Figure 32 Loc. CE-1. 30-19N-15E. View looking northeast at the basalt margin of the structure in the paragraph. The photo (Fig. 33) clearly shows no major vertical offset of the basalt, but dips exceeding 30 degrees occur on either side of the syncline (arrows). These newtions are probably associated with prebasalt faulting under the basalt and may mark the boundaries of the Roslyn Formation. Tsp, Silver Pass volcanics; Tr, Roslyn Fm.; Tgr2, Grande Ronde basalt.

Figure 33 Aerial view from above Manastash Ridge looking northeast at the basalt margin (dotted line). This view shows no major vertical offset of basalt due to faulting from Cle Elum Ridge to Table Mountain. Note also the lack of steep dips at the margin unlike dips toward the Columbia Basin center.

Figure 35 Aerial view of linear depressions in the Columbia River Basalt Group on Manastash Ridge. Trees and sagebrush occupy the loess-filled depressions and bedrock is seldom exposed. See Loc. CE-1B for discussion of these features.

Figure 39 Looking northwest up the Naches River at the approximate location (X) of the Edgar Rock volcanic cone. Dips on the cone faces (Tfec) average 35° but oversteepened dips up to 60° occur north of Cliffdale (0) and suggest either a fault or an upwarp in Fifes Peak volcanics after deposition of the cone. The oversteepened dips align with faulting of the Naches River fault zone.

Figure 40 Loc. CE-3. 30-19N-15E. View looking northwest at upper basaltic slope showing Columbia River basalt left in the Columbia River Basalt. The dip of the basalt is 30° average 35° but oversteepened dips up to 60° occur north of Cliffdale (0). The Photo (Fig. 33) shows no major offset of the basalt. Basalt around the cones is in the Grande Ronde basalt, and the basalt on the rest of the ridge crest is in the basaltic units of the basal melanite flow. The Columbia River basin center and the Columbia River basin margin are shown. Tgr2, Grande Ronde basalt; Tg, Grande Ronde basalt; Tn, Naches Fm.; Tgr2, Grande Ronde basalt; Tn, Naches Fm.; Tgr2, Grande Ronde basalt; Tn, Naches Fm.; Tgr2, Grande Ronde basalt; Tn, Naches Fm.
STRUCTURAL GEOLOGY ALONG THE NORTHWESTERN COLUMBIA RIVER BASALT MARGIN, WASHINGTON

by Newell P. Campbell

Figure 41 Loc. CD-8. T-17N-18E. Small fault in the Naches Formation on Road 173, Milk Creek Road. The fault places volcaniclastics against coal, shale and sandstone—amount of offset is unknown.

Figure 42 Loc. CD-12. T-17N-18E. Small fault (?) of the Naches Formation on Road 176, upper Milk Creek.

Figure 43 Aerial view looking east of the White River-Bedhas River fault zone. This fault extends across the Columbia River as far as the town of Naches. The fault is more visible in the Columbia River basalt than Fifes Peak rocks.

Figure 44 Loc. OS-2. T-13N-13E. Looking southeast at fault offset of the Columbia River basalt and folding in Fifes Peak Formation at Little Bald Mountain. This fault is the only fault of consequence that cuts basalt south of the Naches River fault zone. This fault rises out within 1 km. Tfp, Fifes Peak Fm.; Tgrz, Grande Ronde basalt "N2".

Figure 45 Loc. RL-2. T-13N-13E. Looking south across Rimrock Lake at Siple Ridge and adjacent Columbia River basalt of the Divide Ridge syncline. Note the basalt thinning against the pre-Tertiary Russell Ranch Formation to the west and east of the Divide Ridge syncline. Tgr2, Grande Ronde basalt "R2"; Tgnz, Grande Ronde basalt "N2"; Ti, intrusives.

Figure 46 Loc. RL-2. T-13N-13E. Looking north at Darland Mountain and Blue Slide Mountain on Divide Ridge. The fault mapped here by Swanson (1978) does not exist. Pre-Tertiary rocks are in direct contact with basalt here. PTr, Russell Ranch Fm.; Txb, basalt, age unknown; Txs, arkosic sediments, age unknown; Tse, Spencer Creek volcaniclastics; Tgr2, Grande Ronde basalt "R2"; Tgnz, Grande Ronde basalt "N2"; Qls, landslides; Ti, intrusives.

Figure 47 Aerial view from above Wildcat Creek at Bethel Ridge showing dissimilar folds in Columbia River basalt (Tgnz) and the Fifes Peak Formation (Tfp). Note apparent thinning of basalt against the old Tieton volcano. Qls, landslide.

Figure 48 Aerial view looking northeast at Bethel Ridge anticline in Columbia River basalt. Note the variation in thickness of Tgr2 while Tgnz remains constant. The western extent of basalt along ridges such as Bethel is probably due to thicker basalt filling inverted valleys. The basalt probably flowed around the old Tieton volcano as the lava thins against the old cone. Note obvious differences in cone and apron facies of this volcano. Tftp, Fifes Peak Fm. cone facies; Tfta, apron facies; Tgr2, Grande Ronde basalt "Rz"; Tgnz, Grande Ronde basalt "Nz"; Qls, landslides; Ti, intrusives.

Figure 49 Loc. RL-2. T-13N-13E. Looking north at Darland Mountain and Blue Slide Mountain on Divide Ridge. The fault mapped here by Swanson (1978) does not exist. Pre-Tertiary rocks are in direct contact with basalt here. PTr, Russell Ranch Fm.; Txb, basalt, age unknown; Txs, arkosic sediments, age unknown; Tse, Spencer Creek volcaniclastics; Tgr2, Grande Ronde basalt "R2"; Tgnz, Grande Ronde basalt "N2"; Qls, landslides; Ti, intrusives.
STRUCTURAL GEOLOGY ALONG THE NORTHWESTERN COLUMBIA RIVER BASALT MARGIN, WASHINGTON
by Newell P. Campbell