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Surficial Quaternary Units (Holocene to Pleistocene)  

  Sidestream Alluvium/Gully Facies (Holocene to Pleistocene)—Sidestream 
channel-fill debris and associated entrenched gullies on ridge slopes, the broad 
plain to the southwest, and the valley fill in the Keene Road syncline; alluvium 
on ridges is unconsolidated, poorly sorted rock debris that is infilled with 
eolian sandy silt in mid-to-lower reaches; includes remnants of older alluvium 
commonly capped by a petrogenic carbonate horizon; alluvium in valley fill 
and on broad plain is composed of unconsolidated, moderately well sorted silty 
sand with occasional sandy gravel lenses.

  Alluvial Fan Deposits (Holocene)—Mainly unconsolidated, poorly sorted, 
silty, sandy, basaltic gravel; conically shaped landforms at base of the 
mountain.

  Colluvium (Holocene)—Largely unconsolidated, poorly sorted rock debris 
deposited through hillslope processes; interstices locally infilled by eolian 
sandy silt; includes older colluvium on upper to mid-hill slopes.

  Older Colluvium (Pleistocene)—Compact rock debris deposited by hillslope 
processes; interstices locally infilled with eolian sandy silt; typically capped by 
pedogenic carbonate horizon, forms a wedge below lower thrust fault on Big 
Badger mountain and saddle and thins out on the Keene Road syncline; thick 
local units with multiple pedogenic carbonate horizons occur on limbs of Little 
Badger mountain.

  Dune Sands (Holocene)—Mainly loose, moderately well sorted, medium to 
fine sand; deposited by eolian processes; isolated stabilized dune colony 
located south of Little Badger mountain; elsewhere dunes have been modified 
by agrarian and urban development.

  Loess (Holocene to Pleistocene)—Mainly massive, unconsolidated, 
homogeneous, moderately well sorted fine sand to sandy silt; light gray 
(10YR 7/2) to very pale brown (10YR 7/3); deposited by eolian processes; 
contains discontinuous horizon of Mount Mazama tephra 
(~7.7 ka; Bacon and Wright, 2017). Includes remnants of older loess that is 
compact, very pale brown (10YR 7/3), capped by pedogenic carbonate 
horizon, and contains discontinuous horizon of Glacier Peak tephra couplet 
(~11 ka)(Porter, 1978; Mehringer and others, 1977, 1984).

  Landslide Deposits (Middle to early Late Pleistocene)—Rotational and 
translational debris slumps and associated debris flows consisting of loose, 
moderately sorted, generally unstratified clay, silt, sand, and basaltic gravel. 
Arrows indicate direction of movement. Mass-wasting debris is several meters 
to ten meters deep. Slumps are associated with Ellensburg Formation 
sediments within the brecciated fault zone (unit BFZ) on the upper forelimb of 
Big Badger mountain. Slumps transition downslope to debris flows that 
partially fill pre-existing gullies before spreading out on the margin of the 
valley floor. Toes reaching valley floor are buried beneath unit Qchi and units 
Qa and Qaf. Landslides likely initiated during or shortly after cataclysmic 
flooding, possibly induced by hydraulic loading or seismicity. Age inferred 
from geomorphology and stratigraphic position. Mass wasting also occurs in 
the form of soil creep (Holocene) on steep, loess-covered slopes; typically 
forms terracettes with occasional shallow tension cracks and (or) small slumps; 
creep features too limited in size to include as mapping unit.

Missoula Cataclysmic Flood Deposits (Pleistocene to Miocene)

HANFORD FORMATION (PLEISTOCENE)
Deposits mainly from Missoula floods, but may include deposits from other Pleistocene 
glacial outburst floods.

  Gravel-Dominated Facies—Forms a multi-lithologic sandy gravel on the 
lower northwest flank of Goose Gap. Gravel unit is older than the youngest 
Pleistocene cataclysmic flood deposits in the Badger Mountain area.

  Interbedded Sand- and Silt-Dominated Facies—Rhythmic and graded beds 
of unconsolidated silt and fine to coarse sand; mainly plane-laminated and 
ripple cross-laminated; very pale brown (10YR 7/3) to pale brown (10YR 6/3); 
clastic dikes ubiquitous and discontinuous Mount St. Helens Set S tephra 
couplet (~15.5 ka; Berger and Busacca, 1995) common near top of facies. 
Clastic dikes formed during or soon after cataclysmic flooding, possibly 
induced by seismicity (Fecht and others, 1999), are common features in unit 
Qchi deposits in the Goose Ridge and Keene Road valley synclines. They are 
less common in unit Qco and older unit Ql on the lower ridge slopes, and are 
occasionally present in Ellensburg sediments and fractures in basalt.

RINGOLD FORMATION (PLIOCENE-MIOCENE)

  Ringold Formation (undifferentiated)—Formed of intercalated lenses of 
clay (gray, yellow, blue green), quartzofeldspathic sand, and sandy 
multi-lithologic gravel; mainly deposited in low energy overbank and 
lacustrine environments with occasional higher energy floods. Petrified wood 
common. Exposure at base of ridge mainly equivalent to upper units of 
Lindsey (1995, 1996).

Columbia River Basalt Group (Miocene)

SADDLE MOUNTAINS BASALT 

  Ice Harbor Member, Martindale Basalt Flow—Single flow, black to gray, 
weathers reddish brown; fine- to medium-grained, coarsely phyric with 
abundant plagioclase crystals and scattered glomerocrysts of clinopyroxene, 
plagioclase, and olivine; entablature mostly eroded and highly weathered 
where present (forming grus); basal colonnade with large, dense columns 1 to 
1.2 m (3 to 4 ft) in diameter; reversed magnetic polarity 
(Choiniere and Swanson, 1979); K-Ar age ~8.5 Ma (McKee and others, 1977).

  Elephant Mountain Member (undifferentiated)—Two aphyric flows; fine- 
to coarse-grained; abundant microphenocrysts of plagioclase; normal to 
transitional magnetic polarity (Rietman, 1966; Choiniere and Swanson, 1979; 
Reidel and Fecht, 1981); K-Ar age ~10.5 Ma (McKee and others, 1977).

  Ward Gap Flow—Black, weathers reddish brown; upper blocky 
flow top;  lower colonnade that forms 85% of the flow has columns 
45 to 60 cm (18 to 24 in.) in diameter; thin, glassy selvage flow 
bottom.

  Elephant Mountain Flow—Black, weathers dark gray to 
brownish gray; upper rubbly flow top breccia, dense columnar 
entablature, thin basal colonnade with small columns 15 to 30 cm 
(6 to 12 in) in diameter.

  Pomona Member—One or more flows/flow units; black to gray black, 
weathers gray to black locally; fine- to medium-grained; phyric with small 
plagioclase phenocrysts; thin upper crude colonnade, thick hackly entablature, 
basal colonnade not exposed; reversed magnetic polarity 
(Choiniere and Swanson, 1979; Reidel and others, 1984); K-Ar age 12 Ma 
(McKee and others, 1977) and 40Ar/39Ar 12 Ma 
(S. P. Reidel, Wash. State Univ., unpub. data, 1991).

  Esquatzel Member—Single flow; blue black, weathers brown; fine- to 
medium-grained; aphyric with rare, sparse phenocrysts; well-developed hackly 
entablature, basal colonnade not exposed; normal magnetic polarity 
(Choiniere and Swanson, 1979; Reidel and Fecht, 1981).

  Umatilla Member (undifferentiated)—Single cooling unit; black, weathers 
yellow orange; glassy to very fine-grained; sparsely phyric; hackly entablature 
that dominates the unit and thin, basal colonnade; normal magnetic polarity 
(Rietman, 1966). The base of the unit is not exposed.

WANAPUM BASALT

  Priest Rapids Member (cross section only)—Two flows throughout the 
southwestern Pasco basin, black, weathers rusty brown, fine- to 
medium-grained with local diabasic textures in upper flow, aphyric with rare 
plagioclase phenocrysts, diktytaxitic; reversed magnetic polarity 
(Rietman 1966).

  Roza Member—Single flow; gray black, weathers reddish brown, fine- to 
medium-grained; discrete and clotted plagioclase phenocrysts; transitional to 
reversed polarity (Choiniere and Swanson, 1979).

  Frenchman Springs Member (cross section only)—Five or more flows in 
the southern Pasco basin, sparsely to abundantly plagioclase phyric, gray 
black; normal to excursional magnetic polarity (Beeson and others, 1985).

Ellensburg Formation (Miocene)

  Levey Interbed—Overbank deposits with capping red (10YR 5/6), blocky, 
sandy siltstone unit that overlies a multistory unit of pale yellow (10Y 7/4), 
normally graded, siltstone-sandstone beds to a light gray (10YR 7/2), massive 
sandstone unit; contact with overlying basalt is thermally baked; pedogenically 
altered, and locally tuffaceous with occasional discrete tephra horizons.

  Rattlesnake Ridge Interbed—Overbank sediments that commonly include a 
thin, capping red (10R 6/6) to olive yellow (2.5Y 6/6) baked siltstone, a light 
gray (10YR 7/2) reworked airfall tuffite, and basal section of epiclastic and 
volcaniclastic siltstone-sandstone beds that are normally graded yellow 
(5Y 7/3) to olive yellow (2.5Y 6/6); locally well-developed paleosols 
(dark gray 5Y 4/1).

  Selah Interbed (cross section only)—Mainly thin, massive overbank 
mudstone with occasional fine sandstone stringers. The unit has been 
pedogenically altered. A capping tuffite commonly found throughout much of 
the Pasco basin has not been observed in the map area.

  Cold Creek Interbed (cross section only)—Mainly a thin, massive mudstone 
that is known to be pedogenically altered outside the map area; found along the 
distal margin of the sandstone-siltstone overbank facies of an ancient fluvial 
system (Fecht and others, 1987).

  Mabton Interbed (cross section only)—Typically a massive mudstone that is 
pedogenically altered.

————————————

  Brecciated Fault Zone—Zone of cohesive to noncohesive fault breccia with 
varying bedrock clast sizes; commonly includes secondary faults, shears, 
shatter breccia, rotated clasts, and rotated bedrock blocks; locally includes 
Pleistocene clastic injection dikes and secondary opaline or carbonate 
minerals.

OTHER CATACLYSMIC FLOOD FEATURES
Ice-Rafted Debris (see Erratics (selected) in the Geologic Symbols)—Clastic material 
transported within icebergs caught in cataclysmic flooding and then deposited as floating 
or grounded bergs melted (Bretz, 1919). Occur as isolated erratics, erratic clusters, or 
mounds of diamicton (Fecht and Tallman, 1978; Chamness, 1994; Bjornstad, 2014). 
Found below 380 m (1,250 ft) elevation, the maximum stand of Lake Lewis (Baker and 
others, 1991); mainly strewn across top of unit Qchi on backslope of Badger Mountain 
and in the Goose Gap syncline to the southwest, and scattered atop unit Qchs (see Map 
Sheet 2 for description) in the Keene Road syncline valley. Selected erratics/erratic 
clusters are depicted on the geologic map.
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DESCRIPTION OF MAP UNITS ACKNOWLEDGMENTS
The geologic map of the Badger Mountain Centennial Preserve and surrounding area 
has been updated with new details discovered during recent surface mapping and from 
the examination of excavations created during urban development. The field 
investigations have resulted in new insights into the stratigraphy, structures, and 
landforms of Badger Mountain and the processes involved in the evolution of the ridge 
landscape.
 The basic geologic processes involved in development of the Badger 
Mountain landscape include: (1) eruption of flood basalts with quiescent periods 
between volcanic eruptions mainly marked by alluviation and pedogenesis; (2) 
orogenic activity resulting in ridge uplift with bedrock folding, faulting, and shearing; 
(3) ridge slope denudation by gully erosion, landslide activity, and colluvial creep; (4) 
scouring and subsequent sediment deposition in the lower terrain by cataclysmic 
ice-age floods, and; (5) eolian deposition of a veneer of loess and local sand dunes that 
attest to an arid climate since the ice-age floods.
 Geologic mapping was produced in cooperation with the Benton County Parks 
Department. The objective of the mapping project was to provide the Parks Department 
and visitors with a basic understanding of the geology of Badger Mountain and the 
surrounding terrain. Since the characteristics and extent of rocks and sediment have a 
direct influence on the native ecosystem of Badger Mountain, understanding the local 
geology is an important component of protecting the mountain’s natural habitat.  
 Many aspects of stratigraphy, structure, and landforms of Badger Mountain 
can be observed along the extensive trail system within the Badger Mountain 
Centennial Preserve and in road cuts along highways and roadways in and around the 
Badger Mountain area.

FIELD INVESTIGATIONS
The field investigation phase of the Badger Mountain mapping project was conducted 
over decades as the authors inspected excavations in and around the mountain, and the 
mapping project also incorporates results from previous geologic investigations. Early 
investigations included reconnaissance resource mapping (Shedd, 1925) and a regional 
stratigraphic and structural geology study (Laval, 1956). Interest in neotectonics to 
support nearby nuclear facility activities resulted in numerous studies of the area 
(Jones and Deacon, 1966; Brown, 1968; Farooqui, 1977; Geoscience Research 
Consultants, 1978; Myers and others, 1979, Woodward Clyde Consultants, 1981, 
Washington Public Power Supply System, 1981). In 1994, the geologic map of the 
Badger Mountain area was revised during compilation of 1:100,000-scale geologic 
mapping of the Richland quadrangle (Reidel and Fecht, 1994).

GEOLOGIC SUMMARY
GEOGRAPHIC SETTING
Badger Mountain is located along the southwest boundary of the Pasco basin in the 
southern part of the Yakima fold and thrust belt. The mountain is dominated by two 
nearly aligned ridges, Big Badger and Little Badger. The ridges are separated along 
trend by a broad, low saddle. The Badger Mountain Centennial Preserve encompasses 
most of Big Badger and a portion of the saddle. The ridges and Preserve overlook the 
broad, thin, sediment-mantled Goose Ridge syncline to the southwest and the 
sediment-filled valley of the Keene Road syncline to the northeast. Badger Mountain 
terminates along the ridge trend at Goose Gap (northwest) and Badger Coulee 
(southeast).

STRATIGRAPHY
Bedrock in the mapped area consists of basalt flows of the Miocene Saddle Mountains 
and Wanapum Basalts of the Columbia River Basalt Group and intercalated sediments 
of the Ellensburg Formation. The basalt flows and sedimentary interbeds crop out on 
the anticlinal ridges, in the saddle between Big and Little Badger mountains, at Goose 
Gap, and locally in the Goose Ridge syncline. Field identification of Columbia River 
basalt units was supplemented with major-and minor-element X-ray fluorescence 
(XRF) spectroscopy. Bedrock is capped mainly by Pleistocene loess and colluvium that 
form a sedimentary apron from near mid-ridge downslope to the base of the mountain. 
Gullies partially filled with alluvial debris (mainly Holocene) are entrenched into the 
bedrock on the side slopes of Badger Mountain as well as into the sediment cover on 
the Goose Ridge and Keene Road synclines. Landslide slumps are common near the 
upper forelimb thrust of Big Badger with several debris flows extending downslope and 
onto the margins of the alluvial plain. Overlying the bedrock in the Keene Road 
syncline and lower ridge side slopes are: (1) valley-filling fluvial and lacustrine 
deposits of the Pliocene-Miocene Ringold Formation, (2) colluvium shed from the 
ridges (mainly Pleistocene), (3) deposits from Pleistocene Missoula cataclysmic floods 
of the Hanford formation, and (4) local accumulations of Holocene alluvium and 
alluvial fan debris. The Goose Ridge syncline is mainly formed of basaltic bedrock that 
is mantled by fine-grained Missoula cataclysmic flood deposits. Surficial sediments and 
landforms in portions of the mapped area have been significantly disturbed, and in 
places destroyed, by urban and agrarian development.

STRUCTURAL GEOLOGY
Badger Mountain consists of two narrow, doubly plunging, open, non-cylindrical 
anticlinal folds that are separated by a structural saddle. These folds are known as Big 
Badger and Little Badger. The three segments have a north-vergent asymmetrical 
shape. The Badger Mountain structure is elongated northwest–southeast and is one in a 
series of anticlinal structures that lie along the northwest–southeast-trending 
Rattlesnake–Wallula structural alignment segment of the Olympic–Wallowa lineament 
(Reidel and others, 2020). Badger Mountain is bounded to the northeast by the Keene 
Road syncline and to the southwest by the Goose Ridge syncline.
 Big Badger is the larger of the two anticlinal folds. Big Badger has a steep and 
faulted forelimb, a relatively undeformed, moderate-to-gently dipping back slope, and 
gently plunging limbs (see Cross Sections E–E′ and F–F′). Forelimb faults are 
dominated by thrusts that commonly extend into other Badger Mountain segments. The 
upper thrust fault located along the upper-central ridge forms a broad, brecciated fault 
zone with maximum stratigraphic displacement of the Roza Member (unit „vwr) thrust 
over the Pomona Member (unit „vsp). The lower thrust fault is buried at the base of 
the ridge and forms the Badger Mountain fault of Geoscience Research Consultants 
(1978). The fault extends the length of Badger Mountain. The upper and lower thrusts 

narrow with smaller displacement as they converge toward the plunging limbs. An 
additional thrust occurs on the forelimb near mid-ridge. The mid-ridge thrust is narrow 
in width with little displacement. The mid-ridge thrust truncates to the southeast at a 
transverse tear fault and ends to the northwest.
 The saddle segment forms a broad structural and topographic low between the 
Big Badger and Little Badger anticlines. The saddle is faulted with a single thrust 
(Badger Mountain fault) as the major upper and lower thrusts of Big Badger and Little 
Badger converge on the forelimb of the saddle to form a single fault (see Cross Section 
G-G′). The fault zone is narrow with minor displacement. The backlimb of the saddle 
segment slopes gently into Goose Ridge syncline with only minor bedrock warping.
 Little Badger is a tight anticlinal fold that is intensely faulted (see Cross 
Section H–H′). Three thrust faults have been mapped on the forelimb. The upper thrust 
forms a broad, brecciated fault zone with moderate displacement. The faulted bedrock 
is highly deformed with extensive brecciation, faults, shears, and rotation, including 
localized areas of overturned bedrock units (for example, involving the Elephant 
Mountain Member: unit „vsem, the Rattlesnake Ridge interbed: unit „cer, and the 
Pomona Member: unit „vsp). The brecciated fault zone decreases in width and 
displacement down the plunging limbs. At the base of Little Badger forelimb are two 
thrust faults. One thrust is the continuation of the Badger Mountain fault of Geoscience 
Research Consultants (1978) and includes overturned bedrock units (for example, 
involving the Elephant Mountain Member: „vsem, the Levey interbed: unit „vsel, and 
the Martindale flow of the Ice Harbor Member: unit „vsim)(Farooqui, 1977; this 
study). The second basal thrust occurs in front of the Badger Mountain fault and is 
mainly obscured beneath sediments. The second basal thrust is interpreted as a splay of 
the Badger Mountain fault. On the backlimb of Little Badger, two near-vertical faults 
are exposed at mid-ridge that trend parallel to the crest axis. One fault displaces unit 
„vsem and perhaps unit „vsp against unit Qco. At the ridge crest, the bedrock is 
faulted, sheared, and rotated as a result of intense compressional stresses imposed 
between the forelimb and backlimb thrust faults that forced the ridge crest upward, 
possibly creating a pop-up structure.
 Goose Gap is a synclinal and topographic depression at the northwestern 
terminus of Badger Mountain. The gap forms the convergence zone between the 
Badger Mountain and Candy Mountain doubly plunging anticlines. The land surface 
through the gap forms a gentle- to moderate-dipping slope from the Goose Ridge 
syncline into the valley of the Keene Road syncline. Bedrock in the gap area is faulted. 
An upper forelimb low-angle thrust fault is exposed in the Interstate 182 road cut (see 
Cross Section D–D′). This thrust is an extension of the upper Big Badger thrust. A 
lower thrust fault, the Badger Mountain fault, is buried immediately east of the roadcut. 
A north-trending transverse tear fault is buried west of the roadcut.
 Badger Gap forms the southeastern terminus of Badger Mountain. The Little 
Badger anticline plunges into the structural and topographic low of Badger Gap. 
Bedrock in Badger Gap was incised by an ancestral Yakima River (prior to the river 
diversion to its present-day course) and subsequently widened by Pleistocene Missoula 
floods. Today, the gap forms the mouth of Badger Coulee and is partially buried by 
Pleistocene flood deposits.
 The Goose Ridge syncline is broad, shallow, and relatively undeformed, with 
an axis that parallels the Badger Mountain structure. The northeast limb of the syncline 
dips gently away from the Badger Mountain structure in a radial pattern toward the 
synclinal axis.
 The Keene Road syncline is a broad, shallow, topographic and structural low 
that formed between the Badger Mountain structure and an anticlinal ridge located 
along the northwest–southeast trending Horn Rapids–Badger Coulee structural 
alignment of Reidel and others (2020). The syncline shows little evidence of 
deformation on the gentle northeast-dipping limb with the exception of an elongated, 
linear depression bounded by escarpments that is located along the juncture of the 
syncline and Badger Mountain. The landform is interpreted as a graben. The graben 
feature forms a narrow, laterally extensive depression that is bounded by the Badger 
Mountain fault to the southwest and an interpreted, buried extensional fault along the 
northeast escarpment. The central depression is capped by Missoula fine-grained 
deposits (unit Qchi, sidestream alluvium (unit Qas), alluvial fan deposits (unit Qaf), 
and loess (unit Ql), with local areas of buried colluvium (unit Qc) and landslide 
deposits (unit Qld). These sediments partially fill or completely fill portions of the 
graben landform (see Cross Sections E–E′, F–F′, and G–G′). 
 Badger Mountain anticlinal growth since the middle Miocene was mainly 
created by horizontal compressional stresses. The stresses resulted in crustal shortening 
and bedrock being thrusted up and rotated onto adjacent bedrock. Continued shortening 
on the tightly folded Little Badger segment resulted in more intense internal 
deformation manifested by (1) an additional thrust splayed out from the Badger 
Mountain fault, and (2) the synchronized deformation on both forelimb and backlimb 
that potentially created a ‘pop-up’ structure at the ridge crest. This high degree of 
deformation was not observed in the broader, more open fold of the Big Badger 
segment or in the low structural relief of the saddle segment. The graben at the base of 
Badger Mountain formed under tensional stresses that were a localized and temporary 
relaxation of long-term horizontal compression.
 The emergence of the Badger Mountain anticlinal structure began prior to 
emplacement of the Saddle Mountains Basalt (~13 Ma), based on the thinning of basalt 
flows as well as interbedded sediments on and over the structures. The anticlinal 
structure continued to emerge following cessation in volcanism with much of present 
structural relief developing after eruption of the basalt (8.5 Ma).
 The faulting on Badger Mountain influenced the geometry of the anticline 
structure. The lower thrust fault(s) align along the northwest–southeast trending 
Rattlesnake–Wallula structural alignment segment and primarily influenced the 
anticlinal elongated shape, north vergence, and northwest–southeast trend. In contrast, 
the upper thrust faults on Big Badger and Little Badger are responsible for much of the 
topographic and structural relief of the ridge.
 The Badger Mountain anticlinal structure is continuing to emerge, but there is 
little evidence for ridge growth or fault displacement since the Pleistocene. Fault 
movement in the Pleistocene is associated with the emplacement of clastic dikes and 
cataclysmic flooding. Clastic dikes are present within several thrust fault zones on 
Little Badger and in Goose Gap. A landform analysis of the graben depression and 
bordering escarpments did not reveal definitive evidence of tectonic disruption of late 
Pleistocene or Holocene-age sediments or associated landforms.
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