Publications of the Washington Geological Survey

April 2019

Some of our publications are sold through the Washington State Department of Enterprise Services (see p. 3)
TABLE OF CONTENTS

How to Obtain Publications 3
Contact Us ... 3
Publication Series Descriptions 4
Annual Reports ... 5
Bulletins .. 7
Digital Data Series .. 9
Digital Reports ... 10
Fact Sheets .. 10
Field Trip Guides ... 10
Geologic Maps ... 10
Information Circulars 14
Map Series .. 18
Open File Reports ... 20
Reports of Investigations 34
Reprints ... 36
Resource Maps ... 36
Topographic Maps ... 36
Miscellaneous Reports 37
3D PDFs—7.5-Minute Quadrangles 39
Other Publications ... 41

FEATURED PRODUCTS

Washington State Geology News
The Survey now has a blog, called the Washington State Geology News, where we share current events within the Survey, preliminary research findings, exciting geology photography, and recent publication announcements. Once there you can subscribe to receive new blog posts automatically. [ONLINE]

Washington Geologic Information Portal
The portal allows you to access interactive earth science mapping, data, and related information. Using our interactive maps, you can create, save, and print custom maps, find out more about map features, and download map data for use in a geographic information system (GIS). In addition to a variety of geoscience layers that can be turned on and off, each interactive map has many base layers to choose from, so you can customize your map in any number of ways. [ONLINE]

Catalog of the Washington Geology Library
Looking for an obscure geologic report? This searchable database of library holdings will help you find it. The Washington Geology library contains more than 40,000 titles on the geology of Washington State, more than 3000 current and historic topographic and geologic maps, a comprehensive set of dissertations and theses, environmental impact statements and watershed analyses, and the National Tsunami Hazard Mitigation Program library collection. There are links to online publications where available. [ONLINE]

1:100,000-, 1:250,000-, and 1:500,000-scale Geologic Maps of Washington State
All of our geologic maps are now available through our website on our Publications and Maps page. Scroll down and click on “Geologic Maps”. The maps can also be found on a page-size color map that shows published geologic mapping of 7.5-minute topographic quadrangles in Washington State from all sources. Attached text lists quads alphabetically and by author, with links to online publications. [ONLINE]

1:24,000-scale (7.5-minute) Geologic Maps of Washington State
A variety of geographic information system (GIS) data is available on our website in ESRI shapefile format, including geologic coverage of the entire state of Washington at scales of 1:24,000, 1:100,000, 1:250,000, and 1:500,000. [ONLINE]

Geoscience GIS Data

TsuInfo Alert
TsuInfo Alert is a bi-monthly newsletter that links scientists, emergency responders, and community planners to the latest tsunami research. It is published by WGS for the National Tsunami Hazard Mitigation Program, a state/federal partnership funded through the National Oceanic and Atmospheric Administration. It is made possible by a grant from the Federal Emergency Management Agency via the Washington Military Department Emergency Management Division. [ONLINE]

Coal Mine Map Collection
Coal has been mined in Washington since 1853. Although current production is from surface mines, nearly all coal produced prior to about 1970 came from underground workings. Since early in this century, Washington State law has required mine operators to submit detailed plans of all underground coal operations to the state on an annual basis. About 1,100 individual maps representing about 230 mines have been scanned and are available electronically. [ONLINE]
HOW TO OBTAIN PUBLICATIONS

Publications are listed by series. This document is searchable using the Acrobat search function. Publications that are in print may be purchased from the Washington State Department of Enterprise Services (see below for details). Online publications are indicated by a hyperlink [ONLINE] at the end of the publication description. Where possible, larger files have been broken into parts for ease of downloading [PART 1] [PART 2]. For unusual cases, we have tried to make the link name descriptive enough to distinguish between files. If you need a hard copy of a large-format report, such as a map, and do not have access to a plotter, your local copy center may be able to print it out. Reports marked “Lib. use only” may be viewed in the Survey library in Olympia. All new Survey reports and maps are announced on our website.

IN-PRINT PUBLICATIONS
Publications marked ‘In print’ may be ordered from the Washington State Department of Enterprise Services. To order, note the publication series, number, and title of the desired publication(s) before using the online store (http://www.des.wa.gov/). If you use the online store, select ‘SERVICES’, then ‘Print Online Ordering’ under ‘Printing & Mail’, then ‘FULFILLMENT’ in the middle of the screen. In the left panel, select ‘Fulfillment (By Agency)’, then ‘Natural Resources (Geology Division)’. Publications in the General Store are organized by series, and listed prices include shipping and handling. Follow the website instructions to complete your purchase.

OUT-OF-PRINT PUBLICATIONS
Many of our publications are out of print and no longer for sale, but they are available online. If you can’t find what you are looking for in this publications list, search our online library catalog at: http://www.dnr.wa.gov/programs-and-services/geology/washington-geology-library. Out-of-print items are sometimes returned to the Survey and are made available ‘first-come, first-served’. Availability changes often; e-mail stephanie.earls@dnr.wa.gov for current availability.

CONTACT US

Mailing Address
Washington Geological Survey
MS 47007; Olympia, WA 98504-7007
See map for street address
Phone: 360-902-1450; Fax: 360-902-1785
E-mail: geology@dnr.wa.gov (general services) stephanie.earls@dnr.wa.gov (library services)
URL: www.dnr.wa.gov/geology

Visitors may enter the Natural Resources Building parking lot using the Washington Street entrance. Visitor parking (VP) is on level P1. Follow the signs. The parking fee is $1.50/hr.
The Survey is across the Rotunda, past the four elevators, on the north side of first floor. See the building directory in the lobby. Sign in at the Information Desk in the Rotunda to get a visitor’s pass.

Staff List
The Survey Staff List has contact information for individual staff.
PUBLICATION SERIES DESCRIPTIONS

Bulletin

The subject matter of a Bulletin is of widespread interest in the geologic community and the subject matter is treated thoroughly and in a well-organized, scholarly manner. Bulletins are usually written for geologic audiences. Bulletins are peer reviewed and edited to Survey/USGS/major journal standards.

Geologic Map (GM) and Map Series (MS)

Geologic Maps (GMs) and Map Series (MS) publications are geological, geophysical, or derivative maps, with text on the map or in an accompanying pamphlet. The maps are the chief vehicles of communication. They are usually the result of original field investigations or extensive compilation and re-presentation of data in map form. Geologic Maps are peer reviewed and edited to Survey/USGS/major journal standards. Map Series are not peer reviewed, but are still edited to conform to Survey/USGS/major journal standards.

Report of Investigations (RI)

A Report of Investigations (RI) conveys the results of significant field investigations, usually by a Survey staff geologist. It may contain a map or maps larger than page size, but the report is chiefly text and page-sized figures and tables. It is usually shorter than a Bulletin and narrower in scope and more restricted in geographic coverage. It is still a thorough and often scholarly presentation that conveys important information and is complete and able to stand on its own. RIs are usually written for a geologic audience. They are peer reviewed and edited to Survey/USGS/major journal standards.

Information Circular (IC)

An Information Circular (IC) is a vehicle for all types of geologic or geology-related information, usually in 8½ x 11 in. format. Original field work may be involved but often is not. Instead, the report is usually a compilation of data or historical records, assembled because the information has geologic significance, is needed by a large number of people, or is otherwise unavailable in convenient form. An IC is sometimes written for a geologic audience, but is more often written to be useful to geologists and understandable to the general public. ICs have been catalogs (earthquake hypocenters, oil and gas exploration wells, mining operations, map indexes, theses), road logs, or reports on particular areas. An IC is edited to Survey/USGS/major journal standards, but is not always peer reviewed.

Topographic Map (TM)

The only Topographic Maps (TM) issued to date are the 1:250,000 topographic maps prepared by the Survey to serve as base maps for the southwest, northeast, and southeast quadrants of the state geologic map (GM-34, GM-39, and GM-45).

Digital Data Series (DS)

Digital Data Series (DS) present geologic data in GIS file geodatabase format. The data are available online and intended to be used interactively (that is, the data can be analyzed, displayed, or otherwise manipulated to meet the user’s needs). The datasets may be updated from time to time, will not exist on paper, and are not archived; that is, when the data is updated, no copy of the previous version is kept. For DSs, there are specific hardware/software/expertise requirements. Updates are identified by a version number, typically the date. For some Digital Reports, requesters may be asked to execute a product license agreement. Digital Data Series are usually edited for conformance to Survey digital data standards.

Digital Report (DR)

Digital Reports (DR) present large data sets in electronic form. The reports are available online and intended to be used interactively (that is, the data can be sorted, subdivided, or otherwise manipulated to meet the user’s needs). The reports may be updated from time to time, may not exist on paper, and are not archived; that is, when the report is updated, no copy of the previous version is kept. For some DRs, there are specific hardware/software/expertise requirements. Updates are identified by a version number, typically the date (for example, DR-1, ver. 8/26/1998). For some Digital Reports, requesters may be asked to execute a product license agreement. Digital Reports are usually not edited or peer reviewed in the usual sense. Instead they are prepared with due care and then modified or corrected as authors and (or) users find problems or errors.

Open File Report (OFR)

An Open File Report (OFR) is a body of geologic or geology-related information in map and (or) text form that is significant enough to make available to the public, but, for one reason or another, has not been prepared and released as a Bulletin, GM, RI, or IC. These reasons include: (1) the report is preliminary, (2) the report must be released quickly, (3) the report was never intended for publication, perhaps because very few copies will be needed, (4) the report is informal or doesn’t lend itself to one of the formal report series, or (5) people, money, and (or) time are not available to prepare a Bulletin, GM, RI, or IC. OFRs may or may not be peer reviewed and (or) edited to Survey/USGS/major journal standards.

Field Trip Guide (FTG)

A Field Trip Guide (FTG) is just what it says it is—a field trip guide. FTGs may or may not be peer reviewed and (or) edited to Survey/USGS/major journal standards.
ANNUAL REPORTS

Annual Reports are available online only.

Washington State Geologist

Mines and minerals of Washington—Annual report of George A. Bethune, first State Geologist, 1890, by G. A. Bethune. 1891. 122 p. [ONLINE]

Washington Mining Bureau

First annual report of the Mining Bureau of the State of Washington, from April 1, 1891 to April 1, 1892. 1892. 46 p., 5 pl. [ONLINE]

Washington Geological Survey

Annual Report for 1901; Volume I. 1902. 344 p. [PARTS I-II]

The chapters are also available separately:

- Part II. The metalliferous resources of Washington, except iron, by Henry Landes, W. S. Thyng, D. A. Lyon, and Milnor Roberts. 1902. 123 p., 4 pl. [ONLINE]
- Part III. The non-metalliferous resources of Washington, except coal, by Henry Landes. 1902. 55 p., 11 pl. [ONLINE]
- Part V. The water resources of Washington—Potable and mineral water, by H. G. Byers; Artesian water, by C. A. Ruddy; and, Water power, by R. E. Heine. 1902. 37 p., 7 pl. [ONLINE]
- Part VI. Bibliography of the literature referring to the geology of Washington, by Ralph Arnold. 1902. 16 p. [ONLINE]

The biennial report of the Board of Geological Survey of the State of Washington for the term 1901-1903. 1903. 7 p. [ONLINE]

The biennial report of the Board of Geological Survey of the State of Washington for the term 1911-13. 1913. 24 p. 3 pl. [ONLINE]

The biennial report of the Board of Geological Survey of the State of Washington for the term 1913-1915. 1915. 31 p. 3 pl. [ONLINE]

The biennial report of the Board of Geological Survey of the State of Washington for the term 1915-1917. 1917. 29 p. 3 pl. [ONLINE]

Department of Conservation and Development*

Report of the Supervisor of Geology, Department of Conservation and Development, from April 1, 1921, to September 30, 1922, by Solon Shedd. 1922. 9 p. [ONLINE]

Third biennial report of the Department of Conservation and Development from April 1, 1925, to September 30, 1926, by E. J. Barnes. 1927. 93 p. 2 pl. [ONLINE]

Fourth biennial report of the Department of Conservation and Development from October 1, 1926, to September 30, 1928, by E. J. Barnes. 1928. 75 p. 2 pl. [ONLINE]

Seventh biennial report of the Department of Conservation and Development from October 1, 1932, to September 30, 1934, by E. F. Banker. 1935. 57 p. [ONLINE]

Biennial report of Division of Geology—April 1, 1933, to November 30, 1934, by H. E. Culver. 1935. 14 p. [ONLINE]

Eighth biennial report of the Department of Conservation and Development—October 1, 1934, to September 30, 1936, by J. B. Fink. 1937. 68 p. [ONLINE]

First biennial report of the Division of Mines and Mining, June 1, 1935, to December 31, 1936, by T. B. Hill. 1937. 6 p. [ONLINE]

Summary report of major activities, Division of Geology, for the biennial 1935-37, by H. E. Culver. 1936. 7 p. [ONLINE]

Ninth biennial report of the Department of Conservation and Development—October 1, 1936–September 30, 1938, by J. B. Fink. 1939. 115 p. [ONLINE]

[Second biennial report of the Division of Mines and Mining, January 1, 1937, to December 31, 1938, by T. B. Hill. 1939. 17 p. [ONLINE]

Tenth biennial report of the Department of Conservation and Development, October 1, 1938—September 30, 1940, by J. B. Fink. 1941. 150 p. [ONLINE]

Third biennial report of the Division of Mines and Mining for the period commencing January 1, 1939 and ending January 1, 1941, by T. B. Hill. 1941. [ONLINE]

Eleventh biennial report of the Department of Conservation and Development—October 1, 1940–September 30, 1942, by Ed Davis. 1943. 54 p. [ONLINE]

* We have published under several different names, as our organization and our parent agency have changed significantly since its inception. Former publishing names include the Department of Conservation and Development, the Division of Geology, the Division of Mines and Mining, and the Division of Mines and Geology. In 1965, the Division was made a part of the Department of Natural Resources. In 1973, the Division of Mines and Geology became the Division of Geology and Earth Resources. In 2017, we became the Washington Geological Survey.
Fourth biennial report of the Division of Mines and Mining for the period commencing October 1, 1940 and ending September 30, 1942, by S. L. Glover. 1943. 9 p. [ONLINE]

Twelfth biennial report of the Department of Conservation and Development—October 1, 1942–September 30, 1944, by Ed Davis. 1944. 52 p. [ONLINE]

Fifth biennial report of the Division of Mines and Mining for the period commencing October 1, 1942, and ending September 30, 1944, by S. L. Glover. 1944. 6 p. [ONLINE]

Biennial report no. 1 of the Division of Mines and Geology for the period commencing October 1, 1944 and ending September 30, 1946, by S. L. Glover. 1946. 24 p. [ONLINE]

Biennial report no. 2 of the Division of Mines and Geology for the period commencing October 1, 1946 and ending September 30, 1948; including a report on Washington’s mineral industry, by S. L. Glover. 1948. 28 p. [ONLINE]

Biennial report no. 3 of the Division of Mines and Geology for the period commencing October 1, 1948 and ending September 30, 1950, by S. L. Glover. 1951. 13 p. [ONLINE]

Biennial report no. 4 of the Division of Mines and Geology for the period commencing October 1, 1950 and ending September 30, 1952, by S. L. Glover. 1952. 8 p. [ONLINE]

Biennial report no. 7 of the Division of Mines and Geology for the period commencing July 1, 1956 and ending June 30, 1958, by M. T. Huntting. 1958. 19 p. [ONLINE]

Biennial report no. 8 of the Division of Mines and Geology [for the period commencing July 1, 1958 and ending June 30, 1960], by M. T. Huntting. 1960. 26 p. [ONLINE]

Department of Natural Resources
Division of Geology and Earth Resources

The Washington Division of Geology and Earth Resources—Geology in the public interest. 2003. 4 p. [ONLINE]

The Washington Division of Geology and Earth Resources—Geology in the public interest. 2005. 4 p. [ONLINE]

The Washington Division of Geology and Earth Resources—Geology in the public interest [short version]. 2005. 2 p. [ONLINE]

The Washington Division of Geology and Earth Resources—Geology in the public interest. 2009. 4 p. [ONLINE]
BULLETINS

In-print Bulletins are sold through the Washington State Department of Printing General Store (see p. 3)

Washington Geological Survey

1. Geology and ore deposits of Republic mining district, by J. B. Umpleby. 1910. 66 p., 13 pl., 5 figs. [ONLINE]
2. The road materials of Washington, by Henry Landes. 1911. 204 p., 17 pl., 51 figs. [ONLINE]
3. The coal fields of King County, by G. W. Evans. 1912. 247 p., 23 pl., 59 figs. [ONLINE]
4. Cement materials and industry in Washington, by Solon Shedd. 1913. 268 p., 21 pl., 10 figs. [PART 1] [PART 2]
5. Part I. Geology and ore deposits of the Myers Creek mining district; Part II. Geology and ore deposits of the Oroville–Nighthawk mining district, by J. B. Umpleby. 1911. 113 p., 3 pl., 5 figs. [ONLINE]
6. Geology and ore deposits of the Blewett mining district, by C. E. Weaver. 1911. 104 p., 10 pl., 1 fig. [ONLINE]
7. Geology and ore deposits of the Index mining district, by C. E. Weaver. 1912. 96 p., 7 pl. [ONLINE]
8. Glaciation of the Puget Sound region, by J H. Bretz. 1913. 244 p., 24 pl., 27 figs. [ONLINE]
9. The coal fields of Kittitas County, by E. J. Saunders. 1914. 204 p., 38 pl., 52 figs. [ONLINE]
10. The coal fields of Pierce County, by Joseph Daniels. 1914. 146 p., 30 pl., 23 figs. [ONLINE]
11. The mineral resources of Washington, with statistics for 1912, by Henry Landes. 1914. 53 p., 1 pl. [ONLINE]

Superseded by the online bibliography.

13. The Tertiary formations of western Washington, by C. E. Weaver. 1916. 327 p., 30 figs., 3 pl. [PART 1] [PART 2]
16. Geology and ore deposits of the Covada mining district, by C. E. Weaver. 1913. 87 p., 5 pl., 3 figs. [ONLINE]
17. A geographic dictionary of Washington, by Henry Landes. 1917. 346 p., 10 pl. [PART 1] [PART 2]
18. The country about Camp Lewis, by M. M. Leighton. 1918. 105 p., 12 pl., 6 figs. [ONLINE]
20. The mineral resources of Stevens County, by C. E. Weaver. 1920. 350 p., 20 pl., 14 figs. [PART 1] [PART 2]
23. The metal mines of Washington, by E. N. Patty. 1921. 366 p., 36 pl., 27 figs. [PART 1] [PART 2]

Division of Geology

24. Clays and shales of Washington, by S. L. Glover. 1941. 368 p., 14 pl., 6 figs. [PART 1] [PART 2]
25. The magnesite deposits of Washington, their occurrence and technology, by G. E. Whitwell and E. N. Patty. 1921. 194 p., 13 pl., 5 figs. [ONLINE]
26. Underground water supply of the region about White Bluffs and Hanford, by O. P. Jenkins. 1922. 41 p., 3 pl., 1 fig. [ONLINE]
30. The mineral resources of Washington, with statistics for 1922, by Solon Shedd, with an article on coal and coke by G. W. Evans. 1924. 224 p., 3 figs. [ONLINE]
34. Tungsten resources of Washington, by H. E. Culver and W. A. Broughton. 1945. 89 p., 23 pl., 9 figs. [ONLINE]

Superseded by the online bibliography.

Division of Mines and Geology

37. Inventory of Washington minerals:

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
<th>Pages</th>
<th>Location</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>The place of steam-electric generating stations in the orderly program of electric power development in the Pacific Northwest</td>
<td>H. H. Houston</td>
<td>1950</td>
<td>117</td>
<td>by,</td>
<td>Out of print</td>
</tr>
<tr>
<td>39</td>
<td>Antimony occurrences of Washington</td>
<td>C. P. Purdy Jr.</td>
<td>1951</td>
<td>186</td>
<td>Out of print</td>
<td>[ONLINE]</td>
</tr>
<tr>
<td>40</td>
<td>Geology of the Bead Lake district, Pend Oreille County, Washington</td>
<td>M. C. Schroeder</td>
<td>1952</td>
<td>57</td>
<td>Out of print</td>
<td>[ONLINE]</td>
</tr>
<tr>
<td>42</td>
<td>Gold in Washington</td>
<td>M. T. Hunting</td>
<td>1955</td>
<td>158</td>
<td>Web only</td>
<td>[ONLINE]</td>
</tr>
<tr>
<td>43</td>
<td>Eocene stratigraphy of the lower Cowlitz River–eastern Willapa Hills area, southwestern Washington</td>
<td>D. A. Henriksen</td>
<td>1956</td>
<td>122</td>
<td>Out of print</td>
<td>[ONLINE]</td>
</tr>
<tr>
<td>44</td>
<td>Peat resources of Washington</td>
<td>G. B. Rigg</td>
<td>1958</td>
<td>272</td>
<td>Out of print</td>
<td>[PART 1] [PART 2] [PART 3]</td>
</tr>
<tr>
<td>45</td>
<td>Washington’s channeled scabland</td>
<td>J. H. Bretz</td>
<td>1959</td>
<td>57</td>
<td>Out of print</td>
<td>[PART 2] [PART 3] [PART 4]</td>
</tr>
<tr>
<td>46</td>
<td>Bibliography and index of the geology and mineral resources of Washington, 1937–1956</td>
<td>W. H. Reichert</td>
<td>1960</td>
<td>721</td>
<td>Superseded by the online bibliography.</td>
<td>[ONLINE]</td>
</tr>
<tr>
<td>48</td>
<td>High-calcium limestones of eastern Washington</td>
<td>J. W. Mills</td>
<td>1962</td>
<td>268</td>
<td>Out of print</td>
<td>[PART 1] [PART 2] [PART 3]</td>
</tr>
<tr>
<td>49</td>
<td>Saline lake deposits in Washington</td>
<td>W. A. G. Bennett</td>
<td>1962</td>
<td>129</td>
<td>In print</td>
<td>[ONLINE]</td>
</tr>
<tr>
<td>50</td>
<td>Geology and mineral deposits of the north half of the Van Zandt quadrangle, Whatcom County, Washington</td>
<td>W. S. Moen.</td>
<td>1962</td>
<td>129</td>
<td>Out of print</td>
<td>[PRINT] [PART 2] [PART 3]</td>
</tr>
<tr>
<td>51</td>
<td>Barite in Washington</td>
<td>W. S. Moen.</td>
<td>1964</td>
<td>112</td>
<td>In print</td>
<td>[PRINT] [PART 1]</td>
</tr>
<tr>
<td>52</td>
<td>Limestone resources of western Washington</td>
<td>W. R. Danner</td>
<td>1966</td>
<td>474</td>
<td>In print</td>
<td>[PART 1] [PART 2] [PART 3]</td>
</tr>
<tr>
<td>53</td>
<td>Stratigraphy and foraminifera of the Satsop River area, southern Olympic Peninsula, Washington</td>
<td>W. W. Rau.</td>
<td>1966</td>
<td>66</td>
<td>In print</td>
<td>[PRINT] [PART 1] [PART 2] [PART 3]</td>
</tr>
<tr>
<td>54</td>
<td>Geology and mineral resources of the Kelso–Cathlamet area, Cowlitz and Wahkiakum Counties, Washington</td>
<td>V. E. Livingston Jr.</td>
<td>1966</td>
<td>110</td>
<td>Out of print</td>
<td>[PRINT] [PART 1]</td>
</tr>
<tr>
<td>55</td>
<td>Building stone of Washington</td>
<td>W. S. Moen.</td>
<td>1967</td>
<td>85</td>
<td>In print</td>
<td>[PRINT] [ONLINE]</td>
</tr>
<tr>
<td>57</td>
<td>Mines and mineral deposits of Whatcom County, Washington</td>
<td>W. S. Moen.</td>
<td>1969</td>
<td>134</td>
<td>Out of print</td>
<td>[PART 1] [PART 2]</td>
</tr>
<tr>
<td>58</td>
<td>Chemical and physical controls for base metal deposition in the Cascade Range of Washington</td>
<td>A. R. Grant.</td>
<td>1969</td>
<td>107</td>
<td>Out of print</td>
<td>[ONLINE]</td>
</tr>
</tbody>
</table>

Superseded by the online bibliography.

Division of Geology and Earth Resources

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
<th>Pages</th>
<th>Location</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>Geology of the Washington coast between Point Grenville and the Hoh River</td>
<td>W. W. Rau.</td>
<td>1973</td>
<td>58</td>
<td>In print</td>
<td>[PRINT] [PART 1]</td>
</tr>
<tr>
<td>67</td>
<td>Mining laws of the State of Washington</td>
<td>J. L. Neff, R. L. Magnuson.</td>
<td>1974</td>
<td>9</td>
<td>Out of print</td>
<td>[PART 2] [PART 3] [PART 4]</td>
</tr>
<tr>
<td>68</td>
<td>Geology of the Methow Valley, Okanogan County, Washington</td>
<td>J. D. Barksdale</td>
<td>1975</td>
<td>72</td>
<td>Out of print</td>
<td>[PRINT] [PART 1]</td>
</tr>
<tr>
<td>69</td>
<td>Silver occurrences of Washington</td>
<td>W. S. Moen.</td>
<td>1976</td>
<td>188</td>
<td>Out of print</td>
<td>[PRINT] [PART 1]</td>
</tr>
<tr>
<td>70</td>
<td>Zinc and lead ore deposits in carbonate rocks, Stevens County, Washington</td>
<td>W. M. Phillips</td>
<td>1982</td>
<td>9</td>
<td>Reprinted 1982.</td>
<td>[PRINT] [PART 1]</td>
</tr>
<tr>
<td>71</td>
<td>Geology of parts of Grant, Adams, and Franklin Counties, east-central Washington</td>
<td>M. J. Grolier and J. W. Bingham.</td>
<td>1978</td>
<td>91</td>
<td>Out of print</td>
<td>[PART 2] [PART 3]</td>
</tr>
<tr>
<td>72</td>
<td>Washington coastal geology between the Hoh and Quillayute Rivers</td>
<td>W. W. Rau.</td>
<td>1980</td>
<td>57</td>
<td>Out of print</td>
<td>[PART 1] [PART 2]</td>
</tr>
<tr>
<td>73</td>
<td>Myers Creek and Wauconda mining districts of northeastern Okanogan County, Washington</td>
<td>W. S. Moen.</td>
<td>1980</td>
<td>66</td>
<td>Out of print</td>
<td>[PART 1] [PART 2] [PART 3] [PART 4]</td>
</tr>
</tbody>
</table>

RETURN TO TABLE OF CONTENTS

8
BULLETINS

In-print Bulletins are sold through the Washington State Department of Printing General Store (see p. 3)

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>77.</td>
<td>Selected papers on the geology of Washington, edited by J. E. Schuster.</td>
<td>1987. 406 p. [PART 1] [PART 2] [PART 3]</td>
</tr>
<tr>
<td>78.</td>
<td>Engineering geology in Washington, edited by R. W. Galster, chairman.</td>
<td>1989. [2 v.], 1234 p. [VOL 1 PART 1] [VOL 1 PART 2] [VOL 1 PART 3] [VOL 1 PART 4] [VOL 2 PART 1] [VOL 2 PART 2] [VOL 2 PART 3] [VOL 2 PART 4]</td>
</tr>
<tr>
<td>80.</td>
<td>Regional Geology of Washington State, Raymond Lasmanis and E. S. Cheney, convenors.</td>
<td>1994. 227 p., 136 figs., 18 tables. [PART 1] [PART 2]</td>
</tr>
</tbody>
</table>

DIGITAL DATA SERIES

Digital Data Series are available online only.

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Washington State seismogenic features database—GIS data, by J. D. Bowman and J. L. Czajkowski.</td>
<td>Web only</td>
</tr>
<tr>
<td>2.</td>
<td>Washington State aeromagnetic and gravity anomaly data—GIS data, by J. D. Bowman.</td>
<td>Web only</td>
</tr>
<tr>
<td>3.</td>
<td>Volcanic vents database for Washington State—GIS data, by J. L. Czajkowski and J. D. Bowman.</td>
<td>Web only</td>
</tr>
<tr>
<td>4.</td>
<td>Geothermal direct-use database in Washington State—GIS data, by J. D. Bowman.</td>
<td>Web only</td>
</tr>
<tr>
<td>10.</td>
<td>Surface geology, 1:24,000—GIS data, by Washington Division of Geology and Earth Resources.</td>
<td>Web only</td>
</tr>
<tr>
<td>12.</td>
<td>Metallic minerals database—GIS data, by Washington Division of Geology and Earth Resources.</td>
<td>Web only</td>
</tr>
<tr>
<td>13.</td>
<td>Nonmetallic (industrial) minerals database—GIS data, by Washington Division of Geology and Earth Resources.</td>
<td>Web only</td>
</tr>
<tr>
<td>14.</td>
<td>Hazardous minerals database—GIS data, by Washington Division of Geology and Earth Resources.</td>
<td>Web only</td>
</tr>
<tr>
<td>15.</td>
<td>Coal database—GIS data, by Washington Division of Geology and Earth Resources.</td>
<td>Web only</td>
</tr>
<tr>
<td>16.</td>
<td>Shear wave database—GIS data, by Washington Division of Geology and Earth Resources.</td>
<td>Web only</td>
</tr>
<tr>
<td>17.</td>
<td>Surface geology, 1:100,000—GIS data, by Washington Division of Geology and Earth Resources.</td>
<td>Web only</td>
</tr>
</tbody>
</table>

Washington Geological Survey

5. Geology in the public interest. 2015. 4 p. [ONLINE]

7. Landslide hazards in Washington state. 2015. 2 p. [ONLINE]

8. What are landslides and how do they occur? 2015. 2 p. [ONLINE]

11. Waterfall loop tour on the historic Columbia River Highway [Oregon] [ONLINE]

12. Preliminary geologic map of the Hobart and Maple Valley [7.5-minute] quadrangles, King County, Washington, by J. D. Vine. 1962. 43 x 36 in. color sheet, scale 1:24,000. [ONLINE]

13. Preliminary geologic map of the Cumberland [7.5-minute] quadrangle, King County, Washington, by H. D. Gower and A. A. Wanek. 1963. 30 x 41 in. color sheet, scale 1:24,000. [ONLINE]

Division of Geology and Earth Resources

GM-14. Preliminary surficial geologic map of the Edmonds East and Edmonds West [7.5-minute] quadrangles, Snohomish and King Counties, Washington, by Mackey Smith. 1975. 31 x 24 in. sheet, scale 1:24,000. [ONLINE]

GM-20. Preliminary surficial geologic map of the Mukilteo and Everett [7.5-minute] quadrangles, Snohomish County, Washington, by Mackey Smith. 1976. 35 x 24 in. sheet, scale 1:24,000. [ONLINE]

GM-42. Geologic map of the Sumner 7.5-minute quadrangles, Washington, by J. D. Dragovich and P. T. Pringle, with a section on liquefaction by S. P. Palmer. 1995. 24 x 26 in. color sheet, scale 1:24,000, with 26 p. text. [ONLINE]

In-print Geologic Maps are sold through the Washington State Department of Printing General Store (see p. 3)

GM-63. Geologic map of the Fox Island 7.5-minute quadrangle, Pierce County, Washington, by R. L. Logan, T. J. Walsh, and K. G. Troost. 2006. 33 x 36 in. color sheet, scale 1:24,000. [ONLINE]

GM-64. Geologic map of the Freeland and northern part of the Hansville 7.5-minute quadrangles, Island County, Washington, by Michael Polenz, H. W. Schasse, and B. B. Petersen. 2006. 46 x 36 in. color sheet, scale 1:24,000. [ONLINE]

GM-65. Geologic map of the Vaughn 7.5-minute quadrangle, Pierce and Mason Counties, Washington, by R. L. Logan and T. J. Walsh. 2007. 42 x 36 in. color sheet, scale 1:24,000. [ONLINE]

GM-67. Geologic map of the Fall City 7.5-minute quadrangle, King County, Washington, by J. D. Dragovich, M. L. Anderson, T. J. Walsh, B. L. Johnson, and T. L. Adams. 2007. 42 x 36 in. color sheet, scale 1:24,000, with 16 p. text. [ONLINE]

GM-73. Geologic map of the North Bend 7.5-minute quadrangle, King County, Washington, with a discussion of major faults, folds, and basins in the map area, by J. D. Dragovich, T. J. Walsh, M. L. Anderson, Renate Hartog, S. A. DuFran, Jeff Vervoot, S. A. Williams, Recep Cakir, K. D. Stanton, F. E. Wolff, and D. K. Norman. 2009. 38 x 36 in. color sheet, scale 1:24,000, with 39 p. text. [ONLINE]

GM-74. Geologic map of the Meeks Table and western two-thirds of the Nile 7.5-minute quadrangles, Yakima County, Washington, by P. E. Hammond. 2009. 36 x 38 in. color sheet, scale 1:24,000, with 12 p. text. [ONLINE]

GM-75. Geologic map of the Snoqualmie 7.5-minute quadrangle, King County, Washington, by J. D. Dragovich, H. A. Littke, M. L. Anderson, Renate Hartog, G. R. Wessel, S. A. DuFran, T. J. Walsh, J. H. MacDonald Jr., J. F. Mangano, and Recep Cakir. 2009. Two 42 x 36 in. color sheets, scale 1:24,000. [ONLINE]

GM-76. Geologic map of the Cliffe dell and western two-thirds of the Manastash Lake 7.5-minute quadrangles, Yakima and Kittitas Counties, Washington, by P. E. Hammond. 2010. 36 x 48 in. color sheet, scale 1:24,000, with 11 p. text. [ONLINE]

Note: STEMAP 7.5-minute quadrangles from 2012 through the present have been published under the new Map Series.
3	State publications in geology, issued by the First State Geologist, 1890-1892, the Washington Geological Survey, 1901-1902, the Division of Geology, 1921—, compiled by S. L. Glover. 1937. 5 p. [ONLINE]	Out of print
4	Preliminary report on strategic metals in Washington, by the Division of Mines and Mining. 1940. 3 p. [ONLINE]	Out of print
5	Directory of Washington metallic mining properties, by the Division of Mines and Mining. 1940. 72 p. [ONLINE]	Out of print
7	Directory of Washington mines, 1939, compiled by the Division of Mines and Mining. 1939. 21 p. [ONLINE]	Out of print
8	Preliminary report on strategic metals in Washington, by the Division of Mines and Mining. 1940. 7 p. [ONLINE]	Out of print
9	Directory of Washington metallic mining properties, by the Division of Mines and Mining. 1940. 72 p. [ONLINE]	Out of print
10	Summary of information on iron ore deposits of Washington, by the Division of Mines and Mining. 1940. 11 p. [ONLINE]	Out of print
11	Directory of Washington metallic mining properties, by the Division of Mines and Mining. 1941. 74 p. [ONLINE]	Out of print
26	Uranium in Washington (an extract from Bulletin 37, Part II), by M. T. Hunting. 1957. 10 p., 1 pl. [ONLINE]	Out of print
30	Archeology in Washington, by Bruce Stallard. 1958. 64 p., 1 pl., 34 figs. [ONLINE]	Out of print
INFORMATION CIRCULARS

In-print Information Circulars are sold through the Washington State Department of Printing General Store (see p. 3)

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Publication Date</th>
<th>Pages</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>A geologic trip along Snoqualmie, Swauk, and Stevens Pass highways, by University of Washington Geology Department staff, revised by V. E. Livingston Jr.</td>
<td>1963</td>
<td>51</td>
<td>Out of print</td>
</tr>
</tbody>
</table>

Division of Geology and Earth Resources

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Publication Date</th>
<th>Pages</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Energy resources of Washington, by Washington Division of Geology and Earth Resources staff, and others.</td>
<td>1974</td>
<td>158 p.</td>
<td>Out of print</td>
</tr>
<tr>
<td>54</td>
<td>A geologic road log over Chinook, White Pass, and Ellensburg to Yakima highways, by N. P. Campbell.</td>
<td>1975</td>
<td>82 p.</td>
<td>Out of print</td>
</tr>
<tr>
<td>58</td>
<td>Engineering geologic studies, by Washington Division of Geology and Earth Resources staff; and others.</td>
<td>1976</td>
<td>40 p.</td>
<td>Out of print</td>
</tr>
<tr>
<td>61</td>
<td>Annotated guide to sources of information on the geology, minerals, and ground-water resources of the Puget Sound region, Washington, King County section, by W. H. Reichert, with supplemental references by D. D. Dethier.</td>
<td>1978</td>
<td>63 p.</td>
<td>In print</td>
</tr>
</tbody>
</table>

Superseded by Information Circular 75.

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Publication Date</th>
<th>Pages</th>
<th>Availability</th>
</tr>
</thead>
</table>

Superseded by the online bibliography.

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Publication Date</th>
<th>Pages</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>Index to geologic and geophysical mapping of Washington, compiled by C. J. Manson.</td>
<td>1981</td>
<td>63 p.</td>
<td>Out of print</td>
</tr>
<tr>
<td></td>
<td>Title</td>
<td>Author(s)</td>
<td>Year/Volume</td>
<td>Pages/Publication Details</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
<td>-------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>113</td>
<td>Loss estimation pilot project for lahar hazards from Mount Rainier, Washington</td>
<td>Recep Cakir and T. J. Walsh</td>
<td>2012.</td>
<td>17 p. [ONLINE]</td>
</tr>
<tr>
<td>116</td>
<td>Cascadia subduction zone earthquakes—A magnitude 9.0 earthquake scenario, by the Cascadia Region Earthquake Workgroup (CREW).</td>
<td></td>
<td>2013.</td>
<td>23 p. [ONLINE]</td>
</tr>
<tr>
<td>118</td>
<td>Geomorphic mapping of the Chehalis River floodplain, Cosmopolis to Pe Ell, Grays Harbor, Thurston, and Lewis Counties, Washington</td>
<td>S. L. Slaughter and I. J. Hubert</td>
<td>2014.</td>
<td>61 p. [ONLINE]</td>
</tr>
<tr>
<td>119</td>
<td>Rock aggregate resource inventory map of Pierce County, Washington by D. W. Eungard and J. L. Czajkowski</td>
<td></td>
<td>2015.</td>
<td>23 p., 1 pl., scale 1:100,000. [ONLINE]</td>
</tr>
<tr>
<td>120</td>
<td>Rock aggregate resource inventory map of Lewis County, Washington by D. W. Eungard</td>
<td></td>
<td>2015.</td>
<td>25 p., 1 pl., scale 1:100,000. [ONLINE]</td>
</tr>
</tbody>
</table>

2014-02 Geologic map of the Center 7.5-minute quadrangle, Jefferson County, Washington, by M. P. Polenz, H. O. Gordon, J. J. Hubert, T. A. Contreras, A. I. Patton, Gabriel Legorreta Paulin, and Recep Cakir. 2014. 42 x 36 in. color plate, scale 1:24,000, with 35 p. text. [ONLINE]

2014-03 Geologic map of the Quilcene 7.5-minute quadrangle, Jefferson County, Washington, by T. A. Contreras, A. I. Patton, Gabriel Legorreta Paulin, I. J. Hubert, Recep Cakir, and R. J. Carson. 2014. 42 x 36 in. color plate, scale 1:24,000, with 27 p. text. [ONLINE]

2015-02 Geologic map of the Port Ludlow and southern half of the Hansville 7.5-minute quadrangles, Kitsap and Jefferson Counties, Washington, by Michael Polenz, J. G. Favia, I. J. Hubert, Gabriel Legorreta Paulin, and Recep Cakir. 2015. 42 x 36 in. color plate, scale 1:24,000, with 40 p. text. [ONLINE]

2015-03 Geologic map of the Tacoma 1:100,000-scale quadrangle, Washington, by E. Schuster, A. A. Cabibbo, J. F. Schilter, and I. J. Hubert. 2015. 42 x 36 in. color plate, scale 1:100,000, with 30 p. text. [ONLINE]

2016-01 Tsunami hazard maps of the San Juan Islands, Washington—Model results from a Cascadia subduction zone earthquake scenario, by T. J. Walsh, Edison Gica, Diego Arcas, V. V. Titov, and D. W. Eungard. 2016. Four 36 x 36 in. map sheets, scale 1:24,000 and 1:48,000, with 9 p. text. [ONLINE]

Washington Geological Survey

2017-03 Geologic map of the Rimrock Lake, Tieton Canyon 7.5-minute quadrangles, Yakima County, Washington, by P. E. Hammond. 2017. 48 x 36 in. color plate, scale 1:24,000, with 19 p. text. [ONLINE]
<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
<th>Author(s)</th>
<th>Size</th>
<th>Scale</th>
<th>Pages</th>
<th>Available Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-01</td>
<td>Tsunami hazard maps of southwest Washington—Model results from a ~2,500-year Cascadia subduction zone earthquake scenario</td>
<td>D. W. Eungard, Corina Forson, T. J. Walsh, Edison Gica, and Diego Arcas</td>
<td>36 x 42 in.</td>
<td>1:48,000</td>
<td>11</td>
<td>Online only</td>
</tr>
<tr>
<td>2018-02</td>
<td>Tsunami hazard maps of the Anacortes–Bellingham area, Washington—Model results from a ~2,500-year Cascadia subduction zone earthquake scenario</td>
<td>D. W. Eungard, Corina Forson, T. J. Walsh, Edison Gica, and Diego Arcas</td>
<td>36 x 36 in.</td>
<td>1:30,000</td>
<td>10</td>
<td>Online only</td>
</tr>
<tr>
<td>2018-03</td>
<td>Tsunami hazard maps of Port Angeles and Port Townsend, Washington—Model results from a ~2,500-year Cascadia subduction zone earthquake scenario</td>
<td>D. W. Eungard, Corina Forson, T. J. Walsh, F. I. Gonzalez, R. J. LeVeque, and L. M. Adams</td>
<td>36 x 36 in.</td>
<td>1:11,000 and 1:16,000</td>
<td>11</td>
<td>Online only</td>
</tr>
</tbody>
</table>
Most open-file reports are preliminary and have not been edited or reviewed for conformity with our standards and geologic nomenclature. Those reports marked “Lib. use only” may be inspected in the Division library in Olympia. Those marked “Web only” may be downloaded from the Division website but are no longer available for sale. Where possible, larger files (20MB+) have been broken into parts for ease of downloading [PART 1] [PART 2]. For unusual cases, we have tried to make the link name descriptive enough to distinguish between files. If you need a hard copy of a large format report, such as a map, and do not have access to a plotter, your local copy center may be able to print it out.

Division of Geology

25-0. Geology and resources of the Pasco and Prosser quadrangles, by Solon Shed. 1925. 125 p., 1 pl. [PART 1] [PART 2] [PART 3]

Division of Mines and Geology

69-0. Compilation of geologic mapping in Washington through 1968—A continuation of Leona Boardman’s index to geologic mapping in Washington; also, Geologic maps from theses on Washington geology, by W. H. Reichert. 1969. 43 p., 11 maps, scale 1:1,000,000.

69-2. Analyses of stream sediment samples in Washington for copper, molybdenum, lead, and zinc, by W. S. Moen. 1969. 91 p. (including 15 tables), 39 pl., scale 1:125,000. [PART 1] [PART 2] [PART 3] [PART 4] [PART 5] [PART 6] [PART 7]

Division of Geology and Earth Resources

73-1. Preliminary report on the geology of southern Snohomish County, by Gerald Capps, J. D. Simmons, and R. D. Videgar. 1973. 12 p., 1 pl. [PART 1] [PART 2] [PART 3] [PART 4] [PART 5] [PART 6] [PART 7]

73-3. Preliminary geologic map of the southern Cascade Range, by P. E. Hammond. 1973. 5 pl., scales 1:24,000, 1:125,000, 1:500,000. [ONLINE]

73-5. East Wenatchee and vicinity geologic hazard maps, by E. R. Artim. 1973. 9 sheets, scale 1:24,000 [nonreproducible]. [PART 1] [PART 2] [PART 3] [PART 4] [PART 5] [PART 6]

74 Flood hazards of part of Chelan County, Washington, by E. R. Artim. 1974? [no number]. 3 p., 1 pl. [plate missing] [ONLINE]

75-1. Ground water in the Methow Valley, Mazama to Winthrop, by E. R. Artim. 1975. 9 p., 4 pl., scale 1:200. [PART 1] [PART 2]

75-2. Environmental geology of the Parkland–Spanaway area, Washington, by John Battie, Donnella Johnston, and Craig Searls. 1975. 7 sheets, scale 1:24,000. [PART 1] [PART 2]

75-6. Geologic mapping of the Wenatchee area, by R. L. Gresens. 1975. 2 sheets, scale 1:12,000. Also available in hand-colored version. [ORIGINAL] [COLOR 1] [COLOR 2]

75-7. Geologic interpretive map showing areas of unstable slopes, Kitsap County, Washington, by K. L. Othberg. 1975. 5 p., 12 pl., 1 fig., explanation, scale 1:24,000. [PART 1] [PART 2] [PART 3] [PART 4]

<table>
<thead>
<tr>
<th>Open File Reports</th>
<th>Printed copies of our Open File Reports are no longer for sale.</th>
</tr>
</thead>
</table>

77-7. Geology, relative slope stability, and flood hazards of the Selah area, Yakima County, Washington, by N. P. Campbell. 1977. 3 sheets, scale 1:130,000. [ONLINE]

77-7. Geology, relative slope stability, and flood hazards of the Selah area, Yakima County, Washington, by N. P. Campbell. 1977. 3 sheets, scale 1:24,000. [ONLINE]

77-3. Whatcom County, Washington, coal reserves, by E. R. Vonheeder. 1977. 3 sheets, scale 1:130,000. [ONLINE]

77-4. Lewis County, Washington, coal resources, by E. R. Vonheeder. 1977. 7 sheets, scale 1:130,000. [ONLINE]

77-5. Cowlitz County, Washington, coal resources, by E. R. Vonheeder. 1977. 2 sheets, scale 1:130,000. [ONLINE]

77-3. Whatcom County, Washington, coal reserves, by E. R. Vonheeder. 1977. 3 sheets, scale 1:130,000. [ONLINE]

77-4. Lewis County, Washington, coal resources, by E. R. Vonheeder. 1977. 7 sheets, scale 1:130,000. [ONLINE]

77-5. Cowlitz County, Washington, coal resources, by E. R. Vonheeder. 1977. 2 sheets, scale 1:130,000. [ONLINE]

77-7. Geology, relative slope stability, and flood hazards of the Selah area, Yakima County, Washington, by N. P. Campbell. 1977. 3 sheets, scale 1:24,000. [ONLINE]

77-8. Geology, relative slope stability, and flood hazards of the Snipes Mountain area, Yakima County, Washington, by N. P. Campbell. 1977. 3 sheets, scale 1:24,000. [ONLINE]

77-9. Geologic map of the City of Tacoma, Pierce County, Washington, by Mackey Smith. 1977. 1 sheet, scale 1:24,000. [ONLINE]

78-1. Kittitas County, Washington, coal reserves, by E. R. Vonheeder. 1978. 6 sheets including 3 maps, scale 1:130,000. [ONLINE]

78-5. Skagit County, Washington, coal reserves, by E. R. Vonheeder. 1978. 3 sheets, scale 1:130,000. [ONLINE]

79-2. An assessment of the uranium potential in the Ellensburg Formation, south-central Washington, by P. C. Milne. 1979. 32 p., 4 pl., scale 1:250,000. [PART 1] [PART 2] [PART 3] [PHOTOS]

79-4. Pierce County, Washington, coal reserves, by E. R. Vonheeder. 1979. 5 sheets, scale 1:130,000, including 6 tables. [ONLINE]

80-1. Geology and energy resources of the Roslyn–Cle Elum area, Kittitas County, Washington, by C. W. Walker. 1980. 59 p., 26 pl. [PART 1] [PART 2] [PART 3] [PART 4] [PART 5] [PART 6] [PART 7]

80-2. Preliminary fault map of Washington, by G. B. McLucas. 1980. 5 p., 2 pl., map scales 1:1,000,000 and 1:500,000. [ONLINE]

Note: Reprinted from Geological Society of America Special Paper 184.

Note: Overlays to the 1962 USGS topographic map of Washington.

Note: Also released as OFR 81-3, Appendix A.

Note: Also released as Open File Report 81-3, Appendix B.

Note: Also cited as Open File Report 81-3, Appendix D. Report is not available with OFR 81-3; only available separately.

Note: Overlays to U.S. Forest Service maps.

Note: Also released as Open File Report 81-3, Table 4.1.

80-12. Ash from the May 18, 1980, eruption of Mount St. Helens—maps showing bulk density, depth of uncompacted ash [2 sheets], time of first ashfall, kilograms of ash per square meter, and depth of rain-compacted ash, by M. M. Folsom and R. R. Quinn. 1980. 6 sheets, scales 1:100,000 and 1:200,000 [ONLINE]

81-1. Detailed fault maps—Hoquiam, Vancouver, Yakima, and The Dalles [1 x 2°] quadrangles, by G. B. McLucas. 1981. 5 sheets including explanation, scale 1:250,000. [PART 1] [PART 2]

Note: Chapter IX available separately as Open File Report 80-4; Table 4.1 available separately as OFR 80-11; Appendix A available separately as OFR 80-7; Appendix B available separately as OFR 80-8; Appendix D only available separately as OFR 80-9.

Superseded by Open File Report 94-7.

83-17. Map of coal mine workings in part of King County, Washington, by T. J. Walsh. 1983. 1 pl., scale 1:24,000, 4-p. explanation. [ONLINE]

84-3. Geology and coal resources of central King County, Washington, by T. J. Walsh. 1984. 24 p., 3 pl. [ONLINE]

86-2. Geologic map of the west half of the Toppenish quadrangle, Washington, compiled by T. J. Walsh. 1986. 7 p., 1 pl., scale 1:100,000. [ONLINE]

86-3. Geologic map of the west half of the Yakima quadrangle, Washington, compiled by T. J. Walsh. 1986. 9 p., 1 pl., scale 1:100,000. [ONLINE]

86-5. Geologic map of the west half of the Yakima quadrangle, Washington, compiled by T. J. Walsh. 1986. 9 p., 1 pl., scale 1:100,000. [ONLINE]

86-6. Geologic map of the west half of the Yakima quadrangle, Washington, compiled by T. J. Walsh. 1986. 10 p., 1 pl., scale 1:100,000. [ONLINE]

87-2. Geologic map of the Astoria and Ilwaco quadrangles, Washington and Oregon, compiled by T. J. Walsh. 1987. 28 p., 1 pl., scale 1:100,000. [ONLINE]

87-3. Geologic map of the south half of the Tacoma quadrangle, Washington, compiled by T. J. Walsh. 1987. 10 p., 1 pl., scale 1:100,000. [ONLINE]

90-16. Geologic map of the Nespelem 1:100,000 quadrangle, Washington, compiled by N. L. Joseph. 1990. 47 p., 1 pl., scale 1:100,000. [ONLINE]

91-4. Geologic strip map of the Ninemile Creek–Wilmont Creek–Hunters Creek area, Ferry and Stevens Counties, Washington, by M. T. Smith. 1991. 9 p., 1 pl., scale 1:24,000. [ONLINE]

OPEN FILE REPORTS

Printed copies of our Open File Reports are no longer for sale.

Superseded by the online bibliography.

Superseded by the online bibliography.

Lib. use only

Lib. use only

Web only

Web only

Web only

Web only

Web only

Web only

2002-1. Tsunami inundation map of the Port Angeles, Washington, area, by T. J. Walsh, E. P. Myers III, and A. M. Baptista. 2002. 48 x 36 in. color sheet, scale 1:24,000. [ONLINE]

Web only

Web only

Web only

Web only

Web only

Web only

Lib. use only

2005-5. Supplement to Geologic Map GM-60, Geologic map of the Timberwolf Mountain 7.5-minute quadrangle, Yakima County, Washington, by P. E. Hammond. 2005. Contains description and location of sample sites by map unit, analyses of samples, \(^{40}\text{Ar}/^{39}\text{Ar}\) age dates, and \(^{40}\text{Ar}/^{39}\text{Ar}\) age plateau and inverse isochron diagrams in Microsoft Excel and Adobe PDF formats. [ONLINE]

2007-3. Sand point count and geochemical data in the Fall City and Carnation 7.5-minute quadrangles, King County, Washington, by J. D. Dragovich. 2007. 2 Microsoft Excel files with 6 p. text. [ONLINE]

2007-4. Seismic design category maps for residential construction in Washington, by Recep Cakir and T. J. Walsh. 2007. 2 color sheets, 58 x 36 in., scale 1:500,000. [ONLINE]

2008-4. Geochemical sample analyses of Tertiary and pre-Tertiary volcanic rocks in and around the North Bend 7.5-minute quadrangle, King County, Washington, by J. D. Dragovich and T. J. Walsh. 2008. 1 Microsoft Excel file with 6 p. text. [ONLINE]

2009-3 Data supplement to GM-74—Geologic map of the Meeks Table and western two-thirds of the Nile 7.5-minute quadrangles, Yakima County, Washington, by P. E. Hammond. 2009. 1 Microsoft Excel file. [ONLINE]

2009-4 Geochemistry, geochronology, and sand point count data for the Snoqualmie 7.5-minute quadrangle, King County, Washington, by J. D. Dragovich, H. A. Littke, J. H. MacDonald, Jr., S. A. DuFrane, M. L. Anderson, G. R. Wessel, Renate Hartog. 2009. 3 Microsoft Excel files with 35 p. text. [ONLINE]

2009-5 Geologic map of the Lake Wooten 7.5-minute quadrangle, Mason County, Washington, by R. E. Derkey, N. J. Hehemann, and Katelin Alldrdritt. 2009. 35 x 36 in. color sheet, scale 1:24,000. [ONLINE]

2013-01 Passive seismic analyses in the Sultan 7.5-Minute quadrangle, King and Snohomish Counties, Washington, by Koichi Hayashi, Recep Cakir, J. D. Dragovich, B. A. Stoker, T. J. Walsh, and H. A. Littke. 2013: 9 p. [ONLINE]

2014-03 Tsunami hazard map of Everett, Washington: Model results for magnitude 7.3 and 6.7 Seattle fault earthquakes, by T. J. Walsh, Diego Arcas, V. V. Titov, and C. C. Chamberlin 2014: 50 x 36 in. color sheet, scale 1:32,000. [ONLINE]

Note: STATEMAP 7.5-minute quadrangles from 2012 through the present have been published under the new Map Series.
Division of Mines and Mining

1. Olympic Peninsula manganese, by J. W. Melrose. 1940. 50 p. [ONLINE]
2. Washington iron ores, a summary report, by S. L. Glover. 1942. 23 p. [ONLINE]
5. Memorandum report on iron ores of the Cle Elum district, Washington, by Carl Zappfe. 1944. 27 p., 2 pl., 5 figs. [ONLINE]

Division of Geology

1. Abstract of the report [by Solon Shedd] on the geology and resources of the Pasco and Prosser quadrangles, by H. E. Culver. 1926. 7 p., 1 pl., 29 x 22 in., scale 1:125,000. [ONLINE]
2. Oil and gas possibilities of western Whatcom County, by S. L. Glover. 1935. 69 p., 1 pl., 1 fig. [ONLINE]
3. A report on a geologic reconnaissance of the St. Helens mining district, Washington, by Everett Hougland. 1935. 4 p., 1 fig., 1 pl., 18 x 19 in. [ONLINE]
6. Inventory of mineral properties in Snohomish County, Washington, by W. A. Broughton. 1942. 64 p., 1 pl. [Accompanied by Index to mineral properties of Snohomish County. 1942. 8 p., tables.] [ONLINE]
7. Character and tonnage of the Turk magnesite deposit, by W. A. G. Bennett. 1943. 22 p., 1 pl., 1 fig. [ONLINE]
8. The Buckhorn iron deposits of Okanogan County, Washington; Results of a magnetic survey, by W. A. Broughton. 1943. 21 p., 1 pl., 4 figs. [ONLINE]
10. The Blewett iron deposit, Chelan County, Washington (with preliminary tonnage estimates), by W. A. Broughton. 1943. 17 p., 1 pl., 2 figs. [ONLINE]
15. Pumice and pumicite occurrences of Washington, by Ward Carithers. 1946. 78 p., 6 pl., 7 figs. [ONLINE]
17. Perlite and other volcanic glass occurrences in Washington, by M. T. Hunting. 1949. 32 p. [ONLINE]
21. Stratigraphy of Eocene rocks in a part of King County, Washington, by J. D. Vine. 1962. 20 p., 3 figs. [ONLINE]

Division of Geology and Earth Resources

32. Liquefaction features from a subduction zone earthquake—Preserved examples from the 1964 Alaska earthquake, by T. J. Walsh, R. A. Combellick, and G. L. Black. 1995. 80 p., 75 figs., 3 tables. [ONLINE]

34. Digital landslide inventory for the Cowlitz County urban corridor—Kelso to Woodland (Coweeman River to Lewis River), Cowlitz County, Washington, by K. W. Wegmann. 2003. Consists of a GIS inventory of landslides as ArcView shapefiles, a Microsoft Access database, a Microsoft Excel spreadsheet version of the database, digital photographs of individual landslides, associated metadata, 1:24,000-scale landslide inventory maps for 7.5-minute quadrangles in the inventory area, and 20 p. text. 1 CD-ROM. Superseded by Report of Investigations 35.

Washington Geological Survey

41. Landslide inventory of western King County, by K. A. Mickelson, K. E. Jacobacci, T. A. Contreras, W. N. Gallin, and S. L. Slaughter. 2019. 7 p. text and 1 ESRI geodatabase. [ONLINE]
REPRINTS

Reprints are available online only

5. What are the prospects in Washington State?, by F. H. Wurden; and Puget Sound area has several prospective oil and gas basins, by J. Q. Anderson. 1959. 10 p. [ONLINE]

RESOURCE MAPS

Resource Maps are sold through the Washington State Department of Printing General Store (see p. 3)

TOPOGRAPHIC MAPS

In-print Topographic Maps are sold through the Washington State Department of Printing General Store (see p. 3)

TM-1. State of Washington—Southwest quadrant, prepared by Division of Geology and Earth Resources staff. 1987. 1 sheet, scale 1:250,000. [Available rolled (R) or folded (F).] [ONLINE]

TM-2. State of Washington—Northeast quadrant, prepared by Division of Geology and Earth Resources staff. 1991. 1 sheet, scale 1:250,000. [Available rolled (R) or folded (F).] [ONLINE]

TM-3. Topographic map, State of Washington—Southeast quadrant, prepared by Division of Geology and Earth Resources staff. 1997. 1 sheet, scale 1:250,000. [Available rolled (R) or folded (F).] [ONLINE]

Introduction to the petroleum geology of the Olympic coast of Washington and adjacent portions of the continental shelf—A road log—Ocean Shores to Kalaloch guidebook, by Washington Division of Geology and Earth Resources staff. 1988. 46 p.
Mine resource programs—Present and future, by M. T. Huntting. 1964. 3 p. [ONLINE]

Origin of Dry Falls [Grant County], by V. E. Livingston, Jr. 1964. 4 p. [ONLINE]

Tumtum Mountain [Clark County]—A potential source of feldspar, by W. A. G. Bennett. 1964. 5 p. [ONLINE]

Annotated bibliography of Washington clays, by W. H. Reichert. 1963. 19 p. [ONLINE]

Dolomite and andalusite deposits of northern Stevens County, by W. S. Moen and W. A. G. Bennett. 1963. 4 sheets, scale 1:62,500, [ONLINE]

State Department of Conservation has record year [1962], by M. T. Huntting. 1963. 7 p. [ONLINE]

Preliminary report on mineral resources of the Cougar Lake limited area [Yakima County], by W. S. Moen. 1962. 9 p. [ONLINE]

Preliminary surveys for highway salvage archeology in the State of Washington—A final report, by Bruce Stallard. 1958. 23 p. [ONLINE]

Mining in Washington, by C. P. Purdy, Jr. 1953. 3 p. [ONLINE]

Steilacoom gravel, by S. H. Green and M. T. Huntting. 1948. 9 p. [ONLINE]

Preliminary report on the mines and prospects of the upper Methow region, Okanogan and Whatcom Counties, by Ward Carithers. 1946. 40 p. [ONLINE]

Oil and gas studies by the Division of Geology, by S. L. Glover. 1936. 8 p. [ONLINE]

Report of natural resources survey from October 1, 1933, to March 1, 1935, by T. B. Hill. 1935. 30 p. [ONLINE]

Colloidal fuel, by M. C. Butler. 1934. 9 p. [ONLINE]

Mining in the Pacific Northwest, by L. K. Hodges. 1897. 183 p. [ONLINE]
3D PDFS—7.5-MINUTE QUADRANGLES

The following geologic maps have been processed and converted into 3D models. The listed publisher, series, author, and year are for the original publication.

<table>
<thead>
<tr>
<th>Location</th>
<th>Map Type</th>
<th>Publisher</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airway Heights</td>
<td>WGS Open File Report</td>
<td>Derkey and others</td>
<td>2004</td>
</tr>
<tr>
<td>Auburn</td>
<td>USGS GQ 406—Mullineaux and others</td>
<td>1961</td>
<td></td>
</tr>
<tr>
<td>Belfair</td>
<td>WGS Open File Report 2009-7—Polenz and others</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>Black Diamond</td>
<td>USGS GQ 407—Mullineaux and others</td>
<td>1965</td>
<td></td>
</tr>
<tr>
<td>Brinnon</td>
<td>WGS Map Series 2012-02—Polenz and others</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>Buckley</td>
<td>USGS PP 388A—Crandell and others</td>
<td>1959</td>
<td></td>
</tr>
<tr>
<td>Burley</td>
<td>WGS Open File Report 2009-8—Polenz and others</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>Camano</td>
<td>WGS Geologic Map 68—Polenz and others</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>Carnation</td>
<td>WGS Open File Report 2010-02—Dragovich and others</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>Center</td>
<td>WGS Map Series 2014-02—Hanson and others</td>
<td>1976</td>
<td></td>
</tr>
<tr>
<td>Chattaroy</td>
<td>WGS Geologic Map 55—Hamilton and others</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>Cliffdell and Manastash Lake</td>
<td>WGS Geologic Map 76—Hammond and others</td>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>College Place and Walla Walla</td>
<td>WGS Geologic Map 62—Derkey and others</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Coupeville</td>
<td>WGS Geologic Map 58—Polenz and others</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>Crescent Harbor</td>
<td>WGS Geologic Map 59—Dragovich and others</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>Darrington</td>
<td>WGS Open File Report 2002-7—Dragovich and others</td>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>Deer Island</td>
<td>WGS Geologic Map 54—Evarts and others</td>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>East Olympia</td>
<td>WGS Geologic Map 56—Walsh and others</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>Eldon</td>
<td>WGS Map Series 2012-03—Contreras and others</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>Elwha and Angeles Point</td>
<td>WGS Open File Report 2004-14—Polenz and others</td>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>Fall City</td>
<td>WGS Geologic Map 67—Dragovich and others</td>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>Fortson</td>
<td>WGS Open File Report 2002-6—Dragovich and others</td>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>Four Lakes</td>
<td>WGS Open File Report 2004-2—Hamilton and others</td>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>Four Mound Prairie</td>
<td>WGS Geologic Map 66—Derkey and others</td>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>Fox Island</td>
<td>WGS Geologic Map 63—Logan and others</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Freeland and Hansville</td>
<td>WGS Geologic Map 64—Polenz and others</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Holly</td>
<td>WGS Open File Report 2011-6—Contreras and others</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>Hoodspoint</td>
<td>WGS Open File Report 2011-3—Polenz and others</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>Juniper Beach</td>
<td>WGS Geologic Map 70—Schasse and others</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>Lacey</td>
<td>WGS Open File Report 2003-9—Logan and others</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>Lake Chaplain</td>
<td>WGS Map Series 2014-01—Dragovich and others</td>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>Lake Joy</td>
<td>WGS Map Series 2012-01—Dragovich and others</td>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>Lake Wooten</td>
<td>WGS Open File Report 2009-5—O’Neal and others</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>Langley</td>
<td>WGS Geologic Map 69—Schasse and others</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>Liberty Lake and Newman Lake</td>
<td>WGS Open File Report 2004-12—Derkey and others</td>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>Lilliwaup</td>
<td>WGS Open File Report 2010-4—O’Neal and others</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>Lofall</td>
<td>WGS Map Series 2013-03—Contreras and others</td>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>Longbranch</td>
<td>WGS Open File Report 2003-21—Logan and others</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>Mason Lake</td>
<td>WGS Open File Report 2009-6—Derkey and others</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>Maytown</td>
<td>WGS Geologic Map 72—Logan and others</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>McMurray</td>
<td>WGS Geologic Map 61—Dragovich and others</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Meeks Table and Nile</td>
<td>WGS Geologic Map 74—Hammond and others</td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>Monroe</td>
<td>WGS Open File Report 2011-1—Capps and others</td>
<td>1973</td>
<td></td>
</tr>
<tr>
<td>Morse Creek</td>
<td>WGS Open File Report 2002-8—Schasse and others</td>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>Mt Higgins</td>
<td>WGS Open File Report 2003-12—Dragovich and others</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>Nisqually</td>
<td>WGS Open File Report 2003-10—Walsh and others</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>North Bend</td>
<td>WGS Geologic Map 73—Dragovich and others</td>
<td>2009</td>
<td></td>
</tr>
</tbody>
</table>
The following geologic maps have been processed and converted into 3D models. The listed publisher, series, author, and year are for the original publication.

Oak Harbor
WGS Geologic Map 59—Dragovich and others, 2005

Olsen Canyon
WGS Geologic Map 71—Derkey and others, 2009

Orting
USGS PP 388A—Crandell and others, 1959

Port Angeles and Ediz Hook
WGS Open File Report 2004-13—Schasse and others, 2004

Port Townsend South
WGS Geologic Map 57—Schasse and others, 2005

Quilcene
WGS Map Series 2014-03—Hanson and others, 1976

Seabeck and Poulsbo
WGS Map Series 2013-02—Polenz and others, 2013

Shelton

Skokomish Valley and Union
WGS Open File Report 2010-03—Polenz and others, 2011

Snoqualmie
WGS Geologic Map 75—Dragovich and others, 2009

Spokane NW
WGS Open File Report 2004-3—Derkey and others, 2004

Squaxin Island

Stimson Hill

Sultan
WGS Map Series 2013-01—Dragovich and others, 2013

Summit Lake
WGS Open File Report 2004-10—Logan and others, 2004

Timberwolf Mtn
WGS Geologic Map 60—Hammond and others, 2005

Tumwater

Utslady and Conway
WGS Open File Report 2002-5—Dragovich and others, 2002

Vaughn
WGS Geologic Map 65—Logan and others, 2007

Wilkeson
USGS PP 388A—Crandell and others, 1959
OTHER PUBLICATIONS

Other publications are available online only.

Color Page-Size Geologic Map of Washington
This 8½ x 14 in. map, compiled by J. E. Schuster, includes a brief description of the geologic history of Washington. Scale 1:2,250,000 (or 1 in. ≈ 37 mi). Revised 2013. Available through the Washington State Department of Printing (see p. 3). [ONLINE]

Mining Districts of Washington
A map (circa 1980?) of the named mining districts. This map is not definitive—names have changed over the years. [ONLINE]

Mount St. Helens Slide Sets
Two sets of slides of the eruptions and short descriptions of the scenes are available:
Set 1 contains 20 slides and covers the period from March through June 1980. This slide set was digitally remastered in 2015. [ONLINE]
Set 2 contains 20 slides and covers the period from May 18, 1980, to May 13, 1981. This slide set was digitally remastered in 2015. [ONLINE]
Set 3 contains 16 digitally remastered photographs and slides of the eruption and its aftermath. [ONLINE]

DGER News
DGER News was an electronic-only newsletter about the activities of the Survey. It was published quarterly from 2003 to 2007 and is available in PDF format. [ONLINE]

Washington Geology Journal
Washington Geology was published about four times a year from 1973 to 2002. It is currently on hiatus. All issues are available in PDF format. Articles cover topics of interest to both geologists and the general public. [ONLINE]

GEOLOGY RECREATION AND EDUCATION

Fossil and Mineral Collecting

Geology Resources for Teachers
Selected information about earth science for teachers, including online sources. [ONLINE]

Gold Panning
Information on recreational placer gold mining and mining claims procedures (both state and federal), includes Mining Claims and Sites on Federal Lands, Small Scale Prospecting and Placer Mining in Washington, Boundaries of State-owned Aquatic Lands, Recreational Gold Panning, and the “Gold & Fish” brochure.

REGULATORY INFORMATION

Rules, Regulations and Forms – Surface Mining Reclamation and Oil and Gas Conservation Acts and accompanying rules, regulations, fees, and forms. [ONLINE]