 85 85 85 85	17 17 17 17 17	.717 .987 .310 .252 .208	1.16 1.74 .58 .58 .58									
PP PP PP PP PP	L L L L	24 25 26 27 28	2 2 1 1 1	85 85 85 85 85	17 17 17 17 17	.384 .347 .157 .151 .135	1.16 1.16 .58 .58 .58									
PP		Totals	15	85	17	3.649	8.68									
RC	L	28	1	72	17	.134	.58									
RC		Totals	1	72	17	.134	.58									
WL WL WL	L L L	16 17 21 Totals	2 2 1 5	86 86 86 86	17 17 17 17	.840 .743 .250 1.833	1.16 1.16 .58 2.89									
Totals	5	- 0 4415	112	82	32	50.213		24.08	17.5	85.2	11.95	422	2,052	2,217	782	381

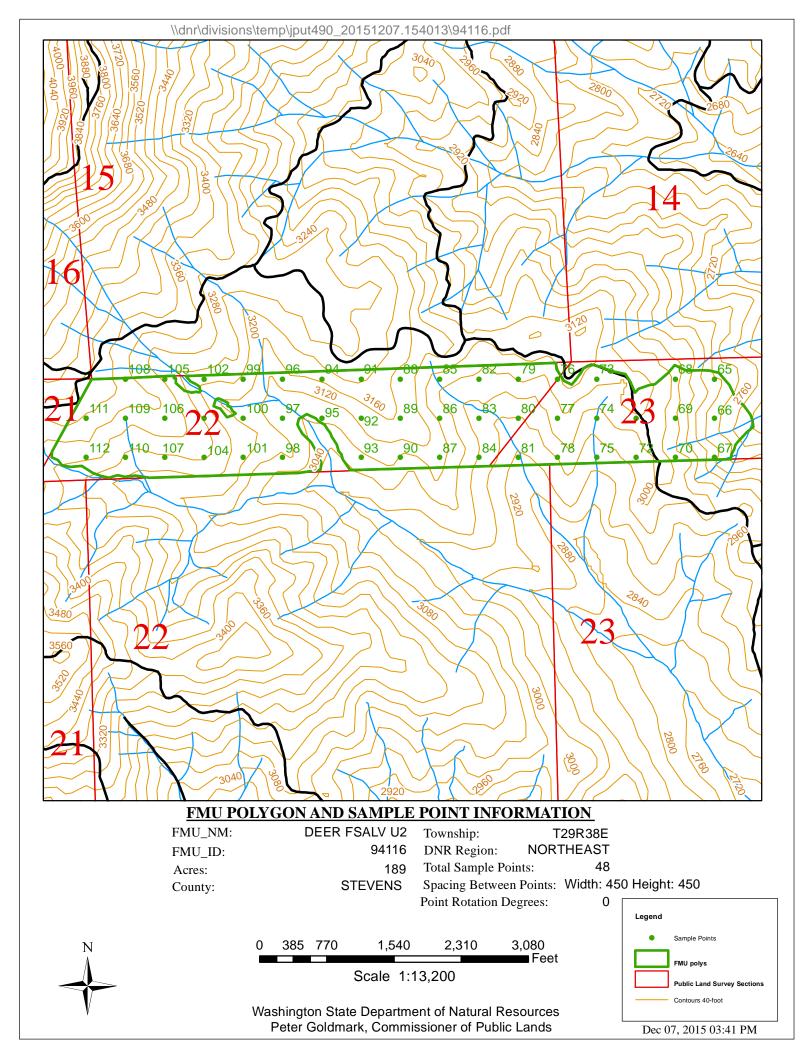
Take trees per acre - 37.543 Leave trees per acre - 12.67

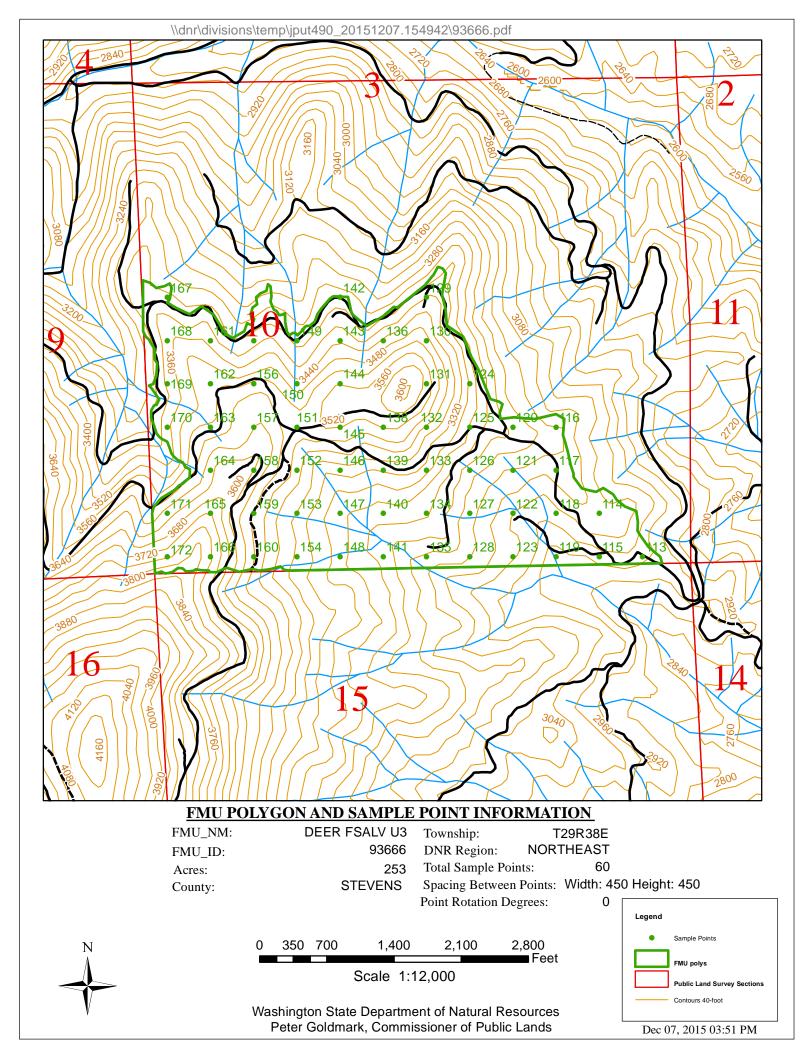
Sec 10 mple rees 2 3 2	BE S10 T e Sec E 10)0U3 Tract				Proje	ect	DEERF	SAL					
Sec 10 mple rees 2 3 2	e Sec													
rees 2 3 2		DEE		RE		`ype 0U3		cres 6.20	Plots 5	Sample T 104		T29N R Page: Date: Time:	38E S10 T 1 1/19/201 1:04:07	
2 3 2	Sample	e FF	Av Ht	Trees/	BA/	Logs	Avera Net	age Log Net	Tons/	Net Cu.Ft.	Net Bd.Ft.	Т	otals	
3 2	BH Trees	16'	Tot	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
2		82 83	17 17	3.279 4.378	1.16 1.74									
2		76	36	2.024	1.16	1.04	11.9	30.0	.35	12	31	87	31	8
	11 2 12 1	83	17	1.694 .702	1.16									
1 5		82 82	17 30	3.226	.58 2.90	1.36	13.1	60.0	.51	18	82	125	44	20
3		78	60	1.676	1.74	2.30	14.5	55.0	.95		126	234	82	31
2		82	17	.932	1.16	0.51	20.2	01.6	1.45	5 1	205	256	105	5 1
4		81 83	60 17	1.694 .355	2.32 .58	2.51	20.2	81.6	1.45	51	205	356	125	51
1		83	17	.347	.58									
2		83	17	.586	1.16		20 5			•	50	105	10	10
2		80	54	.506	1.16	.51	38.7	145.0	.56		73	137	48	18
30		81	28		17.38	7.72	17.4	67.1	3.82		518	940	330	127
3 1		82 84	44 67	1.927 .534	1.74 .58	1.87 1.07	14.8 14.7	59.8 65.0	.79 .45		112 69	195 110	68 39	27 17
1		83	17	.472	.58	1.07	11.7	05.0	.15	10	0,	110	57	17
3		81	45	1.235	1.74	.81	23.1	90.0	.53	19	73	131	46	18
1 2		82 84	17 40	.368 .653	.58 1.16	.63	25.3	95.0	.45	16	60	112	39	15
1		82	17	.228	.58	.05	25.5	75.0	.+5	10	00	112	57	15
2		83	17	.371	1.16									
2 3		82 82	17 17	.340 .480	1.16 1.74									
1		82 83	17	.136	.58									
1	32 1	83	17	.104	.58									
21	als 21	82	36	6.848	12.17	4.37	17.8	71.7	2.22	78	314	547	192	77
1	7 1	86	17	2.108	.58									
1		75	29	1.889	.58	1.89	3.9	20.0	.21	7	38	52	18	9
1 2		86 85	17 45	1.042 1.514	.58 1.16	1.55	11.0	55.0	.49	17	85	121	42	21
1		76	64	.619	.58	1.24	12.1	40.0	.43	15	50	106	37	12
1		89 85	76 17	.512 .472	.58 .58	1.02	17.3	70.0	.51	18	72	125	44	18
1 1		85 78	17 90	.472	.58 .58	.43	45.0	145.0	.55	19	62	136	47	15
1		85	17	.116	.58									
10	als 10	83	34	8.485	5.79	6.13	12.5	50.0	2.19	76	306	539	188	75
3	10 3	90	85	3.231	1.74	6.46	7.8	40.0	1.21	51	258	299	124	64
1	11 1	86	17	.964	.58									
4	als 4	89	69	4.194	2.32	6.46	7.8	40.0	1.21	51	258	299	124	64
		84	78	.738	.58	1.48	11.5	40.0	.41	17	59	101	42	15
1	14 1 15 2	87 86	17 17	.558	.58									
1	15 2 16 3	86 86		.938 1.299										
1 2	17 2	87	17	.744	1.16									
1 2 3	20 1	87 86	17 17	.279	.58									
1 2 3 2 1														
1 2 3 2 1 1	als 11	86	26	4.798	6.37	1.48	11.5	40.0	0.41	17	59	101	42	15
	17 20 21	3 2 1 1	3 86 2 87 1 87 1 86	3 86 17 2 87 17 1 87 17 1 86 17	3 86 17 1.299 2 87 17 .744 1 87 17 .279 1 86 17 .241	3 86 17 1.299 1.74 2 87 17 .744 1.16 1 87 17 .279 .58 1 86 17 .241 .58	3 86 17 1.299 1.74 2 87 17 .744 1.16 1 87 17 .279 .58 1 86 17 .241 .58	3 86 17 1.299 1.74 2 87 17 .744 1.16 1 87 17 .279 .58 1 86 17 .241 .58	3 86 17 1.299 1.74 2 87 17 .744 1.16 1 87 17 .279 .58 1 86 17 .241 .58	3 86 17 1.299 1.74 2 87 17 .744 1.16 1 87 17 .279 .58 1 86 17 .241 .58	3 86 17 1.299 1.74 2 87 17 .744 1.16 1 87 17 .279 .58 1 86 17 .241 .58	3 86 17 1.299 1.74 2 87 17 .744 1.16 1 87 17 .279 .58 1 86 17 .241 .58	3 86 17 1.299 1.74 2 87 17 .744 1.16 1 87 17 .279 .58 1 86 17 .241 .58	3 86 17 1.299 1.74 2 87 17 .744 1.16 1 87 17 .279 .58 1 86 17 .241 .58

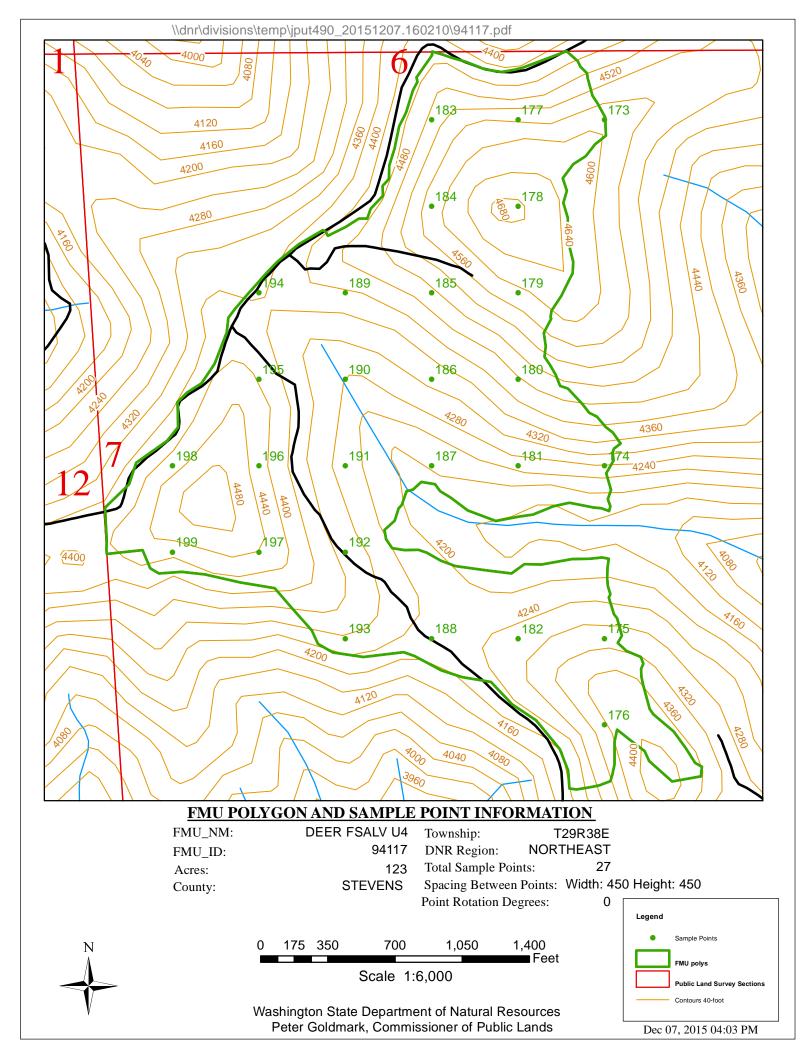
TC	TC TSTNDSUM Stand Table Summary															
								Proje	ect	DEERF	SAL					
T29 Twp 29N		R38E Rge 38E	S10 T0 Sec 10	00U3 Tract DEE		RE		Sype OU3		cres 6.20	Plots 58	Sample T 104		T29N R Page: Date: Time:	38E S10 7 2 1/19/203 1:04:07	L(
C	S		Sample			Trees/		Logs	Net	age Log Net Bd.Ft.	Tons/	Net Cu.Ft.	Net Bd.Ft.		otals Consiste	MDE
-	Т		Trees	16'	Tot	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
PP PP PP		12 13 18	1 1 2	85 80 86	17 62 17	.738 .680 .690	.58 .58 1.16	.68	16.8	70.0	.27	11	48	68	28	12
PP		24	1	85	17	.183	.58									
PP		29	1	85	17	.124	.58									
PP		33	1	85	17	.095	.58									
PP		Totals	7	84	29	2.510	4.06	.68	16.8	70.0	0.27	11	48	68	28	12
GF GF	L L	13 18	1 1	85 86	17 17	.680 .314	.58 .58									
GF		Totals	2	85	17	.994	1.16									
PP	L	13	1	85	17	.592	.58									
PP	L	14	1	86	17	.574	.58									
PP PP	L	15	1	86	17 17	.485	.58 .58									
PP PP	L L	16 23	1	86 85	17	.410 .210	.58 .58									
PP	L	23	1	85	17	.183	.58									
PP	L	25	2	86	17	.350	1.16									
PP	L	27	1	85	17	.150	.58									
PP	L	28	1	86	17	.132	.58									
PP	L	29	1	86	17	.126	.58									
PP	L	30	2	85	17	.235	1.16									
PP	L	31 34	1	86	17 17	.111	.58									
PP PP	L L	34 35	1 1	85 86	17	.090 .087	.58 .58									
PP	L	36	1	86	17	.087	.58									
PP		Totals	17	86	17	3.815	9.85									
RC	L	36	2	73	17	.163	1.16									
RC		Totals	2	73	17	.163	1.16				1					
Totals	5		104	83	32	53.204	60.27	26.84	13.7	56.0	10.13	367	1,503	2,493	905	370

Take trees per acre -36.586Leave trees per acre -16.618


Processe Proce	TC TS	TNDSU	М					Stand	l Table	Summa	ry					
matrix								Proj	ect	DEERF	SAL					
S Samup F H Trees/ V Logs V Net V Net V Net Acr Cu-F BdJF Tool Cu-F BdJF Tool Cu-F BdJF Tool Cu-F BdJF Tool Not Net Net </th <th>Twp</th> <th>Rge</th> <th>Sec</th> <th>Tract</th> <th></th> <th>RE</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th>Page: Date:</th> <th>1 1/19/20</th> <th>1(</th>	Twp	Rge	Sec	Tract		RE						-		Page: Date:	1 1/19/20	1(
GF 11 1 86 80 8.814 5.82 17.63 11.0 60.0 5.55 194 1.038 664 2.32 127 GF 19 1 81 50 3.116 5.82 120 120 3.39 125 374 430 150 455 GF 22 1 81 121 2.184 5.82 77 12.48 5.82 77 12.48 5.82 77 12.38 46.54 30.65 32.1 143.4 36.45 1.72 5.688 4.363 1.52 6.30 302 GF 1 2 82 6.34 5.00 3.01 1.72 5.688 4.363 1.52 72 2.66 DF 1 2 82 6.30 5.35 5.0 3.02 1.01 1.02 6.32 1.21 11.3 38 15 DF 1 2 83 6.30 5.05	S	5	Sample	e FF		Trees/	BA/	Logs			Tons/			Т	otals	
GF 19 1 81 50 3.16 5.82 3.12 4.00 3.59 1.25 3.79 1.61 2.10 5.81 2.77 1.71 3.79 1.62 7.71	Spc 7	DBH	[Trees	16'	Tot	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
GF 20 2 86 45 5.17 1.1.6.3 5.13 3.4.9 125.0 5.12 1.7 6.611 2.14 5.82 7.7 1.1.6.3 3.7.9 1.667 3.7.1 2.48 1.99 6.611 2.07 8.51 2.107 8.51 3.7.9 1.667 3.7.1 2.48 1.90 6.611 6.613 2.14 5.7.3 3.7.9 1.667 3.7.1 2.48 1.90 6.611 8.51 2.7.9 8.68 3.65 3.7.1 1.1.63 3.7.2 5.7.6 3.64 3.65 3.7.1 1.43 3.645 1.7.2 5.68 4.4.63 1.5.7 6.60 2.0 1.1.3 3.8 1.5.7 1.60 1.7.2 1.1.3 3.8 1.5.7 1.60 1.7.2 1.1.3 3.8 1.5.7 1.60 1.7.7 1.60 2.00 2.60 2.2.9 2.50 3.7.2 1.7.8 3.7.3 1.7.9 1.61 1.7.7 1.7.8 3.7.3 1.7.9 1.7.7 1.7.8 3.7.3 1.7.9 2.2.9 3.7.3 3.7.2 2.2.9 3.7.3																
GF 22 1 8 121 2.184 5.82 6.55 7.7 7.11 2.48 1.092 851 2.97 1.11 GF 23 1 8 17 2.107 5.82 7.28 349.0 15.08 5.26 2.58 4.364 1.805 6.30 302 GF 7000 1 6.8 30 6.34 2.80 3.44 3.65 32.0 0.01 34.4 36.45 1.22 5.68 4.363 1.523 6.81 DF 11 2 83 40 5.94 2.60 5.81 11.9 5.00 1.72 60 2.20 2.60 2.90 2.60 2.90 2.60 2.90 2.90 2.61 1.81 3.13 110 4.66 DF 16 1 80 90 90 2.066 2.80 3.91 12.2 95.0 2.62 92 3.81 3.13 110 4.66 2.16 3.91 1.03 3.01 1.04 1.03 3.01 1.04 1.03																
GF 23 1 86 17 2.107 5.82 7.23 72.8 3490 15.8 526 2.54 1.805 630 320 GF 1081 8 87 70 23.80 46.54 39.65 32.1 143.4 364.55 1.227 5.88 4.363 1.523 631 DF 9 1 6.8 30 6.340 2.80 6.34 5.00 5.01 1.11 2.02 1.13 38 1.527 2.60 2.20 1.33 2.17 2.33 2.82 350 DF 13 2 83 40 5.942 5.60 5.81 11.9 500 1.96 69 200 223 282 350 DF 15 1 82 17 2.376 2.80 4.21 1.237 2.90 2.22 2.81 313 110 4.64 333 110 4.64 DF 16 18 80 92 2.80 2.34 82 2.88 2.80 98 353 DF 18 18 83 31.31 2.62 2.90 113.23 5.14 180 8.21 6.16 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																
GF 30 2 87 117 2.411 11.63 7.23 7.28 349.0 15.08 5.26 2.54 1,805 6.30 302 GF Touls 8 85 70 23.808 46.54 39.65 32.1 14.34 36.45 1.27 5.68 4.363 1.13 38 15 DF 11 2 83 40 5.94 5.06 4.01 13.7 500 1.72 60 200 206 72 23.5 DF 14 2 83 40 5.94 5.00 5.81 11.9 500 1.96 69 200 235 82 355 DF 15 1 80 90 2.066 2.80 3.91 2.42 850 3.51 1.13 3.33 110 4.64 DF 16 12 77 44 3.56 3.97 2.26 3.91 1.32.3 3.16								6.55	37.9	166.7	/.11	248	1,092	851	297	131
DF 9 1 68 30 6.34 2.80 6.34 1.00 1.00 1.01		_						7.23	72.8	349.0	15.08	526	2,524	1,805	630	302
DF 11 2 82 36 8.805 5.60 4.40 13.7 50.0 1.72 60 220 226 72 26 DF 14 2 68 45 5.393 5.00 5.81 1.19 50.0 1.96 69 290 235 82 35 DF 15 1 82 17 2.376 2.80 4.01 2.9 95.0 2.62 92 381 313 110 46 66 260 98 355 DF 16 12 77 44 35.60 3.61 35.55 18.0 65.2 18.24 639 2.316 2.183 76 2.77 ML 10 1.8 83 3.807 2.26 3.99 11.9 50.0 1.14 47 199 136 57 2.43 ML 10 81 5.65 2.26 5.31 10.8 40.0 1.55 66 2.74 186 77 2.33 ML 13 1.8 <	GF	Totals	8	85	70	23.808	46.54	39.65	32.1	143.4	36.45	1,272	5,688	4,363	1,523	681
DF 13 2 83 40 5.942 5.60 5.81 11.9 500 1.96 69 200 235 82 35 DF 14 2 68 45 5.393 5.60 5.99 22.9 35.0 3.52 123 189 421 148 23 DF 16 1 80 90 2.006 2.80 4.01 22.9 95.0 2.62 92 381 313 110 46 DF 17 81 7 44 35.60 3.61 35.55 18.0 65.2 18.24 639 2.31 2.88 2.80 98 2.00 2.183 405 2.77 WL 10 1 81 58 3.81 2.26 5.30 1.19 500 1.14 47 199 136 57 2.4 WL 104 1 87 62 2.65 2.26 5.31	DF	9	1	68	30	6.340	2.80	6.34	5.0	20.0	.94	32	127	113	38	15
DF 14 2 68 45 5.393 5.60 5.39 22.9 35.0 3.52 123 189 421 148 23 DF 15 1 82 17 2.37 2.80 - - - - - - DF 17 1 81 72 1.66 2.80 3.39 24.2 85.0 2.34 82 288 280 98 355 DF 18 2 81 83 3.00 5.00 6.20 29.1 152.3 5.14 180 616 2.18 98 355 DF 10 1 81 74 35.60 3.61 35.55 18.0 65.2 18.24 639 2.316 2.18 2.1	DF	11	2	82	36	8.805	5.60	4.40	13.7	50.0	1.72	60	220	206	72	26
DF 15 1 82 17 2.376 2.80 4.01 22.9 8.00 2.80 2.80 3.30 22.9 8.00 2.34 8.20 9.20 2.80 9.80 3.30 2.34 8.20 8.21 3.13 9.90 9.80 3.55 1.00 2.24 85.0 5.14 1.80 8.21 6.16 2.18 2.90 2.71 1.32.3 5.14 1.80 8.21 2.18 2.11 2.10 2.10 2.11 2.10 2.11 2.10 2.11 2.10 2.11 2.10 2.11 <th2.10< th=""> <th2.11< th=""> <th2.11< th=""></th2.11<></th2.11<></th2.10<>	DF	13	2	83	40	5.942	5.60	5.81	11.9	50.0	1.96	69	290	235	82	35
DF 16 1 80 90 2.006 2.80 4.01 22.9 95.0 2.62 92 381 313 110 46 DF 18 2 81 83 3.10 5.00 6.20 29.1 132.3 5.14 82 288 286 280 98 35 DF 108 12 77 44 35.60 3.5.5 18.0 6.52 18.24 639 2.16 2.163 657 234 WL 10 1 81 82 88 3.428 2.26 5.86 9.4 40.0 1.55 65 274 186 77 33 WL 13 1 87 64 2.05 2.26 5.31 10.8 40.0 1.37 57 2.12 164 68 263 25 WL 108 1 75 1.25 1.65 10.5 42.5 4.06 169 <	DF							5.39	22.9	35.0	3.52	123	189	421	148	23
DF 17 1 81 72 1.696 2.80 3.39 24.2 85.0 2.34 82 288 280 98 35 DF 18 2 83 3.102 5.00 6.20 29.1 132.3 5.14 180 821 616 216 298 DF Totals 12 77 44 35.60 3.61 35.5 18.0 65.2 18.24 639 2.316 2.183 765 277 WL 10 1 81 58 3.987 2.26 5.31 10.8 40.0 1.55 65 2.74 116 67 24 WL 13 1 86 17 2.52 2.66 5.31 10.8 40.0 1.53 65 2.74 116 686 486 203 82 WL Totals 4 83 64 1.321 9.05 1.61 10.5 42.6 4.0																
DF 18 2 81 83 3.102 5.60 6.20 29.1 132.3 5.14 180 821 616 216 98 DF Totals 12 77 44 35.660 33.61 35.55 18.0 652 18.24 639 2.316 2.183 765 277 WL 10 1 81 58 3.987 2.26 3.99 11.9 50.0 1.14 47 199 136 57 24 WL 13 1 87 66 2.655 2.26 51 0.0 1.14 47 199 136 57 24 WL 18 1 86 17 1252 2.26 10.8 40.0 1.55 65 274 186 77 33 WL 104 1 83 76 1.52 2.26 10.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 1.0.0 </td <td></td>																
DF Totals 12 77 44 35.660 33.61 35.55 18.0 65.2 18.24 639 2.316 2.183 765 277 WL 10 1 81 58 3.987 2.26 3.99 11.9 50.0 1.14 47 199 136 57 24 WL 13 1 87 66 2.655 2.26 5.31 10.8 40.0 1.37 57 212 164 68 203 82 WL 18 1 75 79 723 1.25 2.6 5.31 10.8 40.0 1.37 57 212 164 68 203 82 ES 18 1 75 79 7.23 1.29 1.45 29.1 110.0 1.09 42 159 131 50 19 ES Totals 2 78 90 1.293 2.59 3.16 2.9																
WL 10 1 81 58 3.987 2.26 3.99 11.9 50.0 1.14 47 199 136 57 24 WL 11 1 82 88 3.428 2.26 6.86 9.4 40.0 1.55 65 274 186 77 33 WL 18 1 86 17 1.252 2.26 5.31 10.8 40.0 1.37 57 212 164 68 203 82 ES 18 1 75 79 723 1.29 1.45 29.1 110.0 1.09 42 159 131 50 19 ES 103 2 78 00 1.293 2.59 3.16 29.9 128.0 2.46 94 404 294 113 48 DF 1. 14 1 83 17 1.539 1.65 74 30.5 140.0 1.51 53 244 181 64 29 DF 1. 26 <t< td=""><td>-</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-	_														
WL 11 1 82 88 3.428 2.26 6.86 9.4 40.0 1.55 65 274 186 77 33 WL 13 1 87 66 2.655 2.26 5.31 10.8 40.0 1.37 57 212 164 68 25 WL 18 4 83 64 11.321 9.05 16.15 10.5 42.5 4.06 169 686 486 203 82 ES 18 1 75 79 7.23 1.29 1.45 29.1 110.0 1.36 52 2.45 163 63 29 ES 104 2 78 0 1.29 2.5 3.16 29.9 12.0 2.46 94 404 294 113 48 DF 1 14 1 83 17 1.539 1.65 7.4 30.5 140.0 1.51 53 244 181 64 29 DF 1 20 2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td></td<>													,			
WL WL 13 1 87 66 2.65 2.26 5.31 10.8 40.0 1.37 57 212 164 68 25 WL Totals 4 83 64 11.321 9.05 16.15 10.5 42.5 4.06 169 686 486 203 82 ES 18 1 75 79 7.72 1.29 1.45 29.1 110.0 1.09 42 159 131 50 19 ES 18 1 75 79 7.72 1.29 1.45 29.1 110.0 1.09 42 159 131 50 19 ES 104 2 78 90 1.29 2.59 3.16 29.9 128.0 2.46 94 404 294 113 48 DF 1 14 1 83 17 1.539 1.65 1.74 30.5 140.0 1.51 53 244 181 64 29 DF 1 20 2																
WL Totals 4 83 64 11.321 9.05 16.15 10.5 42.5 4.06 169 686 486 203 82 ES 18 1 75 79 .723 1.29 1.45 29.1 110.0 1.09 42 159 1131 50 19 ES 20 1 81 103 .570 1.29 1.71 30.7 143.3 1.36 52 245 163 63 29 ES Totals 2 78 90 1.293 2.59 3.16 29.9 128.0 2.46 94 404 294 113 48 DF L 14 1 83 17 1.539 1.65 1.74 30.5 140.0 1.51 53 244 181 64 29 DF L 19 1 81 89 8.72 1.65 1.74 30.5 140.0 1.51 53 244 181 64 29 DF L 21<																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	WL	18	1	86	17	1.252	2.26									
ES 20 1 81 103 570 1.29 1.71 30.7 143.3 1.36 52 245 163 63 29 ES Totals 2 78 90 1.293 2.59 3.16 29.9 128.0 2.46 94 404 294 113 48 DF 1 14 1 83 17 1.539 1.65 1.74 30.5 140.0 1.51 53 244 181 64 29 96 12 82 17 1.368 3.29 140.0 1.51 53 244 181 64 29 96 12 82 17 1.368 3.29 140.0 1.51 53 244 181 64 29 96 165 163 183 183 183 118 64 29 96 165 1163 1163 1163 1163 1163 1163 1163 1163 1163	WL	Totals	4	83	64	11.321	9.05	16.15	10.5	42.5	4.06	169	686	486	203	82
Image: Problem of the system of the syst	ES	18	1	75	79	.723	1.29	1.45	29.1	110.0	1.09	42	159	131	50	19
DF L 14 1 83 17 1.539 1.65 1.74 30.5 140.0 1.51 53 244 181 64 29 DF L 19 1 81 89 .872 1.65 1.74 30.5 140.0 1.51 53 244 181 64 29 DF L 20 2 83 17 1.508 3.29 30.5 140.0 1.51 53 244 181 64 29 DF L 21 2 82 17 1.368 3.29 30.5 140.0 1.51 53 244 181 64 29 DF L 26 2 82 17 .379 1.65	ES	20	1	81	103	.570	1.29	1.71	30.7	143.3	1.36	52	245	163	63	29
DF L 15 1 82 17 1.341 1.65 30.5 140.0 1.51 53 244 181 64 29 DF L 20 2 83 17 1.508 3.29 140.0 1.51 53 244 181 64 29 DF L 20 2 82 17 1.508 3.29 1.51 53 244 181 64 29 DF L 26 2 82 17 1.368 3.29 1.51 53 244 181 64 29 DF L 26 2 82 17 1.368 3.29 1.51 53 244 181 64 29 DF L 26 2 82 17 1.379 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.64 29 DF L 30 1 82 17 2.63 1.29 1.61 1.51 53 244	ES	Totals	2	78	90	1.293	2.59	3.16	29.9	128.0	2.46	94	404	294	113	48
DF L 19 1 81 89	DF I	L 14	1	83	17	1.539	1.65									
DF L 20 2 83 17 1.508 3.29 DF L 21 2 82 17 1.368 3.29 DF L 26 2 82 17 8.92 3.29 DF L 28 1 82 17 3.79 1.65 DF L 30 1 82 17 3.35 1.65 DF L 30 1 82 12 3.05 140.0 1.51 53 244 181 64 29 GF L 30 1 86 17 2.63 1.29 <			1													
DF L 21 2 82 17 1.368 3.29 .892 3.29 .892 3.29 .892 3.29 .892 .379 1.65 .379 1.65 .379 1.65 .335 1.65 .892 .329 .335 1.65 .892 .335 1.65								1.74	30.5	140.0	1.51	53	244	181	64	29
DF L 26 2 82 17 .892 3.29																
DF L 28 1 82 17 .379 1.65 .335 1.65																
DF L 30 1 82 17 .335 1.65 Image: Constraint of the constrai																
GF 1 86 17 .263 1.29 Image: Second																
GF Totals 1 86 17 .263 1.29 PP L 26 1 86 17 .351 1.29 PP Totals 1 86 17 .351 1.29 PP Totals 1 86 17 .351 1.29	DF	Totals	11	82	25	8.235	18.10	1.74	30.5	140.0	1.51	53	244	181	64	29
PP L 26 1 86 17 .351 1.29 PP Totals 1 86 17 .351 1.29 Image: Constraint of the second secon	GF I	L 30	1	86	17	.263	1.29									
PP Totals 1 86 17 .351 1.29	GF	Totals	1	86	17	.263	1.29									
	PP I	L 26	1	86	17	.351	1.29									
Totals 39 81 53 80.931 112.46 96.25 23.1 97.0 62.73 2228 9,339 7,507 2,666 1,118	PP	Totals	1	86	17	.351	1.29									
	Totals	-	39	81	53	80.931	112.46	96.25	23.1	97.0	62.73	2228	9,339	7,507	2,666	1,118


Take trees per acre - 72.082 Leave trees per acre - 8.849


TC TS	TNDS	UM						Stand	l Table	Summa	ıry					
								Proj	ect	DEERF	SAL					
T29N Twp 29N	R38 Rge 38E		Tra	act	R FI	RE		`ype 0U5		cres 4.42	Plots 39	Sample T 86		T29N R Page: Date: Time:	38E S16 7 1 1/19/20 1:04:07	1(
s		Samp		F	Av Ht	Trees/		Logs	Net	age Log Net	Tons/	Net Cu.Ft.	Net Bd.Ft.		otals	
Spc 7		H Tree			Tot	Acre	Acre	Acre		Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
DF DF				81 78	33 40	12.499 4.761	5.17 2.59	6.27 3.01	8.1 12.7	39.8 50.0	1.44 1.09		250 150	252 191	88 67	44 26
DF	1			78 78	40 35	2.644	1.72	1.41	12.7	30.0	.48		42	83	29	20 7
DF				74	57	1.135	.86	1.13	15.7	50.0	.51		57	89	31	10
DF	1	3	2 8	80	40	1.976	1.72	1.93	10.9	40.0	.60	21	77	105	37	13
DF	1	5	2 8	83	17	1.395	1.72									
DF	1			83	17	.971	1.72									
DF	2			82	63	.348	.86	.70	33.8	130.0	.67	24	91	117	41	16
DF				83	17	.279	.86	4.4	55.0	175.0	70	25	70	102	42	14
DF DF	2			73 76	70 99	.222 .161	.86 .86	.44 .48	55.8 63.3	175.0 306.7	.70		78 148	123 152	43 53	14 26
	_															
DF	Tota			80	35	26.390		15.38	14.5	58.1	6.37	224	893	1,111	390	156
GF GF				85 86	17	2.965 2.350	.86 .86									
GF GF				86 86	17 38	4.227	.80 1.72	2.04	10.2	30.0	.60	21	61	104	36	11
GF	1			86	37	4.530	2.59	2.04	9.4	45.0	.00		131	138	48	23
GF				81	45	3.320	2.59	3.25	13.3	50.0	1.24		163	216	75	28
GF	1	3	1 8	85	17	.964	.86									
GF	1	4	3 8	86	36	2.419	2.59	1.64	17.0	85.0	.80	28	139	139	49	24
GF				86	17	1.234	1.72									
GF				86	17	.348	.86					• •				
GF				85	78	.326	.86	.65 .81	42.3	205.0	.79 1.07		134	138	48	23
GF GF				90 85	103 17	.270 .097	.86 .86	.81	46.2	186.7	1.07	37	151	187	65	26
GF	Tota	-		85	33	23.051	17.24	11.31	16.3	68.9	5.28	184	779	922	322	136
	_	_		83 83	17	.921	.86	11.31	10.3	08.9	5.20	104	119	922	322	130
DF I DF I				83 82	17	.921 1.673	.80 1.72									
DF I				83	17	2.850	3.45									
DF I				82	17	.641	.86									
DF I	1	7	1 8	83	17	.547	.86									
DF I	1	8	2 8	82	17	1.004	1.72									
DF I				83	17	.420	.86									
DF I				82	17	1.580	3.45									
DF I DF I				82 82	17 17	.656 .312	1.72 .86									
				82 82	17	.312	.80 .86									
DF I				82	17	.516	1.72									
DF I				82	17	.217	.86									
DF I			1 8	83	17	.206	.86									
DF I				82	17	.188	.86									
DF I				83 83	17	.161	.86									
	_			83	17	.137	.86				ļ					
DF	Tota			82	17	12.309										
GF I				86	17	.867	.86									
GF I				85 85	17 17	.442 .403	1.72 1.72									
GF I GF I				85 86	17 17	.403	1.72 .86									
				86	17	.127	.86									
GF	Tota			86	17	2.027	6.03									
	100		, (50	1/	2.027	0.05									


TC 7	гзт	NDSUN	N					Stand	l Table S	Summa	ry					
								Proj	ect	DEERF	SAL					
T291 Twp 29N		R38E Rge 38E		Trac	t R FI	RE		`ype 0U5		cres 4.42	Plots 39	Sample T 86		T29N R Page: Date: Time:	38E S16 T 2 1/19/201 1:04:07	le
	s		Sample			Trees/	BA/	Logs	Avera Net	nge Log Net	Tons/	Net Cu.Ft.	Net Bd.Ft.	Т	otals	
Spc	Т	DBH	Trees	16'	Tot	Acre	Acre	Acre	Cu.Ft.	Bd.Ft.	Acre	Acre	Acre	Tons	Cunits	MBF
PP	L	10	1	86	17	1.461	.86									
PP	L	17	1	86	17	.534	.86									
PP PP	L L	21 30	2 1	86 86	17 17	.727 .176	1.72 .86									
PP		Totals	5	86	17	2.898	4.31									
WL	L	15	1	86	17	.693	.86									
WL	L	18	1	87	17	.488	.86									
WL	L	19	1	87	17	.462	.86									
WL	L	22	1	87	17	.324	.86									
WL	L	24	1	86	17	.274	.86									
WL		Totals	5	87	17	2.240	4.31									
Totals			86	83	29	68.915	74.11	26.69	15.3	62.6	11.65	5 408	1,672	2,033	712	292

Take trees per acre - 49.441 Leave trees per acre - 19.474

Forest Practices Application/Notification

Notice of Decision

FPA/N No:		3020677
Effective Date:	acted at	01/12/16
Expiration Date:		01/12/19
Shut Down Zone:		687
EARR Tax Credit:	[x] Eligible	[]N
Reference:		DNR

	3020011
acted at	01/12/16
	01/12/19
	687
[x] Eligible	[] Non-eligible DNR
Dee	r Fire Salvage

Decision

[] Notification	Operations shall not begin before the effective date.
[×] Approved	This Forest Practices Application is subject to the conditions listed below.
[] Disapproved	This Forest Practices Application is disapproved for the reasons listed below.
[] Closed	Applicant has withdrawn FPA/N.

FPA/N Classification

[] Class II [x] Class III [] Class IVG [] Class IVS

Number of Years Granted on Multi-Year Request

[]4 years [] 5 years

Conditions on Approval / Reasons for Disapproval

Conditions:

1. Streams and wetlands may have been identified within this harvest area. If changes occur to streams or wetlands during the time of this activity, notify the forest practice forester immediately for correct protection measures.

2. When harvesting on slopes that have the potential to deliver sediment to a public resource, use best management practices to minimize the potential. This could include: progressive water barring of skid trails, slash placement or grass seeding. Leaving small trees or logs on the ground that are perpendicular to the slope can also be helpful in minimizing erosion or delivering sediment to a public resource.

Reminders:

1. For each acre harvested, two green recruitment trees (grt), two wildlife reserve trees (wrt) and two down logs are required to be left, see WAC 222-30-020(12)(b).

2. For each acre harvested, reforestation is required, see WAC 222-34-020.

Issued By: _	Bernie Jones	Region:	Northeast
Title:	Forest Practices Forester	Date:	01/12/16
Copies to:	[] Landowner, Timber Owner and Operator.		
Issued in person:	[\] Landowner [\]Timber Owner [\] Operator By:	15	Service POST