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00-61,800Quaternary/Ellensburg Formation
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2,520 1.57Ortley member 1658
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2,660 1.53Basalt of McCoy Canyon 1658
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2,770 16581.52Basalt of Museum

1,810 00-6Ellensburg Formation-Vantage

2,850 158442.52Basalt of Ginkgo

2,760 0582.516Basalt of Sand Hollow

2,870 198-282.518Roza member (reversed)

1,810 00Ellensburg Formation-Lmuma Creek

2,770 191-652.58Priest Rapids member (reversed)

2,100 219-724.011Grouse Creek member breccia (rev.)

2,300 16581.54Basalt of Spokane Falls breccia

2,300 16580–1.52Basalt of Museum breccia

2,240 0581–2.56Basalt of Sand Hollow breccia

1,810 6
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2,870 9 (18 max)
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2,560 5 (11 max)
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2,420 <1

--- ---

--- ---

--- ---

--- ---

--- ---

--- ---

--- ---Figure M1A. Combined isostatic gravity, aeromagnetic 
(reduced-to-pole), and hillshade topography map. Gravity 
contours are 0.5 mGal. Gravity stations are light gray dots. 
Yellow dots are gravity max-spots (explained in Pamphlet). 
X–X' and Y–Y’ show the end points of the geophysical 
models in Figures M1B and M1C, respectively. Gray boxes 
mark the limits of the Kittitas and East Kittitas quadrangles.

Figure M1B. Two-dimensional potential-fields forward 
model of profile X–X'. Units and properties shown in the 
bottom panel predict gravitational and magnetic anomalies 
shown in the top two panels (ρ–saturated bulk density in 

kg/m3; χ–magnetic susceptibility in SI x 103). Gravity data 
shown are no more than 750 m in map view from the model 
line. The diameters for the gravity data points are equal to 
the data error; magnetic data error is too small to show at 
print scale. “Flight path” shows the elevation of the airplane 
that flew the aeromagnetic survey. We produced only one 
averaged property set for all members of Ellensburg Forma-
tion, and for all brecciated formations, due to small sample 
sizes within each member. We show maximum values 
where we used those in our model instead of the average 
properties. We have no direct measurements for the Priest 
Rapids member of the Wanapum Basalt, therefore, we use 

average Wanapum properties in our model for that unit. 
Densities for the Wapshilla and Grande Ronde R1 used in 
the model are adjusted based on well data described in the 
Pamphlet. Magnetic remanence properties follow Staisch 
and others (2018). The Meridian well is not directly on the 
model line, therefore depths of the top of Grande Ronde 
units and Oligocene sediment are slightly shallower than in 
our model.

Figure M1C. Two-dimensional potential-fields forward 
model of profile Y–Y'. See geophysical figure table and 
legend for symbology and labeling explanation.
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FIGURE M1A, M1B, M1C
PHYSICAL FEATURES
BAF1—Boylston anticline fault 1
BAF2—Boylston anticline fault 2
BAL—Boylston aeromagnetic low
BFZ—Boylston fault zone
FTL—Fault tip low
KVF—Kittitas Valley fault
KVG—Kittitas Valley gravity gradient
KVL—Kittitas Valley gravity low
MAH—Manastash aeromagnetic high
MAL—Manastash aeromagnetic low
MFZ—Manastash fault zone
NEAH—Northeast aeromagnetic high
WAL—Wanapum aeromagnetic low
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  Mass Wasting (overlay mw)—Mapped where hummocky 
landforms suggest mass movement on unstable slopes, but 
evidence for landslide deposits is inconclusive. 

  Quaternary loess (overlay Ql)—Light brown to medium 
brown eolian loess; moderately weathered; low density, 
poorly compacted; silt to very-fine-grained sand; angular; 
moderately to poorly sorted, matrix supported; internally 
structureless; forms 1-meter-tall irregularly spaced mounds.

  Miocene hyaloclastite (overlay hy)—Volcaniclastic aggregate 
in or between basalt flows; pillow breccia with volcanic glass 
(tachylyte ± sideromelane) and its alteration product 
palagonite; light yellowish brown to orange brown or tan and 
generally strongly weathered; less dense than basalt, 
moderately well consolidated; generally composed of sand- to 
boulder-sized clasts in a very-fine-grained matrix; angular to 
subangular; poorly sorted; some exposures may contain 
cobble- to boulder-size fragments of basalt pillows 
(centimeter to meter scale) that are matrix supported. Where 
pillows are absent, exposures are convoluted and 
structureless. Hyaloclastite forms from the quenching of hot 
lava in water, and where the lava forced its way into saturated 
sediments this is called peperitic hyaloclastite or peperite. 
Thickness varies but is generally less than 30 m. Overlay is 
common near the base of unit „vgsmc, near the top of unit 
„vgo, and throughout unit „vwr. 

Contact—Solid where location accurate; 
long-dashed where approximate; 
short-dashed where inferred; dotted 
where concealed; queried where identity 
or existence questionable

Gradational contact—Identity and 
existence certain; location accurate

Geologic boundary—Identity and 
existence certain; solid where location 
accurate; long-dashed where 
approximate; short-dashed where 
inferred; In this map, symbol shows 
internal contacts between lava flows of 
the same unit, or boundaries between 
alluvial fans of similar ages

Fault—Solid where location accurate; 
long-dashed where approximate; 
short-dashed where inferred; dotted 
where concealed; queried where identity 
or existence questionable

Thrust fault—Solid where location 
accurate; long-dashed where 
approximate; short-dashed where 
inferred; dotted where concealed; 
queried where identity or existence 
questionable; sawteeth on upper plate

Reverse fault—Solid where location 
accurate; long-dashed where 
approximate; short-dashed where 
inferred; dotted where concealed; 
queried where identity or existence 
questionable; rectangles on upthrown 
block

Strike-slip fault, right lateral offset—
Solid where location accurate; 
short-dashed where inferred; dotted 
where concealed; arrows show relative 
motion

Oblique-slip fault, reverse right lateral 
offset—Solid where location accurate; 
long-dashed where approximate; 
short-dashed where inferred; dotted 
where concealed; queried where identity 
or existence questionable; arrows show 
relative motion; rectangles on upthrown 
block

High-angle dip-slip fault—Solid where 
location accurate; long-dashed where 
approximate; short-dashed where 
inferred; dotted where concealed; 
queried where identity or existence 
questionable; relative motion shown by 
U and D

Oblique-slip fault, high-angle 
right-lateral offset—Solid where location 
accurate; long-dashed where 
approximate; short-dashed where 
inferred; dotted where concealed; 
relative horizontal motion shown by 
arrows; relative vertical motion shown 
by U and D

Oblique-slip fault, high-angle left-
lateral offset—Solid where location 
accurate; long-dashed where 
approximate; short-dashed where 
inferred; dotted where concealed; 
queried where identity or existence 
questionable; relative motion shown by 
U and D

Anticline—Solid where location 
accurate; long-dashed where 
approximate; short-dashed where 
inferred; dotted where concealed; 
queried where identity or existence 
questionable; arrow on line indicates 
plunge direction

Syncline—Solid where location 
accurate; long-dashed where 
approximate; short-
dashed where inferred; dotted where 
concealed; queried where identity or 
existence questionable; arrow on line 
indicates plunge direction

Monocline, anticlinal bend—Short-
dashed where inferred; dotted where 
concealed; arrows show direction of dip; 
shorter arrow on steeper limb; arrow on 
line indicates plunge direction

Monocline, synclinal bend—Long-
dashed where approximate; dotted where 
concealed; arrows show direction of dip; 
shorter arrow on steeper limb; arrow on 
line indicates plunge direction

Geologic unit too thin to show as a 
polygon—Solid where location accurate; 
long-dashed where approximate; 
short-dashed where inferred; dotted 
where concealed; queried where identity 
or existence questionable

Scarp of unknown origin—Hachures 
point down slope

Dike—Identity or existence 
questionable; location accurate

Lineament of unknown origin

Cross section line

Perennial stream

Intermittent stream

Surface data collected by Washington Geological Survey except for those 
shown as blue symbols (compiled surface data from R. Bentley and J. 
Powell, Central Washington University, unpub. mapping, 1980–1989).

Inclined bedding—showing strike and dip

Overturned bedding—showing strike and dip

Inclined bedding, where top direction of beds is known from local 
features—showing strike and dip

Small, minor inclined joint—showing strike and dip

Inclined fold hinge of small, minor syncline—showing bearing and 
plunge

Small, minor vertical or near-vertical joint—showing strike

Small, minor inclined fault—showing strike and dip

Small, minor vertical or near-vertical fault—showing strike

Inclined slickenline, groove, or striation on fault surface—
showing bearing and plunge

Inclined bedding in unconsolidated sedimentary deposits or 
unconsolidated fragmental deposits of volcanic origin—showing 
strike and dip

Inclined foreset bedding in unconsolidated sedimentary deposits or 
unconsolidated fragmental deposits of volcanic origin—
showing strike and dip

Inclined contact—showing dip value and direction

Inclined flow banding, lamination, layering, or foliation in  
  igneous rock—showing strike and dip

Shear—showing strike and dip

Spring

Age site, radiometric

Age site, fossil

Age site, U-Pb, uranium-lead

Age site, infrared stimulated luminescence

Geochemistry sample location

Water well

Drill hole for hydrocarbon exploration or exploitation

Clast count sample

GEOLOGIC SYMBOLS

New geological and geophysical investigations of the Kittitas and East Kittitas 
quadrangles refine Neogene stratigraphy and characterize geologic structures 
in southern Kittitas Valley. New whole rock geochemistry (n=329) locally 
refines the middle Miocene chemostratigraphic framework of the Columbia 
River Basalt Group (CRBG). These strata are tilted toward Kittitas Valley by 
faulting and folding at the mountain front. Abundant suprabasalt late Miocene 
to Pliocene volcaniclastic strata are less steeply tilted. 

From twelve U-Pb analyses, we interpret eruptive ages of ~15.95 Ma for 
a tuff at the top of the Vantage Member and ~8.72 Ma for a pumice within the 
upper Ellensburg Formation. Younger sedimentary interbeds of the Ellensburg 
Formation are more common and thicker compared to older interbeds, 
suggesting a migrating and (or) deepening depositional center. Between ~5.4 
and ~3.3 Ma, deposition transitioned from largely Cascade-sourced sediments 
of the Ellensburg Formation to basalt-derived sediments of overlying 
Pliocene(?)–Quaternary deposits.

We identify reverse and thrust faults with oblique-slip on the flanks of 
bedrock highs. We interpret these range front faults as young, in-sequence 
thrust-type structures in a compressional or transpressional regime. 
Fault-related folds are associated with these structures, including several 
plunging, northwest- through west-trending anticlines and synclines. We map 
numerous northerly striking oblique-slip faults with varying offsets, especially 
where the folds of the Boylston Mountains bend northward.

Geophysical modeling of gravity and aeromagnetic data suggests laterally 
abrupt thickness changes in basaltic units. These thickness changes may be 
related to (1) ramp-flat geometries under uplifts; and (or) (2) periods of 
syn-eruptive development of local accommodation space, where CRBG rocks 
experienced concurrent footwall thickening (growth strata) and hanging-wall 
thinning (uplift-related erosion).

LIST OF MAP UNITS

Holocene to Pleistocene Nonglacial Deposits

  Artificial fill (Holocene)—Cobbles, pebbles, sand, and boulders; 
poorly sorted and unconsolidated; placed to elevate home sites, 
highways, or other infrastructure.

  Modified land (Holocene)—Sand- through boulder-sized material 
redistributed to modify topography for industrial, agricultural, and 
residential uses; including, but not limited to, gravel pits, rock 
quarries, aggregate mines, and home sites.

  Peat (Holocene to Pleistocene)—Organic and organic-rich 
sediment; includes peat, gyttja, muck, silt, and clay; typically in 
closed depressions; mapped in natural or man-made wetlands, bog 
areas, and ephemeral water bodies.

  Landslide deposits (Holocene to Pleistocene)—Clastic aggregate 
and scree; generally loose and poorly consolidated; clay- to 
boulder-sized material; angular to subangular, typically matrix 
supported, and less commonly clast supported near talus piles; 
unstratified and structureless; unit contains rubble of sand, silt, clay, 
cobbles, pebbles, boulders, and diamicton of mostly basalt clasts.

Holocene to Pliocene Alluvial and Colluvial Deposits
Stream channel and stream flood (overbank) deposits and terraces. Deposits 
include pebbles, cobbles, sand, silt, clay, peat, and boulders, all in varying 
amounts and thicknesses. Colors range from light tannish gray to medium 
brown. The deposits are fresh to mildly weathered and are uncompacted to 
weakly compacted and poorly to moderately cemented. The clasts are typically 
cobbles with sand and pebbles, well rounded, and moderately to well sorted. 
The deposits are polymict near the Yakima River and mostly basaltic in the 
East Kittitas quadrangle.  

  Alluvium (Holocene)—Stream channel deposits on active flood 
plains and commonly flanking creeks; unit is narrowly distributed 
throughout low elevations of the map area.

  Intermediate-age alluvium (Holocene to Pleistocene)—Stream-
flood (overbank) and old channel deposits near active flood plains; 
deposited where ongoing alluvial deposition from overland flow is 
possible but less evident compared to unit Qa; surfaces of unit Qia 
are slightly elevated relative to surfaces of unit Qa. Unit Qia is 
commonly indistinguishable from alluvial fan unit Qaf1 based on 
lithology and height relative to unit Qa. However, unit Qia tends to 
be found (1) closer to unit Qa than unit Qaf1, and (2) at slightly 
lower elevations than unit Qaf1. 

  Alluvial fan deposits (Holocene to Pliocene?)—Sand, gravel, and 
relict debris flows deposited in alluvial fans; generally brown; 

uncompacted to poorly consolidated; silt- to 
boulder-sized clasts; angular to subrounded; unsorted to 
moderately sorted; clast composition is generally basalt 
of the Columbia River Basalt Group (CRBG); unit 
thickness is generally less than 15 m but varies with 
age, where older units tend to be thicker. Unit is 
subdivided and numbered from 1 (lowest and youngest) 
to 6 (highest and oldest) based on relative elevation 

above the modern stream level and differences in surface 
morphologies. 

  Terrace gravel deposits (Pleistocene)—Gravel deposited in fluvial 
setting in Yakima canyon; light to medium gray, greenish gray, light 
to medium brown; loose, poorly cemented; pebbles and cobbles 
with boulders and medium sand; rounded to subrounded; poorly 
sorted, matrix supported. Polymictic clasts are from Cascade 
Range. Mapped in detail by Kelsey and others (2017) and Bender 
and others (2016).

  Cobble gravel (Pliocene)—Angular to well-rounded cobble gravel 
with clay to sand interbeds deposited in alluvial fans and the 
paleo-Yakima River channels, and conglomerates flanking 
Manastash Ridge and the Boylston Mountains. The unit forms flat 
incised surfaces, polymictic near the Yakima River corridor and 
basaltic dominated elsewhere; poorly to mildly consolidated; mildly 
to moderately cemented; thickness ranges from several meters to 
more than 30 m; coeval with Thorp Gravel. 

Tertiary Sedimentary and Volcanic Bedrock

SEDIMENTARY ROCKS OF THE ELLENSBURG FORMATION

  Ellensburg Formation, undivided (middle Miocene to early 
Pliocene?)—Feldsarenite and conglomerate of fluvial, lacustrine, 
volcaniclastic, and colluvial origin underlying, intercalated with, 
and overlying rocks of the CRBG; light to medium brown to light 
to medium gray; mildly to strongly weathered; moderately 
indurated; where interbedded in the CRBG, unit is generally fine to 
coarse-grained sandstone; where unconformably overlying the 
CRBG, unit is locally volcaniclastic mudstones and sandstones 
overlain by conglomeratic colluvium on the northern flank of 
Manastash Ridge. Rounded to angular; well to moderately sorted; 
grain supported; lower Ellensburg Formation interbeds are typically 
<35 m thick, whereas upper Ellensburg units overlying CRBG can 
be >120 m thick; upper Ellensburg Formation units commonly lack 
white mica, whereas older members interbedded with basalts 
commonly have white mica in varying amounts. Locally subdivided 
into:

  Conglomeratic rocks of the upper Ellensburg 
Formation (late Miocene)—Conglomerate with fine 
sedimentary lenses and paleosols that overlie the CRBG; 
light brownish gray to medium brown, mild to 
moderately weathered; mild to moderately cemented; 
pebbles, cobbles with few boulders, also containing 
coarse to fine sands; subangular to well rounded; poorly 
sorted, matrix supported. Structureless to laminated; 
polymict dominated by Cascade-sourced volcanic clasts 
near Yakima River corridor and basaltic dominated in 
East Kittitas. 

  Volcaniclastic rocks of the upper Ellensburg 
Formation (late Miocene)—Volcaniclastic sandstone, 
siltstone, and mudstone with some conglomerate directly 
overlying the Wanapum Basalt; gray, pinkish brown, or 
light brown, moderately weathered; moderately 
indurated to friable, mildly to moderately cemented; 
lithology varies from fine ashy mudstone to 
coarse-grained sandstone with pumice and lenses of 
accretionary lapilli ash fall tuff; subangular to rounded, 
poorly sorted, matrix supported; common paleosols and 
pedogenic sediments in central map area. Unit is >20 m 
thick and found in canals and ravines at mid elevations 
on Manastash Ridge. 

  Lmuma Creek Member of the lower Ellensburg 
Formation (middle Miocene)—Tuffaceous sandstone, 
that can be micaceous and rarely diatomaceous; light 
gray to white, mildly to moderately weathered, mildly to 
moderately cemented, medium grained, well sorted and 
matrix supported with common planar crossbedding; 
rare polymict pebble layers; less than 15 m thick. 
Member was formerly known by a derogatory term for 
Indigenous women that has since been replaced by the 
name Lmuma Creek. Includes the Quincy diatomite.

  Vantage Member of the lower Ellensburg Formation 
(middle Miocene)—Micaceous and volcaniclastic 
sandstone and siltstone; light brownish gray to light gray 
or white; moderately to strongly weathered; mildly to 
moderately indurated, weakly cemented; subangular; 
fine to coarse grained; commonly well sorted, grain 
supported. The unit is less than 30 m thick and is 
stratigraphically between the basalt of Museum of the 
Sentinel Bluffs Member, unit Mvgsm, and the overlying 
Wanapum Basalt. 

  Coleman member of the lower Ellensburg Formation 
(middle Miocene) (line unit only)—Sandstone and 
siltstone underlying the Sentinel Bluffs Member of the 
CRBG; medium brown to light gray; generally fine- to 
medium-grained micaceous sandstone; estimated to be 
less than 20 m thick and mapped as a line unit in Yakima 
canyon in the southwestern corner of the map area.   

VOLCANIC ROCKS OF THE COLUMBIA RIVER BASALT GROUP 
(CRBG)

                   Wanapum Basalt, undivided (middle Miocene) (cross section 
only)—Basalt, described in detail in the following units; dark gray 
to grayish brown; well indurated; microporphyritic to weakly 
porphyritic, or weakly glomerocrystic; commonly with groundmass 
crystals at least 1.0 mm in size; less commonly aphyric than GRB 
units; <100 m thick. The formation unconformably overlies the 
Vantage Member (unit „cev), and upper Ellensburg 
units—especially unit „vce, which unconformably onlaps onto unit 
„vw. Locally subdivided into:   

            Priest Rapids Member (middle Miocene)—medium- 
or very coarse-grained basaltic andesite with 
groundmass crystals <2 mm in size; dark gray to grayish 
brown, weathers to light orangish brown; well indurated; 
mostly aphyric to weakly porphyritic, typically very 
coarse grained, sometimes with a gabbro-like texture 
(basaltic pegmatoid); unit is ~15 m thick at Vanderbilt 
Gap and poorly exposed in the canals on northern flank 
of Manastash Ridge.  

  Roza Member (middle Miocene)—Porphyritic basalt 
and basaltic andesite with medium to fine groundmass; 
dark gray to grayish brown, weathers dark to medium 
brown; diagnostically porphyritic (~2–10% total 
phenocrysts) with common centimeter-scale plagioclase 
phenocrysts (typically >10 phenocrysts per hand 
sample); top of flow is more aphyric. The unit is 
~15–30 m thick and invaded the  Lmuma Creek Member 
(unit „celc), where Roza lava flow(s) entered wet 
sediments that would become unit „celc, thereby the 
rocks of unit „celc underlie, intermingle, and overlie the 
Roza Member. 

  Frenchman Springs Member, undivided (middle 
Miocene)—Medium-grained basalt to basaltic andesite 
that is sparsely porphyritic to weakly glomerocrystic or 
aphyric; dark gray to greenish brown; well indurated; 
commonly sparsely porphyritic to glomerocrystic with 
<3% total phenocrysts to aphyric; total thickness is 
<90 m thick (combined Ginkgo and Sand Hollow) but 
may thicken into valley. Less porphyritic than the Roza 
Member and finer grained than the Priest Rapids 
Member. 

           Basalt of Sand Hollow (middle Miocene)—
Medium-grained basalt and basaltic andesite 
that is weakly porphyritic, with ~1% total 
phenocrysts, to aphyric, typically contains 
about two plagioclase phenocrysts per hand 
sample, and may contain glomerocrysts; 
medium to dark gray, weathers to dark 
reddish brown or reddish gray; well 
indurated; ~1 m wide columns can internally 
exhibit flat to curved platy foliation. Pillow 
breccia and palagonite are locally common. 
The unit is less than ~60 m thick and well 
exposed on north flank of the Boylston 
Mountains and summit of Manastash Ridge. 
The unit commonly overlies the Vantage 
Member in the western map area. 

           Basalt of Ginkgo (middle Miocene)—
Medium-grained basalt that is weakly 
porphyritic or glomerocrystic; medium to 
dark gray, weathers to medium or dark 
brown; well indurated; typically contains 
about four plagioclase phenocrysts per hand 
sample (~1–2% total phenocrysts); ~30 m 
thick and pinches out west of the Boylston 
Mountains. In the eastern map area, the unit 
can overlie the Vantage Member (unit „cev) 
and contains some local pillow breccia.

  Grande Ronde Basalt (GRB), undivided (middle Miocene) 
(cross section only)—Basaltic andesite, described in detail in the 
following units. The Meridian well contains ~2,029 m of total 
basalt thickness (S. Reidel, written commun., 2020), presumably all 
Grande Ronde Basalt. The unit contains reverse (R) and normal (N) 
magnetostratigraphic units (MSU), from oldest to youngest: R1, 
N1, R2, and N2. Unit „vg is mapped where a lack of geochemistry 
prevented us from identifying a specific subunit, and in the cross 
section where the subunits are grouped at depth. Locally subdivided 
into:  

  Sentinel Bluffs Member, undivided (middle 
Miocene)—Basaltic andesite; aphyric. The map area 
contains five subunits, from oldest to youngest: basalts 
of McCoy Canyon, California Creek, Spokane Falls, 
Stember Creek, and Museum. Cumulatively, the Sentinel 
Bluffs Member is at least ~140 m thick, with the 
Meridian well showing a thickness range of 93–126 m 
(S. Reidel, written commun., 2020). We map unit „vgs 
as undivided (grouped) where geochemical results are 
unavailable to divide exposures into subunits but where 
we remain reasonably confident that the exposure 
belongs to the Sentinel Bluffs Member based on  
interpolations with nearby stratigraphic relationships; 
found in the northeastern portion of the map area. With 
available geochemistry, we subdivide the Sentinel Bluffs 
Member into:

           Basalt of Museum (middle Miocene)—
Fine-grained basaltic andesite with 
groundmass crystals ranging in size from 0.05 
to 0.6 mm and very rare phenocrysts of 
plagioclase up to 3.5 mm in size; most 
commonly aphyric. The unit is ~38–60 m 
thick, contains at least two flows, and is 
locally the top of the Sentinel Bluffs Member. 

           Basalt of Stember Creek (middle 
Miocene)—Fine-grained basaltic andesite 
with groundmass crystals ranging in size from 
0.05–0.4 mm and very rare phenocrysts of 
plagioclase as large as 1.6 mm; most 
commonly aphyric. The unit is less than 
~55 m thick and it contains at least two flows. 
The unit is sparsely mapped and less common 
than unit „vgssf, and consistently overlies 
flows with Spokane Falls-type compositions 
in the eastern map area. 

           Basalt of Spokane Falls (middle 
Miocene)—Fine-grained basaltic andesite 
with groundmass crystals ranging in size from 
0.1–0.4 mm and very rare phenocrysts of 
plagioclase as large as 1.2 mm; most 
commonly aphyric. The unit is very common 
and <65 m thick and contains at least two 
flows. The unit may interfinger with Stember 
Creek-type compositions in the southwest 
map area.

           Basalt of California Creek (middle 
Miocene)—Fine-grained basaltic andesite; 
medium gray, strongly weathered; moderately 
to well indurated; aphyric; <50 m thick; 
found only at geochemistry site G204; found 
along the Boylston Fault in the southern 
portion of the map area.  

           Basalt of McCoy Canyon (middle 
Miocene)—Fine-grained basaltic andesite 
with groundmass crystals ranging in size from 
~0.1–0.5 mm and very rare phenocrysts of 
plagioclase as large as 1.2 mm; most 
commonly aphyric. The unit is ~65–90 m 
thick, contains two or three flows, and is 
locally the base of the Sentinel Bluffs 
Member.

  Winter Water Member (middle Miocene)—fine to 
medium-grained basaltic andesite; locally aphyric, but 
may be sparsely to abundantly glomerocrystic or less 
commonly porphyritic; medium to dark gray, weathers 
medium to dark brown; well indurated; ~40–100 m thick 
and thickens eastward. The Meridian well shows a 
thickness range of 58–98 m for unit „vgw (S. Reidel, 
written commun., 2020). The unit contains at least two 
flows with well-developed middle entablature and a 
conspicuous basal colonnade composed of stacks of 
segmented and tilted columns. Synonymous with the 
‘Umtanum flow.’

  Ortley member (middle Miocene)—Fine- to 
medium-grained basaltic andesite with groundmass 
crystals up to 1 mm in size; aphyric. The unit is at least 
~46 m thick in Yakima canyon and may thicken 
eastward at depth to ~230 m in the BISSA well and 
~215–251 m in the Meridian well (S. Reidel, written 
commun., 2020); contains at least two to four flows. The 
unit is part of the N2 MSU, representing the base of N2 
MSU in the map area, and is invasive into the Coleman 
member of the Ellensburg Formation. 

  Grouse Creek member (middle Miocene)—Medium- 
to fine-grained basaltic andesite with groundmass 
crystals less than 1.5 mm in size; aphyric; groundmass 
crystal sizes slightly greater than those of unit „vgs. 
Base of unit is not observed. From map patterns, the unit 
is >140 m thick, but may be considerably thicker north 
of the map area; at depth the unit is ~90 m thick in the 
BISSA well and ~46–91 m thick at the Meridian well (S. 
Reidel, written commun., 2020). The unit contains at 
least one flow and is well exposed in Yakima canyon. 
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