TFW AMBIENT MONITORING PROGRAM MANUAL 1993-94 STATUS REPORT

by [)ave Schuett-Hames Allen Pleus Dennis McDonald Northwest Indian Fisheries Commission

for Washington Department of Natural Resources and the TFW Ambient Monitoring Steering Committee

December 1994

TFW AMBIENT MONITORING PROGRAM 1993-94 STATUS REPORT

TIMBER-FISH-WILDLIFE

by Dave Schuett-Hames Allen Pleas Dennis McDonald Northwest Indian Fisheries Commission

for Washington Department of Natural Resources and the TFW Ambient Monitoring Steering Committee

TFW AMBIENT MONITORING PROGRAM

1993-194 STATUS REPORT

by

Dave Schuett-Hames

Allen Pleus

Dennis McDonald

Northwest Indian Fisheries Commission

for

Washington Department of Natural Resources

and the

TFW Ambient Monitoring Steering Committee

December 1994

TFW AMBIENT MONITORING PROGRAM 1993-1994 STATUS REPORT

Introduction

The Timber-Fish-Wildlife (TFW) Ambient Monitoring program is designed to provide information on the current status of fish habitat and stream channel conditions in forested watersheds and to monitoring trends over time. TFW Ambient Monitoring is conducted cooperatively by many of the organizations participating in the TFW process including Indian Tribes, forest landowners, state natural resource agencies and environmental groups. The program was developed by and is conducted under the auspices of the Ambient Monitoring Steering Committee (AMSC) of the TFW Cooperative Monitoring, Evaluation and Research Committee (CMER).

From June of 1993 through 1994 the Northwest Indian Fisheries Commission (NWIFC) coordinated the TFW Ambient Monitoring Program under contract with the Washington Department of Natural Resources. The focus of the NWIFC effort during this period was on providing support services to organizations conducting monitoring, such as training, quality assurance, method development and database maintenance. The purpose of this report is to document the activities and accomplishments of the monitoring program (luring this period.

Major accomplishments included: the development and documentation of methodologies for monitoring salmonid spawning gravel composition (fine sediments) and summer stream temperature; development and documentation of quality assurance protocols; design and development of a spawning gravel fine sediment database; and design of a consolidated relational database to incorporate all the Ambient Monitoring Program data from various surveys and years into one relational database on the NWIFC's UNIX system. The annual training sessions on the various monitoring survey methods were well attended and 1993 and 1994 versions of the TFW Ambient Monitoring manual were widely distributed. We also acquired additional funding that allowed us to pursue development of a monitoring module for Watershed Analysis during this period. A strategy for development and implementation of monitoring within Watershed Analysis was accomplished with funding from Washington Forest Protection Association. The Watershed Analysis Monitoring Module was developed with funding from the Northwest Indian Fisheries Commission.

Future direction for the program is dominated by the need to support the development and implementation of the Watershed Analysis monitoring module. High priorities include testing and refining the procedures in the WA monitoring module and developing additional monitoring methodologies suitable for monitoring the effectiveness of WA prescriptions. In addition to new projects to support and develop Watershed Analysis monitoring, we must increase our efforts to help TFW cooperators produce useful, high quality monitoring data. To accomplish this goal we must improve our ability to provide guidance in designing

monitoring plans, and continue to ratine our training, quality assurance and database services.

Project Status

This section of the report provides updates on the components of the TFW Ambient Monitoring (AM) program. The overall AM program is directed toward the goal of assisting TFW and WA participants produce useful, high quality monitoring information that achieves their monitoring objectives. Past experience has taught us that reaching this goal requires attention throughout the entire life of a monitoring study. It begins with clear identification of monitoring objectives and development of a sound study design. Use of replicable standard methods, thorough training of monitoring staff, quality assurance to identify and correct discrepancies, careful data entry and error-checking are critical. The goal is roached when the data provides meaningful results that are useful in management decision-making. Long-term storage of data and survey information must also occur so future analysis and replication of monitoring surveys is possible.

Much of our work during the current contract period, as well as during the previous history of the program, has been directed towards improving various components of the overall process that results in quality monitoring data.

Training

Thorough training of the people collecting monitoring data is a critical component of quality data collection. The foundation of our training program is the T-F-W Ambient Monitoring Program Manual. The manual provides detailed how-to instructions for conducting monitoring surveys. Updated and revised versions of the manual were produced in 1993 and 1994. The 1993 manual incorporated new methods for monitoring spawning gravel fine sediments and stream temperature. The 1994 manual includes updates and revisions to the existing modules as well as a new section describing the protocols used in the quality assurance program. The TFW Ambient Monitoring Program manual is the most visible ambassador of the program. Over 1000 copies of the 1993 manual were distributed to TFW participants and interested parties in the Pacific Northwest.

In addition to the monitoring manual, NWIFC provides direct training to potential monitoring participants through training workshops. Workshop sessions coveting the various survey modules are provided each year prior to the sampling season and are well attended (Table 1). In 1993, we conducted five one-day workshops for a total of 89 people. In 1994, attendance increased to 137 participants (195 people pro-registered). Tribal cooperators were the primary

participants for both years with some state agency and timber industry involvement. Non-TFW participation was light in [993, but increase dramatically in 1994 to include participation from Oregon, Idaho and California, indicating that there is a large, unfilled regional demand for thorough training sessions coveting stream habitat monitoring methods.

Although the workshops are an important training service, one-on-one field training is still essential for field crews to promote consistent, replicable data collection. NWIFC provided numerous on-site field training visits during the 1993-94 field season (Table 2). We provided training to 45 people in the 1993 season and 159 people in the 1994 season. The 1994 season saw a large increase in non-TFW participation from colleges offering technical natural resource courses (many displaced timber workers) to the U.S. Army Corps of Engineers. These on-site training sessions also require extensive state wide travel from Forks to Nespelem. A list of 1993-94 participants is provided in Table 3.

Quality Assurance

Another critical element for cooperators to collect quality data is a quality assurance (QA) plan. The TFW Ambient Monitoring Program provides quality assurance services necessary for proper planning, training, and evaluation of QA plans. This is accomplished by providing protocols that are designed to improve the accuracy and repeatability of survey data by identifying and correcting surveyor bias and inconsistencies in application of the methods at the onset of the surveys. They also provide a means of documenting data quality and identifying needed improvements in the survey methods.

Quality assurance is a recommended, but voluntary, component of the TFW Ambient Monitoring program that is utilized by most participants. The NWIFC provides quality assurance services at no charge when requested by organizations conducting Ambient Monitoring surveys. The protocols used to conduct quality assurance surveys are described in the 1994 version of the T-F-W Ambient Monitoring Program Manual.

Organizations conducting monitoring surveys initiate the quality assurance component of the program by contacting the NWIFC and requesting a quality assurance visit. Quality assurance is accomplished in one of two ways depending on the type of monitoring. For spawning gravel fine sediment and stream temperature surveys, a qualified Ambient Monitoring quality assurance (QA) representative observes the cooperator field crew collecting data and compares their technique with the methods described in the T-F-W Ambient Monitoring Program Manual. Discrepancies are noted on a form and discussed with the field crew. This procedure is based on the assumption that correct application of the survey methods will result in accurate and repeatable data. A different quality assurance method is used for the

reference point, habitat unit and large woody debris survey modules. In these cases, the Ambient Monitoring QA crow and the cooperator field crew both survey the same stream reach and compare results. In addition to identifying discrepancies in the application of the method, this technique also can be used to evaluate the repeatability of the data collected.

Quality assurance surveys were conducted for both 1993 and 1994 field seasons. In 1993, the QA field crow provided a total of 12 quality assurance surveys for the Habitat Unit Survey (5), Large Woody Debris Survey (2), and Salmonid Spawning Gravel Composition (5) modules (Table 4). The results of these replicate surveys have provided cooperators with valuable information on how their crews are performing so they can pinpoint application errors and training needs. The results of the replicate surveys have also been invaluable: in identifying method problems for refinement and/or testing.

One of our primary findings was the need to promote intensive pre-season training and QA services. The goal is to get the cooperator field crews up to speed through training and conducting replicate surveys before they collect data for their projects. This provides the cooperator with quality data from the start and prevents mid- or late-season surprises.

In 1994, the QA field crew has so far provided 12 quality assurance surveys including the Habitat Unit Survey (3), the Large Woody Debris Survey (4), and the Salmonid Spawning Gravel Composition (5) modules. The results of these replicate surveys indicate that more intensive training workshops and method refinements are effective in improving the repeatability of the monitoring modules.

However, as the table shows, many cooperators are not taking advantage of QA services early in the season. This is generally due to short cooperator project start-up times that lead to hiring and equipment acquisition problems at the start of the field season. This results in pressure to begin data collection and postpone training visits and QA. Although it is the responsibility of the cooperator to request QA services, experience has shown that we often need to initiate the first contact to explain the advantages of pre-season services and make appointments for QA surveys.

The results of the replicate surveys have been effective in documenting problem areas in the methods such as bankfull width locations for LWD surveys and habitat unit boundary locations in higher gradient stream reaches or sections. This highlights the need to provide more testing and refinement of current modules as well as a need for larger scale testing of individual modules to provide a baseline for determining significant threshold levels of human, method, and background variability. Documenting variability is important for determining the limitations of the monitoring methods so that cooperators can best design their monitoring project to provide the highest quality information.

Standard Monitoring Methods

During the 1993-94 field seasons we implemented new survey methodologies for salmonid spawning gravel composition (fine sediments) and summer stream temperature. These modules first appeared in the 1993 T-F-W Ambient Monitoring program manual.

The salmonid spawning gravel composition module incorporates a statistically rigorous design for sub-sampling spawning gravel composition within a stream segment. To our knowledge, this is the only method available that provides a valid characterization of spawning gravel composition on a stream segment scale appropriate for use in Watershed Analysis. The stream temperature module is based on a sampling design used in previous TFW temperature studies. In addition to stream temperature data collected at a point, additional interpretive information (such as canopy closure, bankfull width etc.) is collected from a 600 meter long thermal roach located upstream of the point where temperature data is collected.

In addition to implementing the two new modules, we also conducted testing and evaluation of the existing reference point, habitat unit and large woody debris modules. Information from quality assurance surveys and a pilot test of observer variability was used to identify factors contributing to survey variability. After initial testing indicated a need to improve the accuracy of surface area calculations, a more intensive study was conducted as part of a group internship with a TESC quantitative methods class. This resulted in the incorporation of improved procedures for measuring unit lengths and widths in the 1994 manual.

Other priority projects for testing and refining existing methods include: comparing the use of shovels and McNeil samplers to collect spawning gravel samples; improving the repeatability of bankfull width measurements; examining discharge related variation in habitat unit surveys; and evaluating observer variation in habitat unit and LWD surveys under a variety of channel conditions.

Improvements were also made in the hand-entry field forms for each module. These field forms were designed to provide: consistent header information compatible with the TFW database; a user-friendly format which provides optimal error-checking of data and calculations; larger data entry spaces to limit illegible entry problems and provide fewer transcription errors when transferring the data into a database; and efficient data tracking and documentation for cooperator QA plans.

Database maintenance and new database development

Once data is collected, it must be input into a database, analyzed and stored for future use.

Most data is typically collected and used by TFW participants for local processes and applications such as Watershed Analysis, Resource Management Plan (RMP) evaluation and watershed planning. In addition to being used immediately in local applications, the data is stored in the state wide TFW Ambient Monitoring database for future use by TFW participants. Data is input into the state-wide TFW Ambient Monitoring database through the use of scan-able forms or by hand entry using a database screen entry form. The data is checked for errors and the database is edited accordingly. Once the database is edited, initial data analysis occurs and summary reports are generated. The summary reports have been designed to provide information in a format useful in Watershed Analysis. This information is provided to the organization that conducted the monitoring surveys, Watershed Analysis teams and other TFW participants who request it.

Appendix A shows stream segments in the TFW Ambient Monitoring database where stream surveys were conducted from 1989-93, organized by year and WRIA stream number.

During the past year, a new database was developed for spawning gravel composition data collected using the new spawning gravel survey method. The main SEDIMENT database resides on the NWIFC's UNIX system, with a companion R:BASE component that can be used for data entry, error checking and data analysis on personal computers. Appendix B contains a data dictionary defining tables and columns in the SEDIMENT database.

Over the six years that TFW Ambient Monitoring data has been collected, it has been entered into a variety of databases. Typically a new database was used each time that there were changes in survey parameters as the methodologies were refined and expanded. Over the years, this system of multiple database,;; has become increasingly unwieldy. The situation was exacerbated by the need to develop new databases for spawning gravel composition and stream temperature data.

To solve this problem, NWIFC has undertaken the design and development of a single relational database that will include data from all years and all surveys. The main database will reside on the NWIFC UNIX system. A compiled R:BASE version of the database will be available for use on personal computers by TFW participants. The spawning gravel composition database was used as a prototype for this new system. Design of the system has been completed (Appendix C) and programming of the system is currently underway.

Watershed Analysis Monitoring

During the spring and summer of 1994, the Ambient Monitoring Steering Committee (AMSC) initiated work on a monitoring component for Watershed Analysis (WA) at the request of the

Department of Natural Resources anti CMER/CESC. This work was (lone by NWIFC under the supervision of AMSC with separate funding provided by the Washington Forest Protection Association (WFPA) and NWIFC.

The first phase of this effort was completion of a scoping project to develop a strategy to implement WA monitoring (Schuett-Hames and Pess, 1994). The strategy report: (1) identified potential purposes and functions of monitoring in the context of WA; (2) examined the feasibility of using WA causal mechanism reports to build watershed specific monitoring plans; and (3) identified monitoring situations likely to be encountered and the monitoring parameters and methods needed for monitoring them. It also provided a structure for the WA Monitoring Module, and recommendations for integrating the development and implementation of WA monitoring into the AMSC/CMER work plan. Some of the key conclusions and recommendations of the strategy report include:

* Watershed Analysis monitoring must evaluate triggering mechanisms and input processes to determine the effectiveness of WA prescriptions. Monitoring input processes is important to provide feedback on the performance of prescriptions and to identify potential problems before they are translated into detectable adverse resource effects. Stream channel, fish habitat and water quality conditions must also be monitored to determine if the resource protection objectives of WA are being met.

*WA is an excellent foundation for developing a watershed-specific monitoring plan. The causal mechanism reports provide monitoring hypotheses that link input processes with channel and resource responses. These can be used to identify appropriate monitoring parameters and locations.

*Development of standard monitoring methods should begin as soon as possible for the high priority parameters identified as most likely to be in high demand for WA monitoring. Methods to measure changes in channel morphology, input processes and triggering mechanisms are badly needed.

*Technical assistance from the TFW Ambient Monitoring Program is needed to support local WA monitoring teams and ensure consistent data collection on a statewide basis. The appropriate role of the TFW AM program in implementing WA monitoring includes developing standard methods, conducting training, providing quality assurance, assisting with data processing and analysis, and maintaining the state-wide database. To successfully implement WA monitoring, a stable long term funding source for the monitoring program must be secured.

Following completion of the strategy report, we proceeded with development of the WA

module. The WA monitoring module was approved by TFW's CMER and Administration Committees in August 1994. Unfortunately, we missed the deadline to get material to the Forest Practices Board for their approval. We plan to test and refine the WA Monitoring module on a voluntary basis during the coming year and prepare it for inclusion into the next version of the WA manual.

Future Directions

We expect the emphasis of the TFW Ambient Monitoring Program to be focused in two main goals during the next one to two years: 1) further development and implementation of WA monitoring, and 2) continuing improvement of TFW Ambiet Monitoring Program functions and services that result in high quality monitoring information.

We are currently proceeding with the implementation of WA monitoring with funding from the Washington Forest Protection Association (WFPA). This will allow us to undertake two important tasks.

I) Test, evaluate, and refine the WA monitoring module. The purpose of this task is to determine how the monitoring module works and identify parts that need improvement. To accomplish this task, we will evaluate the experience of WA teams using the monitoring module in approximately five watersheds. A representative of the Ambient Monitoring Program will observe and assist each team as they use the module to develop monitoring plans by attending meetings, reviewing work products, interviewing participants and answering questions posed by the team. The information gathered will be used to identify which parts of the procedure work well, which parts need improvement, and why. We will attempt to include a representative sample of watersheds from regions around the state.

2) Develop CMER-approved WA monitoring methods for high priority methods. The purpose of this task is to identify and document standard methods for parameters where CMER-approved methods are lacking. In the next year we will be working on methods for the following high priority parameters:

- * Iterative landslide inventory (remote)
- * Rain-on-snow zone vegetation (remote)
- * Spawning gravel availability
- * Channel bed aggradation and degradation
- * Channel widening, braiding, migration, bank erosion

- * Riparian vegetation monitoring (remote)
- * Mass wasting road assessment procedure
- * Channel substrate size
- * Surface erosion survey

Other tasks that need to be done to implement WA monitoring over time include:

* Develop additional WA monitoring methods identified in the strategy report (Schuett-Hames and Pess, 1994; see Appendix D).

* Work with the federal watershed analysis monitoring committee to develop compatible monitoring guidelines for state and federal watershed analysis processes in Washington State.

* Test and refine data analysis and interpretation procedures for WA monitoring.

* Revise the monitoring module for' subsequent versions of WA manual.

* Clarify procedures for the use of monitoring data to evaluate WA effectiveness at the watershed level.

* Clarify procedures for the use of monitoring data to ratine WA methods.

* Improve capability to interpret monitoring data by evaluating the utility of a regional network of reference sites representing natural conditions/productive habitat.

* Develop a procedure for preparing resource recovery prognoses to help interpret WA monitoring data.

The following tasks and functions are necessary to achieve the TFW Ambient Monitoring Program goal of providing high quality monitoring information.

* Improve our capability to provide help and guidance to TFW participants in developing monitoring plans that will accomplish their goals.

* Test and refine existing methods. Testing and refinement of the habitat unit, LWD and spawning gravel fine sediment survey modules should continue so changes can be incorporated in future versions of the methods manual. We anticipate a continuing need for testing and refinement of new and existing methods.

* Continue the TFW Ambient Monitoring quality assurance service. There is an on-going year-round need to conduct and analyze QA surveys. Most QA visits are requested during the summer-fall field season, but some QA for spawning gravel processing occurs year-round. Analysis of QA results takes place primarily in the winter.

* QA protocols and procedures need to be developed for new monitoring methods as they are brought on line.

* Finish development and implementation of the consolidated relational database:

* Expand the relational database as new parameters and methods come on-line. As new monitoring methods are developed, the data collected will need to be stored within the relational database.

* Assist cooperators in data entry and processing. There is an on-going year-round need to assist cooperators in data entry and processing. Most data entry and processing occurs primarily in the winter.

* Revise and distribute the monitoring methods manual. The monitoring methods manual is revised annually prior to the summer field sea, son to include new methods that have been

developed as well as improvements in existing methods.

* Conduct group training sessions. Group training sessions are held each year prior to the field season in the late spring and early summer.

* Provide on-site field training and assistance. There are year--round requests for field assistance visits. Most requests occur (luring the summer and fall.

In addition to these tasks, there is an ongoing need to identify sources of funding to accomplish both specific tasks and ongoing program functions. At the present time, the program has funding from WFPA to evaluate, test and refine the WA monitoring module, develop high priority WA monitoring methods, and continue manual production, training, quality assurance and database services at the current level of effort through September of 1995. We have submitted a budget request to CMER to fund the program through the 1995-97 biennium. We have also submitted an Environmental Technology Initiative proposal in partnership with the Department of Ecology for funding to develop additional WA monitoring methods.

Conclusion

TFW has been, and continues to be, a very dynamic context for monitoring. The development and implementation of Watershed Analysis demonstrates how rapidly monitoring needs are evolving in the arena of forestry-fisheries interactions as resource management increases in sophistication. To play a useful role in helping TFW participants meet their needs for monitoring information, our monitoring program must remain attentive and flexible, responding rapidly to the changing needs of TFW participants. In the process of responding to change, the program must not lose track of its fundamental purpose: to help TFW participants obtain high quality monitoring data to meet their information needs. We must continue to pay attention to, and improve upon, the elements of the program that contribute to its success in providing high quality data. These elements include: monitoring plan design; training; standard methods; quality assurance; database maintenance; data analysis; and data interpretation. Our challenge for the foreseeable future appears to be maintaining, and improving, the quality of TFW monitoring data, while responding to the rapidly evolving needs for, and uses of, monitoring information in the TFW arena.

TFW Ambient Monitoring Program 1993-94 Status Report

References

Schuett-Hames, D.E. and G. Pess. 1994. A strategy to implement Watershed Analysis monitoring. TFW-AM14-94-001 #72. Washington State Department of Natural Resources Forest Practices Div./Northwest Indian Fisheries Commission. Olympia.

TFW Ambient Monitoring Program 1993-94 Status Report

APPENDIX A

TFW AMBIENT MONITORING STREAM SURVEY SEGMENTS; 1989-1993

199	3 TFW AMB	IEI	NT N	ION	ITO	RING	STREAM	SUR	IVE	EYS		
	STREAM NAME	SEG	RM	RM	SEG	SURVEY	DATA SUM	DATA-	FILE	FIELD	GIS	USGS TOPO QUAD MAP
¥11.123		*	(LOW)	(UPR)	LEN(M)	TYPE	AFFIL RPT	BASE	ID	FORMS		
									[
7.0291	TOLT R.	2	1.70	6.00	6264	S	TULALIP	DISK	<u> </u>	YES		CARNATION, LAKE JOY
7.0291	N.F. TOLT R.	5	9.80	10.50	1126	\$	TULALIP	DISK	↓	YES		LAKE JOY
7.0300	STOSSEL.	24	0.30	0.80	1107	S	TULALIP	DISK	<u> </u>	YES		
10.0800	CLEARWATER	2	1.10	2.30	2000	R,H,L	MUCKLE	SCAN	1DM	YES		CYCLONE CREEK
10.0800	CLEARWATER	3	2.30	4.10	2600	<u>R,H,L</u>	MUCKLE	SCAN		YES VCC		
10.0800	CLEARWATER	4	4.10	4.80	1700			SCAN			+ • ••	
10.0800		5	4.60	5.90	2100	140	MUCKLE	- SCAN	100	VES	<u> </u>	REARHEAD MOUNTAIN
11.0004	ICLEARWAIER	1-1-	0.00	0.00		S	NISQUAL	DISK	1.00	VES		FATONVILLE
11.0086		12	0.00	4.30	600	S	NISQUAL	DISK		YES		EATONVILLE, TANWAX LAKE
11.0086	OHOP	3	4.30	6.10	600	S	NISQUAL	DISK		YES		EATONVILLE, TANWAX LAKE
11.0086	ОНОР	Î	0.30	1.00	600	T	NISQUAL	DISK	1	YES	1	EATONVILLE
11.0086	ОНОР	21	2.30	3.00	600	T	NISQUAL	DISK		YES		EATONVILLE
111.0086	ОНОР	31	6.20	8.80	600	T	NISQUAL	DISK		YES		TANWAX LAKE
11.0092	LYNCH	41	0.20	0.80	600	T	NISQUAL	DISK		YES		
11.0096	TWENTYFIVE MILE	2	0.20	1.00	600	S	NISQUAL	DISK	<u> </u>	YES	<u> </u>	TANWAX LAKE, LAKE KAPOWSIN
11.0096	TWENTYFIVE MILE	51	0.20	0.60	600	T	NISQUAL	DISK	┦	YES		
11.0101	MASHEL R.	1	0.00	1.70	600	<u>S</u>	NISQUAL	DISK		YES		EATONVILLE
11.0101	MASHEL R.	2	1.70	5.30	600	<u> </u>	NISQUAL	DISK		YES		
11.0101	MASHEL R.	8	6.70	7.00	600	<u> </u>	NISQUAL	DISK		YES	+	
11.0101	MASHEL R.	16	14.50	15.50	600	<u> </u>	NISQUAL	DISK		VES		ASHFORD
11.0101	MASHEL R.	111	11.40	7.90	- 600	<u>1</u>	NISQUAL	DISK	+	VES		FIBE
11.0101			11.40	14 00			NISQUAL	DISK	+	VES		ASHFORD
11.0101			15.60	15 00	600	<u>'</u>	NISQUAL	DISK		YES	1	ASHFORD
111.0101	MASHEL R	61	0.60	1.10	600	T.	NISQUAL	DISK		YES	1	EATONVILLE
11.0101	MASHEL R.	$\frac{1}{71}$	5.00	5.50	600	T	NISQUAL	DISK		YES	1	EATONVILLE
111.0102	LITTLE MASHEL R.	81	0.30	0.60	600	T	NISQUAL	DISK	1	YES		EATONVILLE
11.0102	UTTLE MASHEL R.	প	2.10	2.40	600	T	NISQUAL	DISK		YES		ELBE
11.0103	MIDWAY	101	0.00	0.30	600	T	NISQUAL	DISK	1	YES		ELBE
11.0110	MASHEL R. TRIB	121	0.10	0.40	600	<u> </u>	NISQUAL	DISK		YES		ELBE
11.0111	BEAVER	2	0.80	1.00	600	<u> </u>	NISQUAL	DISK	<u> </u>	YES		ELBE
11.0111	BEAVER	131	0.50	0.80	600	<u>Ţ</u>	NISQUAL	DISK		YES		
11.0111	BEAVER	141	2.30	2.60	600	T	NISQUAL	DISK		YES		FTRE
11.0114	BUSYWILD	191	0.10	0.40	600		NISQUAL	DISK	+	YES VES		
11.0114	BUSYWILD	201	4,10	4.40	- 000		NISQUAL	DISK				
11.0121	S.F. MASHEL R.	181	15.00	15.90	1300		SOLAYINI	SCAN				
14.0029		+	2.00	3.00	1300	S	SOLAXIN	SCAN		VES	+	
14 0035			4.50	5.80	1600	RHL	SQUAXIN	SCAN	I DE	YES	1	
15.0035	GOLDSBOROUGH	6	4.50	5.80	1600	S	SQUAXIN	SCAN	I DE	YES	+	
14.0049	JOHNS	2	0.50	1.40	1100	R,H,L	SQUAXIN	SCAN	I DC	YES		
15.0049	JOHNS	2	0.50	1.40	1100	S	SQUAXIN	SCAN	1 00	YES		
14.0057	DEER	2	2.20	2.90	488	R,H,L	SQUAXIN	SCAN	1 DF	YES		
15.0057	DEER	2	2.20	2.90	485	S	SQUAXIN	SCAN	I DF	YES	4_	
14.0067	MALANEY	1	0.20	0.50	620	R,H,L	SQUAXIN	SCAN) YES	<u> </u>	
15.0067	MALANEY	$\frac{1}{1}$	0.20	0.50	620	S	SQUAXIN	SCAN	<u>1 DE</u>	YES		
14.0069		+	0.00	1.20	743	<u>KHL</u>	SQUAXIN	SCAN	귀셨			
15.0069		++	0.00	1 - 1.20	/40		LICENA				+	SEABECK
15.03/7	UTTLE ANDERSON	+ +	0.50	0.20	1000		USPVV	DISK			+-	SCADECK
15.0377	UTTLE ANDERSON	- 2	0,20		1 1200		USEW			VES		SEABECK
15 0370	I ANDERSON TOIR	$+\tilde{i}$		1 0 24	450	R.HI	USFW	DISK		VES	-	SEABECK
15.0379	L ANDERSON TRIB	2	0.25	5 0.35	150	RHL	USFW	DISK	1	YES	1	SEABECK
15.0382	L. ANDERSON TRIB	1	0.00	0.30	690	RHL	USFW	DISK	<u> </u>	YES	"	SEABECK, POULSBO
15.0382	L. ANDERSON TRIB	2	0.30	0.80	520	RHL	USFW	DISK		YES		POULSBO
15.0382	L. ANDERSON TRIB	3	0.80) 1.20	380	R,H,L	USFW	DISK		YES		POULSBO
15.0385	L. ANDERSON TRIB	1	0.00	0.40	70(R,H,L	USFW	DISK	: L	YES		POULSBO
15.0386	L. ANDERSON TRIB	1	0.00	0.60	סוו נ	RHL	USFW	DISK	<u>.</u>	YES	4	POULSBO
15.0389	BIG BEEF	<u> </u>]	0.10	0 1.30	<u>p</u>	R, H, L	PNPTC	DISK	<u> </u>			SEABECK
15.0389	BIG BEEF	2	1.30	<u>) 5.30</u>	<u>.</u>	R, H, L	PNPTC	Disk	<u>-</u>		<u> </u>	
15.0389	BIG BEEF	4	6.00	1 6.70	<u> </u>	R, H, L	PNPIC	DISK	;			
15.0389	BIG BEEF	<u></u> +÷	1,91	J 9.00			PINPIC LIECUM	DISK	;	VEC	_	
15,0404	DIAVIS CR.	L. 1	1 0.18	<u>) U.Ə</u>	1 <u>0</u> 8	<u>'' K'H'F''</u>		UISK	<u> </u>	1 103		

199	93 TFW AME	BIE	NT I	ION	NITO	RING	STREAM	SUF	RVE	EYS		
WRIA	STREAM NAME	SEG	RM	RM	SEG	SURVEY	DATA SUM	DATA-	FILE	FIELD	GIS	USGS TOPO QUAD MAP
		#	(LOW)	(UPR)	LEN(M)	TYPE	AFFIL RPT	BASE	ID	FORMS		· · · · · · · · · · · · · · · · · · ·
15.0404	STAVIS CR.	2	0.50	1.40	1600	R,H,L	USFW	DISK		YES		HOLLY, WILDCAT LK
15.0404	STAVIS CR.	3	1.40	1.50	300	R,H,L	USFW	DISK		YES		WILDCATLK
15.0404	STAVIS CR.	4	1.50	3.60	4450	R,H,L	USFW	DISK		YES		WILDCAT LK, HOLLY
15.0404	STAVIS CR.	5	3.60	3.80	490	RHL	USFW	DISK	ļ	YES		НОЦУ
15.0404	STAVIS CR.	6	3.80	4.00	500	R.H.L		DISK	1	YES	L	HOLLY
15.0405			0.00	1.10	2040	R.H.L	USFW	DISK		YES		
15.0405	STAVIS IRIB.	2	1.10	1.70	800	R,H,L	USFW	DISK		YES		НОШУ
15.0405			1.70	2.00	460	- K,H,L		DISK	<u> </u>	YES		
15.0405	STAVIS IRIB.	4	2.00	2.10	440	R,FI,L		DISK	<u> </u>	YES		HOLLY
15.0400	STAVIS TRIB.	2	0.00	0.00	500	<u> </u>		DISK		VCe		
15 0407	BOYCECR	1	0.00	0.00	600					VES	ļ	
15.0407	BOYCE CR.	2	0.40	0.70	620	RHI	LISEW	DISK	┼	VES	<u> </u>	
15.0407	BOYCE CR.	3	0.70	1.00	810	R.H.L	USFW	DISK		VES	┣──	НОЦУ
15.0407	BOYCE CR.	4	1.00	1.60	1200	R.H.I	USFW	DISK		VES		HOLLY
15.0408	HARDING CR.	1	0.00	0.30	600	R.H.L	USFW	DISK		YES		HOLLY
15.0408	HARDING CR.	2	0.30	0.55	420	R,H,L	USFW	DISK		YES	[HOLLY
15.0408	HARDING CR.	3	0.55	0.65	280	R,H,L	USFW	DISK	1	YES		НОЦУ
15.0408	HARDING CR.	4	0.65	0.80	250	R.H.L	USFW	DISK		YES		HOLLY
15.0408	HARDING CR.	5	0.80	1.00	400	R.H.L	USFW	DISK	1	YES	[HOITA
15.0409	HARDING TRIB	1	0.00	0.50	930	R,H,L	USFW	DISK	1	YES		НОШҮ
15.0410	HARDING TRIB	1	0.00	0.35	570	R,H,L	USFW	DISK		YES		НОЦУ
15.0454	LITTLE TAHUYA	1	0.00	1.40	2155	RHL	PNPTC	DISK		YES		LAKE WOOTON
15.0454	LITTLE TAHUYA	2	1.40	2.35	1500	RHL	PNPTC	DISK		YES		LAKE WOOTON
15.0495	BIG MISSION	1	0.00	0.60	1000	RHL	PNPTC	DISK	<u> </u>	YES		BELFAIR
15.0495	BIG MISSION	2	0.60	1.30	1400	RHL	PNPTC	DISK	<u> </u>	YES		BELFAIR
15.0495	BIG MISSION	3	1.30	1.50	700	RHL	PNPTC	DISK	ļ	YES		BELFAIR
15.0495	BIG MISSION	4	1.50	1.70	600	RHL	PNPTC	DISK	ļ	YES		BELFAIR
15.0495	BIG MISSION	5	1.70	2.30	1076	RHL	PNPTC	DISK	ļ	YES		BELFAIR
15.0495		7	2.30	3.00	1885		PNPIC	DISK	<u> </u>	YES		BELFAIR, LAKE WOOTON
15.0495			3.00	4.10	1800		PNPIC	DISK	-	YES		BELFAIR, LAKE WOOTON
15.0495	BIC MISSION THE		4.10	0.60	1000			DISK	<u> </u>	YES		BELFAIR
15 0498	BIG MISSION TRB	+	0.00	1 70	2700		PNPIC	DISK		YES VEC	· .	
15.0499	BIG MISSION TRIB	l i	0.00	0.20	340		PNPTC	DISK				
15.0499	BIG MISSION TRIB	2	0.20	0.90	1600		PNPTC	DISK		VES		RELEAD
15.0500	BIG MISSION TRIB.	$\frac{1}{1}$	0.00	0.40	810	RH	PNPTC	DISK		YES		RELEAR
15.0505	COURTNEY	1	0.00	0.55	800	RHL	PNPIC	DISK		YES		BELEAR
15.0505	COURTNEY	2	0.55	0,90	500	RHL	PNPTC	DISK	1	YES		BELFAIR
15.0505	COURTNEY	3	0.90	2.40	1500	RHL	PNPTC	DISK	1	YES		BELFAIR
17.0089	RIPLEY CR.	1	0.00	0.90	1214	RHL	PNPTC	DISK		YES		MT. WALKER, UNCAS
17.0089	RIPLEY CR.	2	0.90	1.60	1300*	R	PNPTC	DISK		YES		UNCAS
17.0090	HOWE CR.	1	0.00	0.50			PNPTC					MT. WALKER, UNCAS
17.0090	HOWE CR.	2	0.50	0.60			PNPTC	-				UNCAS
17.0090	HOWE CR.	3	0.60	1.00			PNPTC	ļ	ļ			UNCAS
17.0090	HOWE CR.	4	1.00	1.50	ļ		PNPTC			ļ		UNCAS
17.0090	HOWE CR.	5	1.50	1.70	ļ		PNPTC		ļ			UNCAS
17.0090	HOWE CR.	6	1.70	2.00			PNPTC		ļ			UNCAS
17.0090	HOWE CR.	<u>↓ </u>	2.00	3.00	400		PNPTC					UNCAS
17.0170	THORNDYKE CR.		0.40	0.70	480	R,H,L		DISK	 	YES		LOFALL
17.0170	THORNDYKE CR.	- 4	0.70	1.10	599	R,H,L	USFW	DISK	<u> </u>	YES		
17 0170	THORNDYKE CR.		1.10	2.50	400	R,H,L		DISK	 	YES	L	
17.0170	THORNDYKE CP	4	2.50	2.00	1/124			DISK	<u> </u>	YES		LOFAL
17.0170		1	3.00	3.30	250			DIEN	───	VEC -	<u> </u>	
17.0170	THORNDYKE CR.	7	3.30	3.70	200	R.H.I	USEW	DISK	<u> </u>	VEQ		
17.0171	THORN DYKE TRIB.	† î	0.00	1.50	3100	RHI	USEW	DISK	 -	VES		
17.0174	THORN DYKE TRIB.	t i	0.00	0.30	529	R.H.L	USFW	DISK		VES		
17.0174	THORN DYKE TRIB.	2	0.30	0.60	490	R,H,L	USFW	DISK		VES	<u> </u>	IOFAU
17.0174	THORN DYKE TRIB,	3	0.60	0.70	100	R.H.L	USFW	DISK	ţ	YFS		LOFAL
17.0174A	THORN DYKE TRIB.	1	0.00	0.10	200	R.H.L	USFW	DISK	t	YFS	<u> </u>	LOFALI
17.01748	THORN DYKE TRIB	1	0.00	0.30	432	R,H,L	USFW	DISK		YES	<u> </u>	LOFALL
17.0174B1	THORN DYKE TRIB.	1	0.00	0.20	356	RHL	USFW	DISK	1	YES		LOFALL
17.017481	THORN DYKE TRIB.	2	0.20	0.30	100	R.H.L	USFW	DISK		YES		LOFALL

199	3 TFW AME	BIE	NT I	NON	OTIV	RING	STREAM	SUF	RVE	EYS		
WRIA	STREAM NAME	SEG	RM	RM	SEG	SURVEY	DATA SUM	DATA-	FILE	FIELD	GIS	USGS TOPO QUAD MAP
		#	(LOW)	(UPR)	LEN(M)	TYPE	AFFIL RPT	BASE	ID	FORMS	<u> </u>	· · · · · · · · · · · · · · · · · · ·
17.0174C	THORN DYKE TRIB.	1	0.00	0.10	100	R,H,L	USFW	DISK		YES		LOFALL
17.0179A	THORN DYKE TRIB.	1	0.00	0.10	100	R,H,L	USFW	DISK		YES		LOFALL
17.0179B	THORN DYKE TRIB.	1	0.00	0.20	400	R,H,L	USFW	DISK		YES	1	LOFALL
17.0181	SHINE CR.	1	0.20	0.60	799	R	USFW	DISK		YES		LOFALI,
17.0181	SHINE CR.	2	0.60	1.00	713	R,H,L	USFW	DISK		YES		LOFALL, PORT LUDLOW
17.0181	SHINE CR.	3	1.00	1.20	289	R,H,L	USFW	DISK		YES	[PORT LUDLOW
17.0181	SHINE CR.	4	1.20	1.30	248	R,H,L	USFW	DISK		YES		PORTLUDLOW
17.0181	SHINE CR.	5	1.30	1.80	900	R,H	USFW	DISK		YES		PORT LUDLOW
17.0181	SHINE CR.	6	1.80	2.80	1810	R,H,L	USFW	DISK		YES		PORT LUDLOW
17.0181A	SHINE TRIB.	1	0.00	0.10	228	R,H,L	USFW	DISK		YES		PORTLUDLOW
17.0182	SHINE TRIB.	1	0.00	0.40	810	R	USFW	DISK		YES		LOFALL
17.0219	SNOW	0	0.00	0.50		R,H,L	PNPTC	DISK				UNCAS QUAD
17.0219	SNOW	1	0.50	3.50		R,H,L	PNPTC	DISK				UNCAS QUAD
17.0219	SNOW	2	3.50	4.90		R,H,L	PNPIC	DISK				UNCAS QUAD
17.0219	SNOW	3	4.90	6.40		R,H,L	PNPTC	DISK				UNCAS QUAD
17.0245	SALMON CR.	3	1.50	2.00	400*	R,H,L	PNPTC	DISK		YES		UNCAS
17.0245	SALMON CR.	4	2.00	2.20	765	R,H,L	PNPTC	DISK		YES		UNCAS
17.0245	SALMON CR.	5	2.20	3.50	2820	R,H,L	PNPTC	DISK		YES		UNCAS
18.0160	MCDONALD CR.	3	4.90	6.90	3465	R,H,L	PNPTC	DISK		YES		CARLSBORG
18.0160	MCDONALD CR.	4	6.90	7.90	2106	R,H,L	PNPTC	DISK		YES		CARLSBORG
18.0160	MCDONALD CR,	5	7,90	8.50	1005	R,H,L	PNPTC	DISK		YES		CARLSBORG
18.0160	MCDONALD CR.	6	8.50	9.40	830	RHL	PNPTC	DISK		YES		CARLSBORG
18.0160	MCDONALD CR.	7	9.40	9.90	1600	R	PNPTC	DISK		YES		CARLSBORG
20.0251	KAHKWA	1	0.50	0.90	600M	L	HOH	DISK	<u> </u>	YES	<u> </u>	INDIAN PASS
20.0252	MOSQUITO	1	0.10	0.40	600M	T I	HOH	DISK	<u> </u>	F.1	İ.,.	INDIAN PASS
20.0254		1	0.30	0.70	600M	<u> L </u>	HOH	DISK		YES		INDIAN PASS
20.0255	INDIAN	1	0.30	0.70	600M	T	HOH	DISK		F.1		INDIAN PASS
20.0255	INDIAN	1	0.30	0.70	600M	L	HOH	DISK		YES		INDIAN PASS
20.0257	HADES	1	0.10	0.40	600M	T	HOH	DISK		F.1		INDIAN PASS, WINFIELD CR
20.0257	HADES	1	0.10	0.40	600M	L	HOH	DISK		YES		INDIAN PASS, WINFIELD CR
20.0430	NOLAN	1			600M	۲ I	HOH	DISK		F.1		KALALOCH RIDGE
20.0442	WINFIELD	1	0.20	0.50	600M	T	HOH	DISK		F.1]	WINFIELD CR
20.0451	WILLOUGHBY	1	0.10	0.40	600M	<u> </u>	HOH	DISK		F.1		WINFIELD CR
20.0458	ROCK	1	0.10	0.40	600M	T	нон	DISK		F.1]	WINFIELD CR
20.0466	OWL	1	0,10	0.40	600M	T	HOH	DISK		F.1]	SPRUCE MIN
20.0476	SPLIT	1	0.10	0.50	600M	T	HOH	DISK		F.1		OWL MIN
20.0477	LINE	1	1.00	1.40	600M	T	HOH	DISK		F.1		OWL MTN
20.0481	SHELTER	1	0.60	0.90	600M	T	НОН	DISK		F.1		OWL MTN
20.0481	SHELTER	1	0.60	0.90	600M	L	HOH	DISK		YES		OWL MTN
20.0483	MATSON	1	0.10	0.40	600M	T	HOH	DISK		F.1		OWL MIN
20.0483	MATSON	1	0,10	0.40	600M	L	HOH	DISK		YES		OWL MIN
20.0484		1	0.40	0.90	600M	T	HOH	DISK		F.1		OWL MTN
20.0484	CAMP	1	0.40	0.90	600M	<u> t </u>	HOH	DISK		YES		OWL MTN
20.0504	TWIN	1	0.30	0.60	600M	L	HOH	DISK	<u> </u>	YES	ļ	OWL MIN
20.0509	509.0000	1	0.70	1.00	600M	I	НОН	DISK	ļ	F.1	ļ	OWL MIN
20.0509	509.0000	1]	0.70	1.00	600M	L	HOH	DISK	ļ	YES	I	OWL MIN
20.0513	JACKSON	1	0.10	0.40	600M	T	HOH	DISK	ļ	F.1		OWL MTN
20.0513	JACKSON	<u>]</u> .	0.10	0.40	600M		HOH	DISK	<u> </u>	YES		OWL MTN
21.0235	COAL	1	0.10	0.40	600M	T T	HOH	DISK	ļ.,	F.1		KLOOCHMAN ROCK
21.0235	COAL		0.10	0.40	600M	L	HOH	DISK	ļ	YES		KLOOCHMAN ROCK
21.0267	HARLOW	1	0.40	0.80	600M	I	HOH	DISK	<u> </u>	F.1	1	KLOOCHMAN ROCK
21.0267	HARLOW	1	0.40	0.80	600M	ΙLÌ	HOH	DISK	1	I YES	1	KLOOCHMAN ROCK

199	2 AMBIENT	MO	NIT	ORI	NG S	TREA	M SE	GME	NTS				
WRIA	STREAM NAME	SEG	RM	RM	SEG	SURVEY	DATA	SUM	DATA	FILE	FIELD	GIS	QUAD MAP
		#	(LOW)	(UPR)	LEN (M)	TYPE	AFFIL.	RPT	BASE	ID	FORM		
											1		
10.0122	GREENWATER	1	12.95	13.60	313	R,H,L	MUCKLE	NWIFC	AMONT2			YES	NOBLE KNOB
10.0122	GREENWATER	2	13.60	14.25	1112	R,H,L	MUCKLE	NWIFC	AMONT2			YES	NOBLE KNOB
10.0122	GREENWATER	3	14.25	15.46	793	R,H,L	MUCKLE	NWIFC	AMONT2			YES	NOBLE KNOB
10.0122	GREENWATER	4	15.46	16.50	619	R,H,L	MUCKLE	NWIFC	AMONT2			YES	NOBLE KNOB
10.0122	GREENWATER	5	17.00	18.25	2621	R,H,L	MUCKLE	NWIFC	AMONT2			YES	NOBLE KNOB
10.0122	GREENWATER	6	18.25	18.85	3614	R,H,L	MUCKLE	NWIFC	AMONT2		L	YES	NOBLE KNOB
13.0028	DESCHUTES	10	43.00	44.90	4698	R,H,L	SQUAXIN	NWIFC	AMONT2	CA	YES	ļ	BALD HILL, EATONVILLE
13.0028	DESCHUTES	12	41.30	42.40	1939	R,H,L	SQUAXIN	NWIFC	AMONT2	CB	YES	ļ	BALD HILL
13.0028	DESCHUTES	10				<u> </u>	SQUAXIN		DISK				BALD HILL
13.0028	DESCHUTES	$+\frac{1}{10}$	05.00	04.40		S	SQUAXIN	111050	DISK		100		
13.0028		18	35.30	30.00	2015	R,H,L,S	SQUAXIN	NWIEC	AMONI2	00	YES		BALD HILL, LAKE LAWRENCE
13.0028		- 19	33.30	35.30	3802	R,H,L,S	SQUAXIN		AMON12	CD	YES		
13.0028		20				<u>ः</u>	SOUANIN		DISK				
13.0020	MITCHELL	1					SOLIAVIN		DISK		<u> </u>		
13,0086						S	SOLIAXIN		DISK	<u> </u>			
13.0086	HUCKLEBERRY	- 2				<u> </u>	SQUAXIN		DISK				BALD HILL
13.0089	JOHNSON	- Î				s	SQUAXIN		DISK		+		BALDHILL
13.0095	THURSTON	1				S	SQUAXIN		DISK	í	r ·		BALDHILL
13.0110	UTTLE DESCHUTES	1	0.00	0.80	1157	R,H,L	SQUAXIN	NWIFC	AMONT2	CE	YES		BALDHILL
15.0454	LITTLE TAHUYA	1	0.00	1.40	2155	R,H,L	PNPTC		DISK		YES	•	LAKE WOOTEN
15.0454	LITTLE TAHUYA	2	1.40	2.35	1500	R,H,L	PNPTC		DISK		YES	•	LAKE WOOTEN
15.0495	BIG MISSION	1	0.00	0.60	1000	R,H,L	PNPTC	1	DISK		YES	•	BELFAIR
15.0495	BIG MISSION	2	0.60	1.30	1400	R,H,L	PNPTC		DISK		YES	•	BELFAIR
15.0495	BIG MISSION	3	1.30	1.50	700	R,H,L	PNPTC		DISK		YES	•	BELFAIR
15.0495	BIG MISSION	4	1.50	1.70	600	<u>R,H,L</u>	PNPTC		DISK		YES	•	BELFAIR
15.0495	BIG MISSION	5	1.70	2.30	1076	R,H,L	PNPTC	·	DISK		YES	•	BELFAIR
15.0495	BIG MISSION	6	2.30	3.00	1885	R,H,L	PNPTC	•	DISK		YES	*	BELFAIR, LAKE WOOTEN
15.0495	BIG MISSION	7	3.00	4.10	1800	R,H,L	PNPTC		DISK	ļ	YES		BELFAIR, LAKE WOOTEN
15.0495	BIG MISSION	8	4.10	5.80	3000	R,H,L	PNPTC		DISK	Į	YES		BELFAIR
15.0496	BIG MISSION TRB.		0.00	0.80	1800	<u> </u>	PNPIC		DISK		YES	· · · ·	BELFAIR
15.0498	BIG MISSION TRB.	-	0.00	1.70	2/00	<u>к,н</u>	PNPIC		DISK		YES		LAKE WOOTEN
15.0499		- <u> </u> - <u> </u> -	0.00	0.20	340		PNPIC	-	DISK		YES		BELFAIR
15.0499			0.20	0.90	1000	R'H''	PNPIC		DISK		YES		BELFAIR
15.0500		$-\frac{1}{2}$	0.00	0.40	810	K'H	PNPIC		DISK		YES		BELFAIR
15.0505			0.00	0.55	500	K,H,L	PINPIC				YES		
15.0505		- 2-	0.00	2.40	1500		DNDTC				YES VEC		
15.0510	READ		0.70	2.40	385				DIEK				
15.0510	BEAR		0.00	0.20	662		PNPTC		DISK		VEQ		
15.0510	BEAR	3	0.50	1.65	1600	RHI	PNPTC		DISK		VES		
17.0012	BIG QUILCENE R.		0.00	0.10		10,175	PNPTC		DISK			•	
17.0012	BIG QUILCENE R.	2	0.10	0.60			PNPTC		DISK	<u> </u>		•	QUILCENE
17.0012	BIG QUILCENE R.	3	0.60	2.80			PNPTC		DISK				QUILCENE, MT. WALKER
17.0076	LITTLE QUILCENE R.	1	0.00	1.70	300	R,H,L	PNPTC	·	DISK	1	YES		QUILCENE, MI, WALKER
17.0076	LITTLE QUILCENE R.	2	1.70	1.90	2107	R,H,L	PNPTC		DISK		YES	•	MT. WALKER
17.0076	LITTLE QUILCENE R.	3	1.90	2.70	1300	R,H,L	PNPTC		DISK		YES		MT. WALKER
17.0076	LITTLE QUILCENE R.	4	2.70	4.40	2500	R,H,L	PNPTC		DISK		YES	•	MT. WALKER
17.0076	LITTLE QUILCENE R.	5	4.40	5.20	1387	R.H.L	PNPTC		DISK		YES	•	MT. WALKER
17.0090	HOWE	1	0.00	0.50	800	RHL	PNPTC		DISK		YES	•	MT WALKER, UNCAS
17.0245	SALMON	2	0.70	1.50			PNPTC		DISK	L	ļ	•	UNCAS
18.0160			0.20	4.10	7100	RHL	PNPTC		DISK	L	YES	<u> </u>	CARLSBORG
18.0160	MCDONALD	2	4.10	4.90	1800	RHL	PNPTC		DISK	<u> </u>	YES	<u> </u>	CARLSBORG
18.0160			4.90	0.90	3465	R.H.L	PNPTC	ļ		 	YES	<u> </u>	CARLSBORG
10.01/3	OCDERT		0.00	3.50	6264		PNPIC			ļ	YES	<u> .</u>	MORSE
10.0173			3.50	0.40	5000		PNPIC	NRADEO	DISK		YES	100	MORSE
10 0102	DEED		0.00	0.00	456	R,H,L	LELWHA	INVIEC	AMONI2		YES	YES	
17.0100	OMAK	1	1 0.10	2.00	411/		CODVILLE	DHIMMIPC	AMONI2	AB	YES		······
49 0130	OMAK	2	1 60	3.00	1770		COLVILLE	NRAIEC	AMONI2		· · · · ·		
49.0130	OMAK		300	5.00	22/0		COLVILLE	NNA/IEC		AE	+	ł	
49.0139	OMAK	1	5.00	9.00	2249		CONT	NNIFC		AC	+		
49.0139	OMAK	5	12.20	12.20	2147	R.H	COLVILLE	NWIFC	AMONT	AH	1		
					<i></i>				1	<u> </u>		1	

199	1 TFW AMB	IEN	r Me	ONI	TOR	IN	g stf	REAM	SUR	VEY	5		
WRIA	STREAM NAME	SEG#	RM	RM	SEG	FILE	SURVEY	DATA	SUM	DATA-	FIELD	GIS	USGS TOPO QUAD MAP
			(LOW)	(UPR)	LEN(M)	ID	TYPE	AFFIL.	RPT	BASE	FORMS		
		1											
03.0352	MUDDY	M11	1.00	2.10	1707.0	BF	R,H,L,M	UWCSS	CSS	AMON91	YES	YES	HAMILTON
03.0359	ALDER	M11	1.50	2.40	1369.0	BD	R,H,L,M	UWCSS	CSS	AMON91	YES	YES	HAMILTON
03.0359	ALDER	M21	0.70	1.50		BC		UWCSS	NWIFC	AMON91	YES	YES	HAMILTON
04.0786	AIL	MIL	0.70	1.20	893.0		R,H,L,M	UWCSS	CSS	AMON91	YES	YES	PRAIRIE MTN.
04.0786		1031	1.20	1.50	427.0	AU	R,H,L,M	UWCSS	CSS	AMON91	YES	YES	PRAIRE MIN.
04.1148		1/12	1.00	2 70	1209.0	669		UWC55	<u></u>	AMONY	VCe	VCe	
04.1140		V12	0.70	2.70	1201.0		DUIM	UNCSS	C33	AMONOT	VES	VEC	
04.1148	CAMP	1/42	1.50	1.00	639.0	RI	RHIM	INCSS	C%		VES	VES	
04.1148	CAMP	V43	2.70	3.00	592.0	BK	RHIM	IWCSS	CSS	AMON91	VES	VES	PUGH MIN
04.1157	PUMICE	MII	~	0,00	409.0	AV	R.H.L.M	UWCSS	CSS	AMON91	VES	VES	LIME MIN.
04.1157	PUMICE	M21	0.30	1.00	1110.0	AW	R,H,L,M	UWCSS	CSS	AMON91	YES	YES	LIME MTN.
04.1157	PUMICE	U41	1.00	1.60	995.0	AX	R,H,L,M	UWCSS	CSS	AMON91	YES	YES	LIME MIN.
08.0368	M.F. TAYLOR	F31	3.00	3.70	1098.0	AE.	R,H,L,M	UWCSS	CSS	AMON91	YES	YES	EAGLE GORGE
08.0368	M.F. TAYLOR	F41	3.70	4.60	1440.0	AF	R,H,L,M	UWCSS	CSS	AMON91	YES	YES	EAGLE GORGE
08.0369	S.F. TAYLOR	F41	0.00	0.70	1069.0	AH	R,H,L,M	UWCSS	CSS	AMON91	YES	YES	EAGLE GORGE
09.0114	NEWAUKUM	√21			5228.4	FQ	R,H,L	MUCKLE	NWIFC	AMON91	YES		BLACK DIAMOND
09.0201	CHARLEY	<u>H11</u>	3.50	4.10	919.0	AB	R,H,L,M	UWCSS	CSS	AMON91	YES	YES	CYCLONE CR.
09.0201	CHARLEY	<u></u>	0.00	1.50	2391.0	AY	R,H,L,M	UWCSS	CSS	AMON91	YES	YES	EAGLE GORGE, CYCLONE CR.
09.0201	CHARLEY	∨12			1580,0	BA	R,H,L,M	UWCSS	CSS	AMON91	YES	YES	CYCLONE CR.
09.0201	CHARLEY	V21	1.50	2.00	892.0	AZ.	R,H,L,M	UWCSS	CSS	AMON91	YES	YES	CYCLONE CR.
09.0201	CHARLEY	V22	2.00	3.00	828.0	BB	R.H.L.M	UWCSS	CSS	AMON91	VES	YES	CYCLONE CR.
10.0550		H31	<u> </u>		4141.2	HP AD	R,H,L	MUCKLE	NWIFC	AMON91	YES		MOWICH LAKE
14.0000					0/30.0		R,H,L,M	CONS	LSS	AMONYI	YES	YES	SHELION, SHELION VALLEY
15.0209		M21	0.00	1.80	29/2.0	DL DC	DUIM	INVCC	INWIFC	AMONO	VE	VCC	BREMERION WESI
17.0034		1///1	1.50	2 /0	2000,0	ΔΔ	DHIM	INCSS	C35		VES	VCe	
17 0210	SNOW	EA1	0.60	3.80	4/1 2	$\overline{\alpha}$	DH1 M	UNICSS		AMONOT	VEC	103	
17.0219	SNOW	F3.1	3.80	4.40	6254.2	AG	RHLM	INCSS	NWIEC	AMONO	VES		UNCAS
17.0219	SNOW	V41	4.40	4.80	953.3	CR	RHLM	UWCSS	NWIFC	AMON91	YES		UNCAS
20.0122	FLUHARTY	F51			2762.6	BN	RHLM	QUILEUT	NWIFC	AMON91	YES	YES	GUNDERSON MIN
20.0145	M.F. DICKEY	M12	· · · · ·		514.3	AD	R,H,L,M	QUILEUT	NWIFC	AMON91	YES		GUNDERSON MIN.
20.0146	SPIDDLE	MII			2020.5	BH	R,H,L,M	QUILEUT	NWIFC	AMON91	YES		GUNDERSON MIN.
20.0462	MAPLE	F41	3.50	4.10	5751.0	CE	R,H,L,M	HOH	CSS	AMON91	YES	YES	SPRUCE MIN.
20.0462	MAPLE	M11	2.50	3.50	1418.0	CG	R,H,L,M	HOH	CSS	AMON91	YES	YES	SPRUCE MIN.
20.0462	MAPLE	∨31	0.30	2.50	1653.0	CF	R,H,L,M	HOH	CSS	AMON91	YES	YES	SPRUCE MTN.
20.0466	OWL	M11	0.00	1.30	3171.0	CL	R.H.L.M	HOH	CSS	AMON91	YES	YES	SPRUCE MIN.
20.0466		<u>11</u>	1.30	2.80	4400.0	CM	R,H,L,M	HOH	CSS	AMON91	YES	YES	SPRUCE MIN.
20.0484	CAMP	F41	0.00	0.80	718.0	BY	R,H,L,M	HOH	CSS	AMON91	YES	YES	OWL MIN.
20.0484	CAMP	<u></u>		L	345.0	CC	R,H,L,M	нон	CSS	AMON91	YES	YES	OWL MTN.
20.0484	CAMP	V31	0.80	1.50	1681.0	CN	R,H,L,M	HOH	CSS	AMON91	YES	YES	OWL MTN.
20.0506	WEST TWIN	F41	0.70	1.20	1924.0	ICH	R,H,L,M	нон	CSS	AMON91	YES	YES	OWL MTN. , SPRUCE MTN,
20.0513		1-41	0.00	0.80	450.0	ICK	R,H,L,M		CSS	AMON91	NO	YES	OWL MIN.
20.0513		V31	0.80	1.50	1318.0	LCJ	R,H,L,M	I NUCCO	CSS	AMON91	NO	YES	OWL MIN.
20.0000		CA1	0.00	1.20	1093.0	AC -		OUNCSS			IYES	YES	
21.0240		M11	0.00	0.10	640.0	IDV		UNICSS	INVVIEC		VEC	Vice	BOB CREEK
21.0462	WILLABY	M12	0.20	0.10	507.0	BV/	RHIM	LMCSS	<u>C33</u>		VES	VEG	
21.0462	WILLABY	M13	1.20	1.70	917.0	BU	RHLM	UWCSS	CSS	AMON01	VES	VES	
21.0462	WILLABY	M21	0.10	0.20	260.0	BR	RHLM	UWCSS	CSS	AMON91	VES	VES	LAKE OLINALITEAST
21.0462	WILLABY	M22	0.50	1.20	1076.0	BT	R,H,L,M	luwcss	CSS	AMON91	YES	YES	LAKE QUINAULT FAST
21.0462	WILLABY	V21	1.70	2.00	360.0	BW	R,H,L,M	UWCSS	CSS	AMON91	YES	YES	LAKE QUINAULT EAST
21.0469	ZIEGLER	บท	3.10	4.10	1550.0	BQ	R,H,L,M	UWCSS	CSS	AMON91	YES	YES	LAKE QUINAULT EAST
21.0469	ZIEGLER	√21	2.80	3.10	493.0	BP	R,H,L,M	UWCSS	CSS	AMON91	YES	YES	LAKE QUINAULT EAST
23.0288	HELM	M21			6309.0	<u>co</u>	R,H,L,M	QUINAUL	NWIFC	AMON91	YES		
24.0272	S.F. WILLAPA	<u>M21</u>		L	3044.6	AI	R,H,M		NWIFC	AMON91	YES		
24.0439	CANYON	F41			1716.8	AR	RHM	ļ	NWIFC	AMON91	YES	YES	NORTH NEMAH
24.0439	CANYON	V41			971.5	AS	R,H,M	ļ	NWIFC	AMON91	YES	YES	NORTH NEMAH
24.0441	UNNAMED	M11	<u>}</u>		1307.0	AQ	R,H,M	<u> </u>	NWIFC	AMON91	YES		
39.1104	IN.F. TANEUM	V12	7.80	8.50	2240.0	CB	R,H,L,M	UWCSS	CSS	AMON91	YES	YES	RONALD
39.1104	IN.F. JANEUM	V43	7.50	7.80	3102.0	ICD	R,H,L,M	UWCSS	CSS	AMON91	YES	YES	RONALD, QUARIZ MIN.
39.13/8	W.F. ILANAWAY		9.20	9.90	902.0		IR.H.L.M	UWCSS	CSS	AMON91	YES	YES	CLE ELUM LAKE
39.13/8	W.F. TEANAWAY	V31	8.80	9.20	588.0	AJ	R'H'L'W	UWCSS	CSS	AMON91	YES	YES	CLE ELUM LAKE
194,13/8	TANAMAN	V32	1 10'80	<u>i 11.10</u>	255.0	<u>IAM</u>	<u> </u> к,н,∟,М	LUWCSS	CSS	AMON91	IYES	YES	ICLE ELUM LAKE

g:\dsh-am\1991seg.xls

WRIA	STREAM NAME	SEG#	RM	RM	SEG	FILE	SURVEY	DATA	SUM	DATA-	FIELD	GIS	USGS TOPO QUAD MAP
			(LOW)	(UPR)	LEN(M)	iD	TYPE	AFFIL.	RPT	BASE	FORMS		
]			[<u> </u>]				1	
39.1378	W.F. TEANAWAY	V41	8.00	8.80	1481.0	CA	R,H,L,M	UWCSS	CSS	AMON91	YES	YES	CLE ELUM LAKE
39.1378	W.F. TEANAWAY	V42	9.90	10.80	803.0	AL	R,H,L,M	UWCSS	CSS	AMON91	YES	YES	CLE ELUM LAKE
39.1378	W.F. TEANAWAY	V43	11.10	11.60	842.0	AN	R,H,L,M	UWCSS	CSS	AMON91	YES	YES	CLE ELUM LAKE
45.9999	MISSION	√41	0.00	2.50	4224.0	AO	R.H.L.M	UWCSS	CSS	AMON91	YES	YES	SWAUK PASS, TIPTOP, MONITOR
46.0125	MAD	011	14.00	16.00	1152.0	BO	R,H,L,M	UWCSS	CSS	AMON91	YES	YES	SUGAR LOAF PK., SILVER FALLS
52.0015	IRON	F41			1189.0	DX	R,H,L,M	COLVILLE	CSS	AMON91	YES		
52.0015	IRON	U11			3865.0	DT	R,H,L,M	COLVILLE	CSS	AMON91	YES		
52.0025	BRIDGE	F21			2928.2	DI	R,H,L,M	COLVILLE	NWIFC	AMON91	YES		
52.0025	BRIDGE	F41	1		1226.2	DO	R,H,L,M	COLVILLE	NWIFC	AMON91	YES		
52.0025	BRIDGE	U21			3161.0	DM	R,H,L,M	COLVILLE	CSS	AMON91	YES		
52.0025	BRIDGE	V11			3817.0	DJ	R,H,L,M	COLVILLE	CSS	AMON91	YES		
52.0025	BRIDGE	∨31			1762.0	DD	R,H,L,M	COLVILLE	CSS	AMON91	YES		
52.0038	TWENTY-FIVE MILE	V21			146.3	DB	R,H,L,M	COLVILLE	NWIFC	AMON91	YES		
52.0040	TWENTY-THREE MILE	041			1003.0	DU	R,H,L,M	COLVILLE	CSS	AMON91	YES		
58.0029	THIRTY MILE	F31			5219.1	FD	R,H,L,M	COLVILLE	NWIFC	AMON91	YES		
58.0029	THIRTY MILE	F41			2405.5	FE_	R,H,L,M	COLVILLE	NWIFC	AMON91	YES		
58.0029	THIRTY MILE	U21			18038.0	FF	R,H,L,M	COLVILLE	NWIFC	AMON91	YES		
58.0029	THIRTY MILE	<u>V11</u>			7065.5	FG	R,H,L,M	COLVILLE	NWIFC	AMON91	YES		
58.0040	N.F. NANAMKIN	F41	ļ	ļ	2978.0	FH	R,H	COLVILLE	NWIFC	AMON91	YES		
58.0040	N.F. NANAMKIN	U21	<u> </u>		12477.0	FI	R,H,L,M	COLVILLE	NWIFC	AMON91	YES	ļ	
58.0040	N.F. NANAMKN	U22 -	<u> </u>		L	FJ	R	COLVILLE	NWIFC	AMON91	YES		
58.0070	LYNX	F31	ļ		5197.0	FK	R,H,L	COLVILLE	NWIFC	AMON91	YES		
58.0133	ORAPAKEN	U21	ļ	L	1857.0	DS	R,H,L,M	COLVILLE	CSS	AMON91	YES		
58.0143	ALDER	011				R_	R	COLVILLE	NWIFC	AMON91	YES		
58.0143	ALDER	\vee 11			2906.0	DR	R,H,L,M	COLVILLE	CSS	AMON91	YES		
58.0356	HALL	M21			11220.0	DG	R,H,L,M	COLVILLE	CSS	AMON91	YES		
58.0356	HALL	011			5038.0	DB	R,H,L,M	COLVILLE	CSS	AMON91	YES		
58.0356	HALL	U31	L		4913.0	DV_	R,H,L,M	COLVILLE	CSS	AMON91	YES		
58.0356	HALL	\vee n			1429.0	DH	R,H,L,M	COLVILLE	CSS	AMON91	YES		
58.0356	HALL	V21	.		7117.0	DC	R,H,L,M	COLVILLE	CSS	AMON91	YES	ļ	
58.0356B	SITDOWN	021			2013.0	DN_	R,H,L,M	COLVILLE	CSS	AMON91	YES	<u> </u>	
59.0516	BLUE	F51			3128.0	DK	R,H,L,M	COLVILLE	CSS	AMON91	YES	<u> </u>	
59.0516	BLUE	MII			3184.0	DF	R,H,L,M	COLVILLE	CSS	AMON91	YES		
59.0516	BLUE	021		ļ	3355.0	DE	R.H.L.M	COLVILLE	CSS	AMON91	YES		
61.0124	ONION	F31			5675.0	FM	R,H,L	COLVILLE	NWIFC	AMON91	YES	<u> </u>	
61.0124	ONION	V21	<u> </u>	ļ	1050.0	FN	R'H	COLVILLE	NWIFC	AMON91	YES	 	
61.0151	SHEEP	F51	ļ		1103.0	<u> CI</u>	R,H,L,M	COLVILLE	CSS	AMON91	YES	<u> </u>	
61.0151	SHEEP	<u>V11</u>			1856.0	DA	R,H,L,M	COLVILLE	CSS	AMON91	YES	<u> </u>	
61.0198	DEEP	F41		ļ	583.0	DW	R,H,L,M	COLVILLE	CSS	AMON91	YES	<u> </u>	
61.0198	DEEP	MII		ļ	884.0	DP	R,H,L,M	COLVILLE	CSS	AMON91	YES	_	
	IWENTY ONE MILE	141		<u> </u>	1492.0	IFO	IR,H	COLVILLE	NWIFC	AMON91	YES	<u> </u>	
	TWENTY -ONE MILE		-		888.2		IR,H,L	COLVILLE	NWIFC	AMON91	YES	<u> . </u>	
 	ALDER	V12			2917.8		RHT		INWIFC	AMON91	ļ	 	
	ALDER	<u> V41</u>	<u> </u>		961.3	EM	R,H,L	ļ	NWIFC	AMON91	L	 	
·	ALDER	V42	+	I	7534.5	EJ	IR,H,L	 	NWIFC	AMON91	L		
	BENEWAH	141	<u> </u>		454.8	SICW	IR,H,L	↓		AMON91	L		
	BENEWAH	141	<u> </u>		/914.7	ICV	R,H,L	<u> </u>		AMON91	Į	ļ	
	BENEWAH	F42		ļ	4369.0	UET	R,H,L	Ļ	 	AMON91	L	1	
	BENEWAH	M11	1.	ļ	1871.5		R,H,L	<u> </u>		AMON91	ļ	1	
	BENEWAH	M21		 	1904.2	2 CS	R,H,L	L		AMON91	ļ	1	
	BENEWAH	M22	-	<u> </u>	3546.4	ICU	R,H,L,M	<u> </u>		AMON91	ļ	1	
	BOZARD	M21		<u> </u>	3041.6	EQ	R,H	<u> </u>		AMON91			
 	EVANS	F21	1	ļ	1808.3	IEU	R.H.L.M	1	ļ	AMON91			
<u> </u>	EVANS	M21		ļ	832.1	IEV_	IR,H,L	·[AMON91		<u> </u>	
 	EVANS	M22	+	ļ	343.8	SIEY	IR,H,L	<u> </u>	<u> </u>	AMON91	.	ļ	
 	EVANS	021	+		1182.4	IEW	IR,H,L	 	ļ	AMON91			
		V21		-	1676.7	IEX_	IR,H,L			AMON91	L		
		MI1 MO	+ .		4171.8	SIEO	IR,H,L		<u> </u>	AMON91		<u> </u>	
		M21	+		5074.6		IR,H,L	<u> </u>		AMON91	 	<u> </u>	
					2/35.9		IR,H,L	l	-	AMON91		<u> </u>	
		V41	+	 	1450.8					AMON91			· · · · · · · · · · · · · · · · · · ·
	IN.F. ALDER	1-31	+	<u> </u>	1.000	1t2	IK/H	+	 	AMON91	_	1	
	WEST LAKE	MIL	· -·	<u> </u>	1424.9	155	IR,H,L		<u> </u>	AMON91	 	<u> </u>	
L	TMEST LAKE	IM21		L	29/5.5	JFK	<u>IK'H'T</u>	l	1	AMON91		1	

Image: Construction CONV UPD 2 OPT 1 OPT 1 <th></th> <th>15-1-1</th> <th>RM T</th> <th>RM</th> <th>SEG</th> <th>SUR\/FY</th> <th>DATA</th> <th>SUM</th> <th>DATA-</th> <th>FILE</th> <th>FIFLO</th> <th>GIS</th> <th></th>		15-1-1	RM T	RM	SEG	SUR\/FY	DATA	SUM	DATA-	FILE	FIFLO	GIS	
Construction Construction Construction Construction Construction Construction Construction Construction More Construct		1	1 OW	(LIPD)	LEN (M)	TYPE	AFER	DPT	RASE		FORM	00	
Desc Function Desc Multicity Automol R ES M Desc 0007 TANMAX Mo21 270 400 1000 Desc Statute Moster Statute Moster Statute Moster Statute Moster Statute Statute Moster Statute Statute Moster Statute Statut	1	1 1	(/ x / (L)	<u></u>	D/ 10L				
Add EVANUAL Cold 223 Add Evaluation Evaluatio			/ł			рц							
Date Date <thdate< th=""> Date Date <thd< td=""><td>JUZD3 HUCKLEBERKY</td><td>- 523</td><td>0.00</td><td>0.70</td><td>(100.0</td><td></td><td>INIUCKLE</td><td>000</td><td>AMONYU</td><td>FR</td><td>YES</td><td></td><td></td></thd<></thdate<>	JUZD3 HUCKLEBERKY	- 523	0.00	0.70	(100.0		INIUCKLE	000	AMONYU	FR	YES		
DBAL LAVID LAVID <thl< td=""><td>.0067 TANWAX</td><td>131</td><td>0.00</td><td>2.70</td><td>0103.0</td><td>R,H,L,M</td><td>NWFC</td><td><u>CSS</u></td><td>AMONYU</td><td>AA</td><td>YES</td><td>YES</td><td>BALD HILL, HARIS LAKE</td></thl<>	.0067 TANWAX	131	0.00	2.70	0103.0	R,H,L,M	NWFC	<u>CSS</u>	AMONYU	AA	YES	YES	BALD HILL, HARIS LAKE
0101 MASEL 011 MASEL MASEL <td< td=""><td>.0067 TANWAX</td><td>M21</td><td>2.70</td><td>4.70</td><td>1005.0</td><td>R,H,E,M</td><td>NWIEC</td><td>CSS</td><td>AMON90</td><td>AB</td><td>YES</td><td>YES</td><td>HARISLAKE</td></td<>	.0067 TANWAX	M21	2.70	4.70	1005.0	R,H,E,M	NWIEC	CSS	AMON90	AB	YES	YES	HARISLAKE
010 MASHE R8 TE V11 205.0[R-LL CSS AMCNNO[DV: NO 0116 MASHE R8 TE V11 100.10/L CSS AMCNNO[DV: NO 0116 MASHE R8 TE V11 30.40 AUG2[R-LLM CSS AMCNNO[DV: NO 0126 BASCHITES 211 30.10 40.00 CSS AMCNNO[DV: NO VS 0268 DASCHITES 211 30.40 30.40 AUL CSS AMCNNO[DV: NO VS YS BALD HIL CSS AMCNNO[DV: NO YS YS BALD HIL CSS AMCNNO[DV: NO YS YS BALD HIL CSS AMCNNO[DV: NO YS YS BALD HIL CSS AMCNNO[DV: YS YS BALD HIL CSS AMCNNO[DV: NO YS YS PALD	0101 MASHEL	V11	14.40	16.40	4456.0	R,H,L,M	NWIFC	CSS	AMON90	BY	YES	YES	ASHFORD
010. MASHEL RB TR. V41 950.0[P.L.M. CSS_AMONRO [UV_NO	.0110 MASHEL RB TR	<u></u>			205.0	R,H,L		CSS	AMON90	DX	NO		
0114 BLSYMUD V11	.0110. MASHEL RB TR	V41			930.0	<u>R,H,L,M</u>		CSS	AMON90	DW	NO		
0028 DESCHUTES F21 38.10 4.00 4.00 4.00 F22 SALD FUL 0026 DESCHUTES F31 SS-03 38.10 30.00 FL SS-03 FL FL <td< td=""><td>.0114 BUSYWILD</td><td>V11</td><td></td><td></td><td>1061.0</td><td>М</td><td></td><td>CSS</td><td>AMON90</td><td>DY</td><td>NO</td><td></td><td></td></td<>	.0114 BUSYWILD	V11			1061.0	М		CSS	AMON90	DY	NO		
OCRE DSC-HUTES F31 34.563 38.10 30220/R_HLLM SQUARIN CSS MONNOP(CL) YES VKS MALE HULL 0066 HUCKLEBERRY M11 0.00 0.00 700 D930/R_HLLM SQUARIN CSS MONNOP(CL) YES YES MALE HULL CMARINE 0066 HUCKLEBERRY M11 0.00 0.00 StuD R_HLM SQUARIN CSS MONNOP (DE) YES MALE HULL CMARINE 0066 HUCKLEBERRY V11 0.70 100 StuD R_HLM SQUARIN CSS MADNOP (DE) YES MALE HULL CMARINE 0066 HUCKLEBERRY V11 0.00 0.60 SQUARIN CSS MADNOP (DE) YES MALE MULL CMARINE C	0028 DESCHUTES	F21	38.10	40.90	4042.0	R,H,L,M	SQUAXIN	CSS	AMON90	CW	YES	YES	BALD HILL
0027 FALL 0.00 0.40 5910.07.41.LM SQUARN SQUARNONO SQUARN SQUAR	0028 DESCHUTES	F31	36.50	38.10	3023.0	R,H,L,M	SQUAXIN	CSS	AMON90	BG	YES	YES	BALD HILL
0066 HUCKLEERRY M11 0.00 0.070 094/01,R1LLM SQUAXIN CSS AMONROB DB YES YES BALD HLL 0066 HUCKLEERRY V11 0.70 1.00 51.00 R,LLM SQUAXIN CSS AMONROB DB YES BALD HLL CSS CSS FYS BALD HLL CSS CSS FYS BALD HLL CSS CSS FYS BALD HLL CSS CSS BALD HLL CSS FYS FYS BALD HLL CSS CSS FYS FYS BALD HLL CSS FYS	.0057 FALL	F41	0.00	0.40	581.0	R.H.L.M	SQUAXIN	CSS	AMON90	lcυ	YES	YES	LAKE LAWRENCE
0066 HUCKLEBERRY V112 1.30 2.00 103.10 RLL.M. SQUARN CS3 AMOYROB (BP, VSF YES RALD HIL 0066 HUCKLEBERRY V112 2.00 2.50 870.00 RLL.M. SQUARN CS3 AMOYROB (BP, VSF YES RALD HIL Code Code HUCKLEBERRY V12 2.00 2.50 870.00 RLL.M. SQUARN CS3 AMOYROB (BF, VSF YES RALD HIL Code Code HUCKLEBERRY V13 1.00 1.30 497.00 RLL.M. SQUARN CS3 AMOYROB (CF, VSF YES BALD HIL Code LOCKLESCON M11 0.00 0.60 783.00 RLL.M. SQUARN CS3 AMOYROB (CF, VSF YES BALD HIL Code LOCKLESCON M11 0.00 0.60 783.00 RLL.M. SQUARN CS3 AMOYROB (CF, VSF YES BALD HIL Code SQUARN	0086 HUCKLEBERRY	MII	0.00	0.70	1099.0	R.H.L.M	SQUAXIN	CSS	AMON90	BA	YES	YES	BALD HILL
0086 HUCKLEBERRY V11 0.20 1.00 510 DR.H.L.M. SQUANN CS3 MACHROIPBE YES	0086 HUCKLEBERRY	M12	1.30	2.00	1031.0	R.H.L.M	SQUAXIN	CSS		BD	VES	VES	BALD HILL
0084 UCKLEBERRY V12 200 250 9700 BHLM SQUANN CS AMONOD E VES YES PAD HL 0086 UCKLEBERRY V31 100 130 970 BHLM SQUANN CS AMONOD E VES YES PAD HL 0086 UCKLEBERRY V31 100 130 970 BHLM SQUANN CS AMONOD C VES YES PAD HL 0087 UCKLEBERRY V31 100 0.60 7830 BHLM SQUANN CS AMONOD C VES YES PAD HL 0095 HLKSTCN V11 000 0.50 7830 BHLM SQUANN CS AMONOD C VES YES PAD HL 0095 HLKSTCN V21 0.00 0.50 7830 BHLM SQUANN CS AMONOD C VES YES PAD HL 0095 HLKSTCN V21 0.00 0.50 7750 BHLM SQUANN CS AMONOD C VES YES PAD HL 0128 UNCOUN V21 0.00 0.50 7750 BHLM SQUANN CS AMONOD C VES YES PAD HL 0128 UNCOUN V21 0.00 0.50 7750 BHLM SQUANN CS AMONOD Z VES YES HEROCKERS NEWAUKUM L.HE ROCKE 0126 UCK V21 0.00 0.50 7750 BHLM SQUANN CS AMONOD Z VES YES HEROCKERS NEWAUKUM LAKE 0126 UCK V21 0.00 0.50 7750 BHLM SQUANN CS AMONOD Z VES YES HEROCKERS NEWAUKUM LAKE 0126 UCK V21 0.00 0.50 7750 BHLM SQUANN CS AMONOD Z VES YES HEROCKERS NEWAUKUM LAKE 0126 UCK V21 0.00 0.50 7750 BHLM SQUANN CS AMONOD Z VES YES HEROCKERS NEWAUKUM LAKE 0138 MCCANE F31 0.00 1.50 24450 BHLM SQUANN CS AMONOD Z VES YES HEROCKERS NEWAUKUM LAKE 0138 MCCANE H11 200 4.60 1510 CHALM SQUANN CS AMONOD B VES YES BUTTEROCK 0138 MCCANE H11 200 4.60 1510 CHALM SQUANN CS AMONOD B VES YES BUTTEROCK 0138 MCCANE H11 200 4.60 1510 CHALM SQUANN CS AMONOD B VES YES BUTTEROCK 0138 MCCANE H11 200 4.60 1510 CHALM SQUANN CS AMONOD B VES YES BUTTEROCK 0138 MCCANE H11 200 4.60 1510 CHALM SQUANN CS AMONOD B VES YES BUTTEROCK 0138 MCCANE H11 200 4.60 1510 CHALM SQUANN CS AMONOD B VES YES BUTTEROCK 0138 MCCANE H11 200 4.60 1510 CHALM SQUANN CS AMONOD B VES YES BUTTEROCK	0086 HUCKLEBERRY	1/11	0.70	1.00	516.D	RHIM	SQUAXIN	CSS	AMONO	AB	VES	VES	BALD HILL
CORR LOCKLEDERRY VI3 2:50 2:20 31:20 SQUARD CSS AMCONDO C C T ESS AMD HL 0266 HUCKLEBERY V31 2:00 1:00 0:20 SQUARD CSS AMCONDO C YES YES AMD HL 0266 HUCKLEBERY V31 0:00 0:00 1:20 RHLM SQUARD CSS AMCONDO C YES YES AMD HL C C C SQUARD CSS AMCONDO C YES	0086 HUCKI FRERRY	1/12	2 00	2.50	870.0	RHIM	SQUAYIN	CSS	AMONION	BE	VES	VES	BALD HILL
Construction 120 <t< td=""><td>0086 HUCKI FREDDY</td><td>1/12</td><td>2.00</td><td>2.00</td><td>314.0</td><td>RH1 M</td><td>SOLIAVIN</td><td><u></u></td><td></td><td>BE</td><td>VES</td><td>VEe</td><td>RALD HILL</td></t<>	0086 HUCKI FREDDY	1/12	2.00	2.00	314.0	RH1 M	SOLIAVIN	<u></u>		BE	VES	VEe	RALD HILL
Construction Construction<	MAA HUCKIEREDDV	1/21	1 00	1 20	A07 0		SOHAVIN	~~~~			VEC	VEC	
Control Initial Concernent Security (N) Control Control <thcontrol< th=""> Control Control</thcontrol<>			0.00	0.60	11020		SOLIAVIN	<u>~~~</u>	ANACAIOO		VEC	VEC	
Bartol Inductors Initial Luko Loss Loss <thloss< th=""> <thloss< th=""> <thloss< td=""><td></td><td></td><td>0.00</td><td>0.00</td><td>1192.0</td><td></td><td>CULAVIN</td><td><u>~~~</u></td><td>ANDINO</td><td></td><td>YES</td><td>1EO</td><td></td></thloss<></thloss<></thloss<>			0.00	0.00	1192.0		CULAVIN	<u>~~~</u>	ANDINO		YES	1EO	
Darge Trusted-V Vict Used Vict Vict <thvict< td=""><td></td><td></td><td>0.00</td><td>1.00</td><td>1105.0</td><td></td><td>ISOUAXIN</td><td><u></u></td><td>AIVIONYO</td><td></td><td>YES</td><td>YES</td><td></td></thvict<>			0.00	1.00	1105.0		ISOUAXIN	<u></u>	AIVIONYO		YES	YES	
ULAS UNRCLOUNE (MAL) 1000 1.000 1.000 1.000 1.000 1.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.			0.00	1.10	0140.0	K,H,L,M	136UAXIN	<u> 222</u>	AMON90	CY DV	YES	YES	BALD HILL
UL42 LEVIS UND 1.30 BOUIDELLM SQUARN CSS AMONROLAZ YES YES INTE ROCKES 125 BUCK V21 0.00 0.50 715.0[R.H.LM SQUARN CSS AMONROLAZ YES YES INTE ROCKES 128 WARE V21 0.00 0.50 712.0[R.H.LM SQUARN CSS AMONROLAZ YES YES SUMMT LAKE 138 MCLANE H21 4.20 4.40 15310[R.H.LM SQUARN CSS AMONROLS YES YES SUMMT LAKE. 138 MCLANE M11 2.90 4.20 1599.0[R.H.LM SQUARN CSS AMONROLS YES YES SUMMT LAKE. 138 MCLANE M11 2.90 4.20 1599.0[R.H.LM SQUARN CSS AMONROLS YES YES SUMMT LAKE. 138 MCLANE M21 1.50 2.02 171.0[R.H.LM SQUARN CSS AMONROLS IN YES YES SUMMT LAKE. 138 MCLANE M21 1.50 2.02 171.0[R.H.LM SQUARN CSS AMONROLS IN YES YES SUMMT LAKE. 149 1.50 2.02 171.0[R.H.LM SQUARN CSS AMONROLS IN YES YES SUMMT LAKE. 159 MCLANE M21 1.50 2.02 171.0[R.H.LM SQUARN CSS AMONROLS IN YES YES SUMMT LAKE. 150 MCLANE M21 1.50 2.02 171.0[R.H.LM SQUARN CSS AMONROLS IN YES YES SUMMT LAKE. 150 MCLANE M21 1.50 2.02 171.0[R.H.LM SQUARN CSS AMONROLS IN YES YES SUMMT LAKE. 150 MCLANE M21 1.50 2.02 171.0[R.H.LM SQUARN CSS AMONROLS IN YES YES SUMMT LAKE. 150 MCLANE M21 1.50 2.02 171.0[R.H.LM SQUARN CSS AMONROLS IN YES YES SUMMT LAKE. 150 MCLANE M21 1.50 2.02 171.0[R.H.LM SQUARN CSS AMONROLS IN YES YES SUMMT LAKE. 150 MCLANE M21 1.50 2.02 171.0[R.H.LM SQUARN CSS AMONROLS IN YES YES SUMMT LAKE. 150 MCLANE M21 1.50 2.02 171.0[R.H.LM SQUARN CSS AMONROLS IN YES YES SUMMT LAKE. 150 MCLANE M21 1.50 2.02 171.0[R.H.LM SQUARN CSS AMONROLS IN YES YES SUMMT LAKE. 150 MCLANE M21 1.50 2.02 171.0[R.H.M. SQUARN CSS AMONROLS IN YES YES SUMMT LAKE. 150 MCLANE M21 1.50 2.02 171.0[R.H.M. SQUARN CSS AMONROLS IN YES YES SUMMT I AKE M21 150 150 150 150 150 150 150 150 150 15		M21	0.00	1.90	3143.0	K,H,L,M	SQUAXIN	CSS 0	AMON90	BX	YES	YES	EATONVILLE, NEWAUKUM L., THE ROCKIE
0125 BUCK V21 0.00 0.50 715.0(RHLM SQUAXIN CSS AMON901AZ YYS YYS THE ROCKISS NEWAUKUM LAKE 1018 WGLANE F31 0.00 1.50 2448.0(RHLM SQUAXIN CSS AMON901BJ YYS YYS SUMMIT LAKE.UMWATER 1018 WGLANE H21 2.20 4.20 1599.0(RHLM SQUAXIN CSS AMON901BK YYS YYS SUMMIT LAKE.UMWATER 1018 WGLANE M11 2.90 4.20 1599.0(RHLM SQUAXIN CSS AMON901BK YYS YYS SUMMIT LAKE.UMWATER 1018 MGLANE M11 2.90 4.20 1599.0(RHLM SQUAXIN CSS AMON901BK YYS YYS SUMMIT LAKE.UMWATER 1018 MGLANE M11 2.90 4.20 1599.0(RHLM SQUAXIN CSS AMON901BK YYS YYS SUMMIT LAKE.UMWATER 1018 MGLANE M11 2.90 4.20 1599.0(RHLM SQUAXIN CSS AMON901BK YYS YYS SUMMIT LAKE.UMTEROCK 1018 MGLANE M11 2.90 4.20 1599.0(RHLM SQUAXIN CSS AMON901BK YYS YYS SUMMIT LAKE.UMTEROCK 1018 MGLANE M21 1.50 2.90 2777.0(RHLM SQUAXIN CSS AMON901B) YYS YYS SUMMIT LAKE.UMTEROCK 1018 MGLANE M21 1.50 2.90 2777.0(RHLM SQUAXIN CSS AMON901B) YYS YYS SUMMIT LAKE. 1019 MGLANE M21 1.50 2.90 2777.0(RHLM SQUAXIN CSS AMON901B) YYS YYS SUMMIT LAKE 1019 MGLANE M21 1.50 2.90 2777.0(RHLM SQUAXIN CSS AMON901B) YYS YYS SUMMIT LAKE 1019 MGLANE M21 1.50 2.90 2777.0(RHLM SQUAXIN CSS AMON901B) YYS YYS SUMMIT LAKE 1019 MGLANE M21 1.50 2.90 2777.0(RHLM SQUAXIN CSS AMON901B) YYS YYS SUMMIT LAKE 1019 MGLANE M21 1.50 2.90 2777.0(RHLM SQUAXIN CSS AMON901B) YYS YYS SUMMIT LAKE 1019 MGLANE M21 1.50 2.90 2777.0(RHLM SQUAXIN CSS AMON901B) YYS YYS SUMMIT LAKE 1019 MGLANE M21 1.50 2.90 2777.0(RHLM SQUAXIN CSS AMON901B) YYS YYS SUMMIT LAKE 1019 MGLANE M21 1.50 2.90 2777.0(RHLM SQUAXIN CSS AMON901B) YYS YYS SUMMIT LAKE 1019 MGLANE M21 1.50 2.90 2777.0(RHLM SQUAXIN CSS AMON901B) YYS YYS SUMMIT LAKE 1019 MGLANE M21 1.50 2.90 2777.0(RHLM SQUAXIN CSS AMON901B) YYS YYS SUMMIT LAKE 1019 MGLANE M21 1.50 2.90 2777.0(RHLM SQUAXIN CSS AMON901B) YYS YYS SUMMIT LAKE 1019 MGLANE M21 1.50 2.90 2777.0(RHLM SQUAXIN CSS AMON901B) YYS YYS SUMMIT LAKE 1019 MGLANE M21 1.50 2.90 2777.0(RHLM SQUAXIN CSS AMON901B) YYS YYS SUMMIT LAKE 1019 MGLANE M21 1.50 2.90 2777.0(RHLM SQUAXIN CSS AMON901B) YYS YYS SUMMIT YYS YYS YYS SUMMIT YYS YYS SU	0124 LEWIS	VII	0.00	1.30	860.0	R,H,L,M	SQUAXIN	CSS	AMON90	AX	YES	YES	THE ROCKIES
0128 WCLANE V21 0.00 0.50 712.0 R.H.LM SSUAXIN (SS AMON90[AV YS YES THE ROCKES, NEWALKUM (LAKE 0138 MCLANE H21 4.20 4.00 139.0 R.H.LM SSUAXIN (SS AMON90[B) YES YES SUMMITAKE, TUMVATER 0138 MCLANE M11 2.00 4.20 159:0 R.H.LM SQUAXIN (SS AMON90[B) YES YES SUMMITAKE, TUMVATER 0138 MCLANE M12 1.50 2.00 217.1 0.R.H.LM SQUAXIN (SS AMON90[B) YES YES SUMMITAKE, TUMVATER 0138 MCLANE M22] 1.50 2.00 2.77.1 0.R.H.LM SQUAXIN (SS AMON90[B) YES YES SUMMITAKE, TUMVATER 0138 MCLANE M22] 1.50 2.00 2.77.1 0.R.H.LM SQUAXIN (SS AMON90[B) YES YES SUMMITAKE, TUMVATER 0138 MCLANE M22] 1.50 2.00 2.77.1 0.R.H.LM SQUAXIN (SS AMON90[B) YES YES SUMMITAKE, TUMVATER 0138 MCLANE M22] 1.50 2.00 2.77.1 0.R.H.LM SQUAXIN (SS AMON90[B) YES YES SUMMITAKE, TUMVATER 0138 MCLANE M22] 1.50 2.00 2.77.1 0.R.H.LM SQUAXIN (SS AMON90[B) YES YES SUMMITAKE, TUMVATER 0138 MCLANE M22] 1.50 2.00 2.77.1 0.R.H.LM SQUAXIN (SS AMON90[B) YES YES SUMMITAKE, TUMVATER 0.8.1 0.0.00 1 2.0.0 0.0.0 0.0.0 0.0 0.0 0.0 0.0 0.0 0	0125 BUCK	V21	0.00	0.50	715.0	R,H,L,M	SQUAXIN	CSS	AMON90	AZ	YES	YES	THE ROCKIES
0138 MCLANE +21 4.20 4.40 153) RELAM SQUAXIN CSS AMONOO BK YES YES JUMMIT LAKE, TUMWATER 0138 MCLANE +21 4.20 4.40 153) RELAM SQUAXIN CSS AMONOO BK YES YES JUTTEROCK 0138 MCLANE +12 4.20 4.20 1599.0 RH.LM SQUAXIN CSS AMONOO BK YES YES JUTTEROCK 0138 MCLANE +12 1.50 2.90 2171 0 R.H.LM SQUAXIN CSS AMONOO BI YES YES SUMMIT LAKE 1038 MCLANE +12 1.50 2.90 2171 0 R.H.LM SQUAXIN CSS AMONOO BI YES YES SUMMIT LAKE 1038 MCLANE +12 1.50 2.90 2171 0 R.H.LM SQUAXIN CSS AMONOO BI YES YES SUMMIT LAKE 1038 MCLANE +12 1.50 2.90 2171 0 R.H.LM SQUAXIN -22 1.50 2.50 0 BI YES YES SUMMIT LAKE 1038 MCLANE +12 1.50 2.90 2.90 2.90 1.50 0 BI YES YES SUMMIT LAKE 1038 MCLANE +12 1.50 2.90 2.90 2.90 1.50 0 BI YES YES SUMMIT LAKE 1038 MCLANE +12 1.50 2.90 2.90 0 BI YES +12 1.50 0 BI YES +12	0128 WARE		0.00	0.50	712.0	R,H,L,M	SQUAXIN	CSS	AMON90	AY	YES	YES	THE ROCKIES, NEWAUKUM LAKE
0138 MCLANE H21 420 4.00 1531.0[R.H.L.M SQUAXIN CSS AMONYO BL YES YES DUTIERCCK 0138 MCLANE M11 2:00 420 159:0[R.H.L.M SQUAXIN CSS AMONYO BL YES YES DUTIERCCK 0138 MCLANE M21 1.50 2:00 2171.0[R.H.L.M SQUAXIN CSS AMONYO BL YES YES SUMMIT LAKE 0139 JOURNAL AND	0138 MCLANE	F31	0.00	1.50	2448.0	R,H,L,M	SQUAXIN	CSS	AMON90	BJ	YES	YES	SUMMIT LAKE, TUMWATER
0138 MCLANE N11 2.00 420 1590.0[R.H.L.M. SQUAXIN CSS AMONYO BL YES YES UTTLEROCK	0138 MCLANE	H21	4.20	4.60	1531.0	R,H,L,M	SQUAXIN	CSS	AMON90	BK	YES	YES	SUMMIT LAKE, LITTLEROCK
	0138 MCLANE	M11	2.90	4.20	1599.0	R,H,L,M	SQUAXIN	CSS	AMON90	BL,	YES	YES	LITTLEROCK
	.0138 MCLANE	M21	1.50	2.90	2171.0	R.H.L.M	SQUAXIN	CSS	AMON90	BI	YES	YES	SUMMIT LAKE
	ň												
	,												
	,												
	v												
	۰ ۰												
	۰ ۱												
	۰ ۱												
	, ,												
	, ,												
	` ` 												
	, , 												
	, , , , , , , , , , , , , , , , , , ,												
	` 												
	` 												
	` 												
	`												
	`												
	` 												
	, , , , , ,												
	،												

WRIA STREAM NAME SEG RM SEG SURVEY DATA SUM DATA FILE FIEL GIS USGS TOPO QUAD MAP 22.0079 BRITTAIN M11 0.70 1.30 764.0 R/T	19	90 TFW AM	BIE	ENT	MC	NIT	ORIN	G STF	REA	M SU	JRV	/EY	S	
LCW UPR LEN (M) TYPE AFFIL RPT BASE ID FORM 22.0079 BRITTAIN M11 0.70 1.30 764.0 R.H.L.M ITT-RAY CSS AMON90 AD YES YES HUMPTULIPS 22.0079 BRITTAIN M12 1.80 2.70 230.0 R.H.L.M ITT-RAY CSS AMON90 AF YES HUMPTULIPS 22.0079 BRITAIN V31 0.00 0.70 1300.0 R.H.L.M ITT-RAY CSS AMON90 AC YES HUMPTULIPS 22.00790 ELWOOD V11 1.80 2.70 283.0 R.H.L.M GUNAUL CSS AMON90 BN YES YES GRISDALE 22.0400 UNNAMED M21 0.50 1532.0 R.H.L.M CSS AMON90 DR YES YES GRISDALE 22.0400 UNNAMED M21 .532.0 R.H.L.M CSS AMON90 DR NO YES TANEUM CANYON, THORP	WRIA	STREAM NAME	SEG	RM	RM	SEG	SURVEY	DATA	SUM	DATA-	FILE	FIELD	GIS	USGS TOPO QUAD MAP
22.0079 BRITTAIN M11 0.70 1.30 764.0 R,H,L,M ITT-RAY CSS AMON00 AD YES YES HUMPTULIPS 22.0079 BRITTAIN V12 1.80 2.50 421.0 R,H,L,M ITT-RAY CSS AMON00 AF YES YES HUMPTULIPS 22.0079 BRITAIN V31 0.00 0.70 1300.0 R,HL,M ITT-RAY CSS AMON00 AC YES YES HUMPTULIPS 22.0079 BRITAIN V31 0.00 0.50 98.0 R,HL,M IIT-RAY CSS AMON00 BA YES YES HUMPTULIPS 22.0400 UNNAMED M21 0.50 1532.0 R,HL,M GUINAUL CSS AMON00 BN YES YES TANEUM CANYON, THORP 39.1081 TANEUM MAIN M21 8194.0 R,HL,M CSS AMON00 DR NO YES TANEUM CANYON, THORP 39.1081 TANEUM MAIN V42 2596.0 R,HL,M CSS AMON00 DR NO YES TANEUM CANYON <t< td=""><td>i</td><td></td><td></td><td>(LOW)</td><td>(UPR)</td><td>LEN (M)</td><td>TYPE</td><td>AFFIL.</td><td>RPT</td><td>BASE</td><td>ID</td><td>FORM</td><td></td><td></td></t<>	i			(LOW)	(UPR)	LEN (M)	TYPE	AFFIL.	RPT	BASE	ID	FORM		
22.0079 BRITTAIN M11 0.70 1.30 7.64.0 [R.H.L.M ITT-RAY CSS AMONR90 [AD YES YES HUMPTULPS 22.0079 BRITTAIN V12 1.80 2.50 4241.0 [R.H.L.M ITT-RAY CSS AMONR90 [AF YES YES HUMPTULPS 22.0079 BRITTAIN V31 0.00 0.70 13000 [R.H.L.M ITT-RAY CSS AMONR90 [AF YES YES HUMPTULPS 22.0079 BRITAIN V31 0.00 5.50 698.0 [R.H.L.M GUINAUL CSS AMONR90 [BH YES YES FES HUMPTULPS 22.0400 UNNAMED M21 0.50 1532.0 [R.H.L.M CSS AMONR90 [DQ NO YES YES GRISDALE 39.1081 TANEUM MAIN M21 8124.0 [R.H.L.M CSS AMONR90 [DQ NO YES TANEUM CANYON, THORP 39.1081 TANEUM MAIN V41 2330.0 [R.H.L.M CSS AMONR90 [DQ NO YES TANEUM CANYON							<u> </u>							
22.0079 BRITTAIN M12 1.80 2.50 4241.01 R.H.L.M ITT-RAY CSS AMON90 AC YES FUNPTULPS 22.0079 BRITTAIN V31 0.00 0.70 1300.01 R.H.L.M ITT-RAY CSS AMON90 AC YES HUMPTULPS 22.0079 BRITAIN V31 0.00 0.50 698.0 R.H.L.M GUNAUL CSS AMON90 BH YES HUMPTULPS 22.0400 UNNAMED M21 0.50 150 1532.0 R.H.L.M GUNAUL CSS AMON90 BN YES GRISDALE 22.0400 UNNAMED M21 8194.0 R.H.L.M CSS AMON90 DQ NO YES GRISDALE 39.1081 TANEUM MAIN M21 8194.0 R.H.L.M CSS AMON90 DR NO YES TANEUM CANYON 39.1081 TANEUM MAIN V41 3238.0 R.H.L.M CSS AMON90 DR NO YES TANEUM CANYON 39.1081 TANEUM MAIN V42 2596.0 R.H.L.M NWIFC CSS	22.0079	BRITTAIN	M11	0.70	1.30	764.0	R.H.L.M	ITT-RAY	CSS	AMON90	AD	YES	YES	HUMPTULIPS
22.0079 6RITLAIN V31 0.00 0.70 1300.0[R,H,L.M ITT-RAY CSS AMON90 AC YES HUMPTULIPS 22.00790 ELWOOD V11 1.80 2.70 2637.0 [R,H,L.M ITT-RAY CSS AMON90 BH YES HUMPTULIPS 22.0400 UNNAMED M21 0.50 958.0 [R,H,LM GUINAUL CSS AMON90 BN YES YES GRISDALE 22.0400 UNNAMED M21 0.50 1532.0 [R,H,LM GUINAUL CSS AMON90 BN YES YES GRISDALE 39.1081 TANEUM MAIN M21 31980 [R,H,LM CSS AMON90 DR NO YES TANEUM CANYON 39.1081 TANEUM MAIN V41 32380 [R,H,LM CSS AMON90 DR NO YES TANEUM CANYON 39.1040 NF TANEUM U11 1331.0 [R,H,LM NWIFC CSS AMON90 AS YES GUARTZ MTN. 39.1104 NF TANEUM U21 8.50 9.10	22.0079	BRITTAIN	M12	1.80	2.50	4241.0	R,H,L,M	ITT-RAY	CSS	AMON90	AF	YES	YES	HUMPTULIPS
22.0079d ELWOOD V11 1.80 2.70 2637.0[R,H,L,M IIT-RAY CSS AMON90 BH YES YES HUMPTULIPS 22.0400 UNNAMED M21 0.50 698.0 [R,H,LM GUINAUL CSS AMON90 BM YES YES GRISDALE 39.1081 TANEUM MAIN F31 2277.0 [R,H,LM GUINAUL CSS AMON90 DP NO YES GRISDALE 39.1081 TANEUM MAIN M21 8194.0 [R,H,LM CSS AMON90 DC NO YES TANEUM CANYON 39.1081 TANEUM MAIN V41 3238.0 [R,H,LM CSS AMON90 DC NO YES TANEUM CANYON 39.1081 TANEUM MAIN V42 2596.0 [R,H,LM CSS AMON90 DC NO YES FROST MTN. 39.1040 NF TANEUM U11 1361.0 [R,H,LM NWIFC CSS AMON90 AS YES GUARIZ MTN. MOUNT CUFTY 39.1104 NF TANEUM U21 8.50 9.10 NWIFC <t< td=""><td>22.0079</td><td>BRITTAIN</td><td>V31</td><td>0.00</td><td>0.70</td><td>1300.0</td><td>R,H,L,M</td><td>ITT-RAY</td><td>CSS</td><td>AMON90</td><td>AC</td><td>YES</td><td>YES</td><td>HUMPTULIPS</td></t<>	22.0079	BRITTAIN	V31	0.00	0.70	1300.0	R,H,L,M	ITT-RAY	CSS	AMON90	AC	YES	YES	HUMPTULIPS
22.0400 UNNAMED F51 0.00 0.50 698.0 R.H.LM QUINAUL CSS AMON90 BM YES YES GRISDALE 22.0400 UNNAMED M21 0.50 1.50 1532.0 R.H.LM QUINAUL CSS AMON90 RM YES YES GRISDALE 39.1081 TANEUM MAIN M21 8194.0 R.H.LM CSS AMON90 DR NO YES TANEUM CANYON, THORP 39.1081 TANEUM MAIN V41 3238.0 R.H.LM CSS AMON90 DR NO YES TANEUM CANYON, THORP 39.1081 TANEUM MAIN V41 3238.0 R.H.LM CSS AMON90 DR NO YES TANEUM CANYON 3238.0 R.H.LM NWIFC CSS AMON90 BQ YES YES GRISDALE 333.104 NF TANEUM U21 1657.0 R.H.LM NWIFC CSS AMON90 AQ YES YES QUARTZ MTN. 39.1104 NF	22.0079a	ELWOOD	$\nabla \Pi$	1.80	2.70	2637.0	R,H,L,M	ITT-RAY	CSS	AMON90	8H	YES	YES	HUMPTULIPS
22.0400 UNNAMED M21 0.50 1.50 1532.0 R.H.L.M QUINAUL CSS AMON90 DP NO YES GRISDALE 39.1081 TANEUM MAIN M21 8194.0 R.H.L.M CSS AMON90 DP NO YES TANEUM CANYON, THORP 39.1081 TANEUM MAIN M21 8194.0 R.H.L.M CSS AMON90 DR NO YES TANEUM CANYON, THORP 39.1081 TANEUM MAIN V41 3238.0 R.H.L.M CSS AMON90 DR NO YES TANEUM CANYON 39.1104 NF TANEUM U11 1361.0 R.H.L.M NWIFC CSS AMON90 AMON90 APE YES QUARIZ MTN., MOUNT CUFTY 39.1104 NF TANEUM U12 8.50 9.10 9.30.0 R.H.L.M NWIFC CSS AMON90 AP YES QUARIZ MTN., MOUNT CUFTY 39.1104 NF TANEUM U23 10.60 11.40 1415.0 R.H.L.M NWIFC CS	22.0400	UNNAMED	F51	0.00	0.50	698.0	R,H,L,M	QUINAUL	CSS	AMON90	8M	YES	YES	GRISDALE
39.1081 TANEUM MAIN F31 2277.0 R.H.L.M CSS AMON90 DP NO YES TANEUM CANYON, THORP 39.1081 TANEUM MAIN M21 8194.0 R.H.L.M CSS AMON90 DR NO YES TANEUM CANYON, THORP 39.1081 TANEUM MAIN V41 3238.0 R.H.L.M CSS AMON90 DR NO YES TANEUM CANYON 39.1081 TANEUM MAIN V42 2596.0 R.H.L.M CSS AMON90 DR NO YES TANEUM CANYON 39.104 NF TANEUM U11 1361.0 R.H.L.M NWIFC CSS AMON90 AP YES GUARIZ MTN., MOUNT CUFTY 39.1104 NF TANEUM U22 9.10 932.0 R.H.L.M NWIFC CSS AMON90 AQ YES GUARIZ MTN. 39.1104 NF TANEUM U22 9.10 9.00 2.90.0 R.H.L.M NWIFC CSS AMON90 AQ YES GUARIZ MTN. 39.1104 </td <td>22.0400</td> <td>UNNAMED</td> <td>M21</td> <td>0.50</td> <td>1.50</td> <td>1532.0</td> <td>R,H,L,M</td> <td>QUINAUL</td> <td>CSS</td> <td>AMON90</td> <td>BN</td> <td>YES</td> <td>YES</td> <td>GRISDALE</td>	22.0400	UNNAMED	M21	0.50	1.50	1532.0	R,H,L,M	QUINAUL	CSS	AMON90	BN	YES	YES	GRISDALE
39:1081 TANEUM MAIN M21 8194.0 R.H.L.M CSS AMON90 DQ NO 39:1081 TANEUM MAIN V41 3238.0 R.H.L.M CSS AMON90 DR NO YES TANEUM CANYON 39:1081 TANEUM MAIN V42 2596.0 R.H.L.M CSS AMON90 DR NO YES TANEUM CANYON 39:1104 NF TANEUM U11 1361.0 R.H.L.M NWIFC CSS AMON90 BQ YES YES GUARIZ MIN., MOUNT CUFTY 39:1104 NF TANEUM U21 8.50 9.10 932.0 R.H.L.M NWIFC CSS AMON90 AQ YES GUARIZ MIN., MOUNT CUFTY 39:1104 NF TANEUM U22 9.10 10.60 2209.0 R.H.L.M NWIFC CSS AMON90 AQ YES YES GUARIZ MIN. 39:1104 NF TANEUM U23 10.60 11.40 1415.0 R.H.L.M NWIFC CSS AMON90 BA YES YES GUARIZ MIN. 39:1104 NF TANEUM V11 2.00 <td< td=""><td>39.1081</td><td>TANEUM MAIN</td><td>F31</td><td></td><td>l</td><td>2277.0</td><td>R.H.L.M</td><td></td><td>CSS</td><td>AMON90</td><td>DP</td><td>NO</td><td>YES</td><td>TANEUM CANYON, THORP</td></td<>	39.1081	TANEUM MAIN	F31		l	2277.0	R.H.L.M		CSS	AMON90	DP	NO	YES	TANEUM CANYON, THORP
39:1081 TANEUM MAIN V41 3238.0 R.H.L.M CSS AMON90 DR NO YES TANEUM CANYON 39:1081 TANEUM MAIN V42 2596.0 R.H.L.M CSS AMON90 DR NO YES TANEUM CANYON 39:1104 NF TANEUM U11 1361.0 R.H.L.M NWIFC CSS AMON90 BQ YES YES FROST MTN. 39:1104 NF TANEUM U12 1657.0 R.H.L.M NWIFC CSS AMON90 AS YES YES QUARTZ MTN. MOUNT CUFTY 39:1104 NF TANEUM U21 8.50 9.10 932.0 R.H.L.M NWIFC CSS AMON90 AQ YES YES QUARTZ MTN. 39:1104 NF TANEUM U23 10.60 11.40 1415.0 R.H.L.M NWIFC CSS AMON90 AQ YES YES QUARTZ MTN. 39:1104 NF TANEUM V13 4.20 5.50 176.9.0 R.H.L NWIFC CSS AMON90 BY YES FROST MTN. S <	39.1081	TANEUM MAIN	M21		L	8194.0	R,H,L,M		CSS	AMON90	DQ	NO	· · · ·	
39.1081 TANEUM MAIN V42 2596.0 R.H.L.M CSS AMON90 DT NO 39.1104 NF TANEUM U11 1361.0 R.H.L.M NWIFC CSS AMON90 BQ YES YES YES FROST MTN. 39.1104 NF TANEUM U12 1657.0 R.H.L.M NWIFC CSS AMON90 AS YES YES QUARTZ MTN. MOUNT CUFTY 39.1104 NF TANEUM U21 8.50 9.10 932.0 R.H.L.M NWIFC CSS AMON90 AS YES QUARTZ MTN. MOUNT CUFTY 39.1104 NF TANEUM U22 9.10 10.60 2209.0 R.H.L.M NWIFC CSS AMON90 AQ YES YES QUARTZ MTN. 39.1104 NF TANEUM V13 2.00 1073.0 R.H.L.M NWIFC CSS AMON90 BS YES YES FROST MTN. 39.1104 NF TANEUM V13 4.20 5.50 1769.0 R.H.L.M NWIFC CSS AMON90 BY YES YES FROST MTN. 39.	39.1081	TANEUM MAIN	V41			3238.0	R,H,L,M		CSS	AMON90	DR	NO	YES	TANEUM CANYON
39.1104 NF TANEUM U11 1361.0 R.H.L.M NWIFC CSS AMON90 BQ YES YES FROST MTN. 39.1104 NF TANEUM U12 1657.0 R.H.L.M NWIFC CSS AMON90 AS YES YES QUARTZ MTN. MOUNT CUFTY 39.1104 NF TANEUM U21 8.50 9.10 932.0 R.H.L.M NWIFC CSS AMON90 AP YES YES QUARTZ MTN. 39.1104 NF TANEUM U22 9.10 10.60 2209.0 R.H.L.M NWIFC CSS AMON90 AQ YES YES QUARTZ MTN. 39.1104 NF TANEUM U23 10.60 11.40 1415.0 R.H.L.M NWIFC CSS AMON90 AQ YES YES QUARTZ MTN. 39.1104 NF TANEUM V11 2.00 2.50 1769.0 R.H.L.M NWIFC CSS AMON90 BS YES YES FROST MTN. 39.1104 NF TANEUM V11 0.80 2.00 1923.0 R.H.L.M NWIFC CSS AMON90 BT	39.1081	TANEUM MAIN	V42			2596.0	R,H,L,M		CSS	AMON90	DT	NO		
39.1104 NF TANEUM U12 1657.0 R,H,L,M NWIFC CSS AMON90 AS YES QUARTZ MTN., MOUNT CUFTY 39.1104 NF TANEUM U21 8.50 9.10 932.0 R,H,L,M NWIFC CSS AMON90 AP YES QUARTZ MTN., MOUNT CUFTY 39.1104 NF TANEUM U22 9.10 10.60 2209.0 R,H,L,M NWIFC CSS AMON90 AQ YES QUARTZ MTN. 39.1104 NF TANEUM U23 10.60 11.40 1415.0 R,H,L,M NWIFC CSS AMON90 AQ YES YES QUARTZ MTN. 39.1104 NF TANEUM V11 2.00 2.50 1073.0 R,H,L <m< td=""> NWIFC CSS AMON90 BS YES YES QUARTZ MTN. 39.1104 NF TANEUM V13 4.20 5.50 1769.0 R,H,L NWIFC CSS AMON90 BV YES YES YES ROST MTN. 39.1104 NF TANEUM V41 0.80 2.00 1923.0 R,H,LM NWIFC CSS <</m<>	39.1104	NF TANEUM	บาา			1361.0	R,H,L,M	NWIFC	CSS	AMON90	BQ	YES	YES	FROST MTN,
39,1104 NF TANEUM U21 8.50 9.10 932.0 R,H,L,M NWIFC CSS AMON90 AP YES QUARTZ MTN. 39,1104 NF TANEUM U22 9.10 10.60 2209.0 R,H,L,M NWIFC CSS AMON90 AQ YES QUARTZ MTN. 39,1104 NF TANEUM U23 10.60 11.40 1415.0 R,H,L,M NWIFC CSS AMON90 AR YES QUARTZ MTN. 39,1104 NF TANEUM V11 2.00 2.50 1073.0 R,H,L,M NWIFC CSS AMON90 AR YES YES QUARTZ MTN. 39,1104 NF TANEUM V13 4.20 5.50 1769.0 R,H,L NWIFC CSS AMON90 BV YES YES QUARTZ MTN. 39,1104 NF TANEUM V41 0.80 2.00 1923.0 R,H,LM NWIFC CSS AMON90 BV YES YES FROST MTN. CLE FLUM 39,1104 NF TANEUM V42 2.50 4.20 3389.0 R,H,LM NWIFC CSS	39.1104	NF TANEUM	U12			1657.0	R,H,L,M	NWIFC	CSS	AMON90	AS	YES	YES	QUARTZ MTN., MOUNT CLIFTY
39.1104 NF TANEUM U22 9.10 10.60 2209.0 R.H.L.M NWIFC CSS AMON90 AQ YES YES QUARTZ MTN. 39.1104 NF TANEUM U23 10.60 11.40 1415.0 R.H.L.M NWIFC CSS AMON90 AR YES QUARTZ MTN. 39.1104 NF TANEUM V11 2.00 2.50 1073.0 R.H.L.M NWIFC CSS AMON90 BS YES YES QUARTZ MTN. 39.1104 NF TANEUM V13 4.20 5.50 1769.0 R.H.L NWIFC CSS AMON90 BV YES YES QUARTZ MTN. 39.1104 NF TANEUM V41 0.80 2.00 1923.0 R.H.L.M NWIFC CSS AMON90 BV YES YES ROST MTN. 39.1104 NF TANEUM V42 2.50 4.20 3389.0 R.H.L.M NWIFC CSS AMON90 BT YES YES ROST MTN. CLE FLUM 39.1104 NF TANEUM V44 5.50 7.50 768.0 R.H.L.M	39.1104	NF TANEUM	U21	8.50	9.10	932.0	R,H,L,M	NWIFC	CSS	AMON90	AP	YES	YES	QUARTZ MTN.
39.1104 NF TANEUM U23 10.60 11.40 1415.0 R.H.L.M NWIFC CSS AMON90 AR YES YES QUARTZ MTN, 39.1104 NF TANEUM V11 2.00 2.50 1073.0 R.H.L.M NWIFC CSS AMON90 BS YES YES FROST MTN, 39.1104 NF TANEUM V13 4.20 5.50 1769.0 R.H.L NWIFC CSS AMON90 BV YES YES QUARTZ MTN, 39.1104 NF TANEUM V41 0.80 2.00 1923.0 R.H.L.M NWIFC CSS AMON90 BV YES YES QUARTZ MTN, 39.1104 NF TANEUM V41 0.80 2.00 1923.0 R.H.L.M NWIFC CSS AMON90 BT YES YES ROST MTN, 39.1104 NF TANEUM V42 2.50 4.20 3389.0 R.H.L.M NWIFC CSS AMON90 BT YES YES RONALD, FROST MTN, CLE FLUM 39.1104 NF TANEUM V44 5.50 7.50 7.68.0 R.H.L.M	39.1104	NF TANEUM	U22	9.10	10.60	2209.0	R,H,L,M	NWIFC	CSS	AMON90	AQ	YES	YES	QUARTZ MIN.
39.1104 NF TANEUM V11 2.00 2.50 1073.0 R.H.L.M NWIFC CSS AMON90 BS YES YES FROST MTN. 39.1104 NF TANEUM V13 4.20 5.50 1769.0 R.H.L NWIFC CSS AMON90 BV YES YES QUARTZ MTN. 39.1104 NF TANEUM V41 0.80 2.00 1923.0 R.H.L NWIFC CSS AMON90 BV YES YES QUARTZ MTN. 39.1104 NF TANEUM V41 0.80 2.00 1923.0 R.H.L.M NWIFC CSS AMON90 BT YES YES ROST MTN. 39.1104 NF TANEUM V42 2.50 4.20 3389.0 R.H.L.M NWIFC CSS AMON90 BT YES YES ROST MTN. CLE FLUM 39.1104 NF TANEUM V44 5.50 7.50 768.0 R.H.L.M CSS AMON90 BT YES RONALD, QUARTZ MTN. 51.0046 NORTH	39.1104	NF TANEUM	U23	10.60	11.40	1415.0	R,H,L,M	NWIFC	CSS	AMON90	AR	YES	YES	QUARTZ MTN.
39.1104 NF TANEUM V13 4.20 5.50 1769.0 R.H.L NWIFC CSS AMON90 BV YES YES QUARTZ MTN. 39.1104 NF TANEUM V41 0.80 2.00 1923.0 R.H.L.M NWIFC CSS AMON90 BR YES YES ROST MTN. 39.1104 NF TANEUM V42 2.50 4.20 3389.0 R.H.L.M NWIFC CSS AMON90 BT YES YES RONALD, FROST MTN. 39.1104 NF TANEUM V42 2.50 4.20 3389.0 R.H.L.M NWIFC CSS AMON90 BT YES YES RONALD, FROST MTN. CLE FLUM 39.1104 NF TANEUM V44 5.50 7.50 768.0 R.H.L.M NWIFC CSS AMON90 BU YES RONALD, QUARTZ MTN. 51.0046 NORTH STAR V12 8.00 8.40 557.0 R.H.L.M CSS AMON90 AL YES S 51.0046 NORTH STAR V13 8.60 8.80 253.0 R.H.L.M	39.1104	NF TANEUM	VII	2.00	2.50	1073.0	R,H,L,M	NWIFC	CSS	AMON90	BS	YES	YES	FROST MIN.
39.1104 NF TANEUM V41 0.80 2.00 1923.0 R.H.L.M NWIFC CSS AMON90 BR YES YES FROST MTN. 39.1104 NF TANEUM V42 2.50 4.20 3389.0 R.H.L.M NWIFC CSS AMON90 BT YES YES RONALD, FROST MTN. 39.1104 NF TANEUM V42 2.50 4.20 3389.0 R.H.L.M NWIFC CSS AMON90 BT YES YES RONALD, FROST MTN. CLE FLUM 39.1104 NF TANEUM V44 5.50 7.50 768.0 R.H.L.M NWIFC CSS AMON90 BU YES RONALD, GUARTZ MTN. 51.0046 NORTH STAR V12 8.00 8.40 557.0 R.H.L.M CSS AMON90 AL YES S 51.0046 NORTH STAR V13 8.60 8.80 253.0 R.H.L.M CSS AMON90 AK YES S 51.0046 NORTH STAR	39.1104	NF TANEUM	V13	4.20	5.50	1769.0	R,H,L	NWIFC	CSS	AMON90	8V	YES	YES	QUARIZ MIN.
39.1104 NF TANEUM V42 2.50 4.20 3389.0 R.H.L.M NWIFC CSS AMON90 BT YES YES RONALD, FROST MIN. CLE ELUM 39.1104 NF TANEUM V44 5.50 7.50 768.0 R.H.L.M NWIFC CSS AMON90 BU YES YES RONALD, FROST MIN. CLE ELUM 39.1104 NF TANEUM V44 5.50 7.50 768.0 R.H.L.M NWIFC CSS AMON90 BU YES RONALD, GUARTZ MIN. 51.0045 NORTH STAR V12 8.00 8.40 557.0 R.H.L.M CSS AMON90 AG YES SI 51.0045 NORTH STAR V13 8.60 8.80 253.0 R.H.L.M CSS AMON90 AL YES SI 51.0046 NORTH STAR V14 9.00 9.20 381.0 R.H.L.M CSS AMON90 AK YES SI 51.0046 NORTH STAR V15 9.40 9.50<	39.1104	NF TANEUM	V41	0.80	2.00	1923.0	R,H,L,M	NWIFC	CSS	AMON90	8R	YES	YES	FROST MIN.
39.1104 NF TANEUM V44 5.50 7.50 768.0 R.H.L.M NWIFC CSS AMON90 BU YES YES RONALD, QUARTZ MIN. 51.0046 NORTH STAR V12 8.00 8.40 557.0 R.H.L.M CSS AMON90 AG YES YES SI 51.0046 NORTH STAR V13 8.60 8.80 253.0 R.H.L.M CSS AMON90 AI YES YES SI	39.1104	NF TANEUM	V42	2.50	4.20	3389.0	R,H,L,M	NWIFC	CSS	AMON90	BT	YES	YES	RONALD, FROST MTN, CLE FLUM
51.0046 NORTH STAR V12 8.00 8.40 557.0 R.H.L.M CSS AMON90 AG YES 51.0046 NORTH STAR V13 8.60 8.80 253.0 R.H.L.M CSS AMON90 AI YES 51.0046 NORTH STAR V14 9.00 9.20 381.0 R.H.L.M CSS AMON90 AK YES 51.0046 NORTH STAR V14 9.00 9.20 381.0 R.H.L.M CSS AMON90 AK YES 51.0046 NORTH STAR V15 9.40 9.50 385.0 R.H.L.M CSS AMON90 AK YES 51.0046 NORTH STAR V15 9.40 9.50 385.0 R.H.L.M CSS AMON90 AM YES 51.0046 NORTH STAR V22 8.80 9.00 214.0 R.H.L.M CSS AMON90 AJ YES 51.0046 NORTH STAR V23 9.50 9.70 706.0 <td>39.1104</td> <td>NF TANEUM</td> <td>V44</td> <td>5.50</td> <td>7.50</td> <td>768.0</td> <td>R,H,L,M</td> <td>NWIFC</td> <td>CSS</td> <td>AMON90</td> <td>BU</td> <td>YES</td> <td>YES</td> <td>RONALD, QUARTZ MTN.</td>	39.1104	NF TANEUM	V44	5.50	7.50	768.0	R,H,L,M	NWIFC	CSS	AMON90	BU	YES	YES	RONALD, QUARTZ MTN.
51.0046 NORTH STAR V13 8.60 8.80 253.0 R.H.L.M CSS AMON90 AI YES 51.0046 NORTH STAR V14 9.00 9.20 381.0 R.H.L.M CSS AMON90 AK YES 51.0046 NORTH STAR V14 9.00 9.20 381.0 R.H.L.M CSS AMON90 AK YES 51.0046 NORTH STAR V15 9.40 9.50 385.0 R.H.L.M CSS AMON90 AM YES 51.0046 NORTH STAR V22 8.80 9.00 214.0 R.H.L.M CSS AMON90 AJ YES 51.0046 NORTH STAR V23 9.50 9.70 706.0 R.H.L.M CSS AMON90 AJ YES 51.0046 NORTH STAR V23 9.50 9.70 706.0 R.H.L.M CSS AMON90 AN YES	51.0046	NORTH STAR	V12	8.00	8.40	557.0	R,H,L,M		CSS	AMON90	AG	YES		
51.0046 NORTH STAR V14 9.00 9.20 381.0 R.H.L.M CSS AMON90 AK YES 51.0046 NORTH STAR V15 9.40 9.50 385.0 R.H.L.M CSS AMON90 AM YES 51.0046 NORTH STAR V12 8.80 9.00 214.0 R.H.L.M CSS AMON90 AJ YES 51.0046 NORTH STAR V22 8.80 9.00 214.0 R.H.L.M CSS AMON90 AJ YES 51.0046 NORTH STAR V23 9.50 9.70 706.0 R.H.L.M CSS AMON90 AJ YES	51.0046	NORTH STAR	V13	8.60	8.80	253.0	R,H,L,M		CSS	AMON90	AI	YES		······································
S1.0046 NORTH STAR V15 9.40 9.50 385.0 R.H.L.M CSS AMON90 AM YES S1.0046 NORTH STAR V22 8.80 9.00 214.0 R.H.L.M CSS AMON90 AJ YES S1.0046 NORTH STAR V22 8.80 9.00 214.0 R.H.L.M CSS AMON90 AJ YES S1.0045 NORTH STAR V23 9.50 9.70 706.0 R.H.L.M CSS AMON90 AJ YES	51.0046	NORTH STAR	V14	9.00	9.20	381.0	R,H,L,M		CSS	AMON90	AK	YES		
51.0046 NORTH STAR V22 8.80 9.00 214.0 R,H,L,M CSS AMON90 AJ YES 51.0046 NORTH STAR V23 9.50 9.70 706.0 R,H,L,M CSS AMON90 AN YES	51.0046	NORTH STAR	V15	9,40	9.50	385.0	R,H,L,M		CSS	AMON90	AM	YES		
51.0046 NORTH STAR V23 9.50 9.70 706.0 R.H.L.M CSS AMON90 AN YES	51.0046	NORTH STAR	V22	8.80	9.00	214.0	R,H,L,M		CSS	AMON90	AJ	YES		
	51.0046	NORTH STAR	V23	9.50	9.70	706.0	R,H,L,M	1	CSS	AMON90	AN	YFS	·	
101.0040 (NORTH STAR (V43 8.40) 8.60) 614.0(R,H,L,M CSS (AMON90 AH (YES	51.0046	NORTH STAR	V43	8.40	8.60	614.0	R,H,L,M		CSS	AMON90	AH	YFS		
51.0046 NORTH STAR V44 9.20 9.40 439.0 R.H.LM CSS AMON90 AL VES	51.0046	NORTH STAR	V44	9.20	9.40	439.0	R,H,L,M		CSS	AMON90	AL	YFS		
51.0046g UN NAMED TR3B V11 0.00 4.00 616.0 R.H.L.M CSS AMON00 AO VES	51.0046a	UN NAMED TRIB	$\vee 11$	0.00	4.00	616.0	R,H,L,M		CSS	AMON90	AO	YFS		······································
52.0021a LOUIE F41 2431.0 R.H.L.M COLVILLE CSS AMON90 DE YES	52.0021a	LOUIE	F41		1	2431.0	R,H,L,M	COLVILLE	CSS	AMON90	DE	YFS		· · · · · · · · · · · · · · · · · · ·
52.0021a LOUIE U31 2108.0 R.H.L.M COLVILLE CSS AMON90 DD YES	52.0021a	LOUIE	U31		1	2108.0	R,H,L,M	COLVILLE	CSS	AMON90	DD	YES		······································
52.0031g S.F. NANAMPKIN F31 2464.0 R.H.L.M COLVILLE CSS AMON90 DL YES	52.0031a	S.F. NANAMPKIN	F31			2464.0	R,H,L,M	COLVILLE	CSS	AMON90	DL	YES		
52.0031a S.F. NANAMPKIN M11 2878.0 R.H.LM COLVILLE CSS AMON90 DK VFS	52.0031a	S.F. NANAMPKIN	M11			2878.0	R,H,L,M	COLVILLE	CSS	AMON90	DK	YES		
52.0031g S.F. NANAMPKIN V11 9550.0R.H.L.M COLVILLE CSS AMONSO DM VES	52.0031a	S.F. NANAMPKIN	V11	(· · · ·		9550.0	RHLM	COLVILLE	CSS	AMON90	DM	YES		
52.0042a GOLD F41 5158.0 R.H.L.M COLVILLE CSS AMON90 DI VES	52.0042a	GOLD	F41			5158.0	RHLM	COLVILLE	CSS	AMON90	DI	YES		
52.0042g GOLD V41 2094.0R.H.LM COLVILLE CSS AMON90 D.L VES	52.0042a	GOLD	V41			2094.0	RHLM	COLVILLE	CSS	AMON90	D.I	YES	· · ·	
52.0042a WEST FORK GOLD U31 7537.0R.H.L.M COLVILLE CSS AMON90 DG VFS	52.0042a	WEST FORK GOLD	U31	1		7537.0	RHLM	COLVILIE	CSS	AMONO	DG	VES		
52.0042a WEST FORK GOLD U41 1070.0 R.H.LM COLVILLE CSS AMON90 DF VES	52.0042a	WEST FORK GOLD	U41			1070.0	RHLM		CSS	AMONO	DE	YES		·····
58.0170 HUNTERS F31 8280.0R.H.L.M SPOKAN CSS AMON90 DN VES	58.0170	HUNTERS	F31			8280.0	RHLM	SPOKAN	CSS	AMONO	DN	VES		
58.0170 HUNTERS F41 7041.0R.H.LM SPOKAN CSS AMONSOLD VES	58.0170	HUNTERS	F41			7041.0	RHLM	SPOKAN	CSS	AMONO	D.I	VES		
58.0170 HUNTERS V11 241.0R.H.L.M SPOKAN ICSS AMON991DO VES	58.0170	HUNTERS	V11	···· ·		241.0	RHLM	SPOKAN	CSS	AMONO	DO	VES		

1989	TFW AMBI	EN	ТМ	ON	ITO	RING	S STR	EAM	SUI	RVE	'S	
WRIA	STREAM NAME	OID	NFW	RM	RM	SEG	SURVEY	DATA	SUM	FIFLO		
		SEG	SEG	LOW	(UPR)	LEN (M)	TYPE	AFEIL	RPT	FORMS	1910	COSCI O COAD WAF
			1	1					<u> </u>			
01.0264	HUTCHINSON	821	F30	0.00	0.60	1071.0	R.H.L.M	NWIFC	CSS	YES	YES	ACME
01.0264	HUTCHINSON	C41	M20	0.60	0.80	263.0	R,H,L,M	LUMMI	CSS	YES	YES	ACME
01.0264	HUTCHINSON	E11	V10	0.80	1.00	807.0	R,H,L,M	LUMMI	CSS	YES	YES	ACME
01.0264	HUTCHINSON	E21	V20	1.00	1.60	305.0	R,H,L,M	LUMMI	CSS	YES	YES	ACME
01.0264	HUTCHINSON	E31	V40	1.60	2.60	1667.0	R,H,L,M	NWIFC	CSS	YES	YES	ACME
01.0464	CORNELL	B21	F30	0.00	0.30	592.0	R,H,L,M	NWIFC	CSS	YES	YES	GLACIER
01.0464	CORNELL	B31	F40	0.30	1.20	1517.0	R,H,L,M	NWIFC	CSS	YES	YES	GLACIER
01.0465	W. CORNELL	D21	U30	1,20	1.80	2107.0	R,H,L,M	LUMMI	CSS	YES	YES	GLACIER
01.0465	W. CORNELL	E21	V20	1.80	2.20	1114.9	R,H,L,M	NWIFC	CSS	YES	YES	GLACIER, GROAT MIN.
04.0384	SAVAGE	B31	140	1.00	2.20	2093.0	R,H,L,M	INWIFC	CSS	YES	YES	GRANDY LAKE
04.0304	SAVAGE	631	H30	4.10	4.70	971.0	R,H,L,M	NWIFC	CSS	YES	YES	GEE POINT
04.0004	SAVAGE	E11 E21	1/20	2.20	3.50	1/00.0		NWIFC	C35	YES	YES	
09 0201	CHARLEY	C21	M10	0.00	0,60	761.0		MUCKIE	<u></u>	VCC	VE	GRANDY LAKE, GEE POINT
09.0201	CHARIEY	F10	1/10	0.10	1.30	1086.0	DHIM	MUCKLE	C 99	VCS	VES	EAGLE GORGE
09.0201	CHARIEY	F12	V12	2.50	2.80	0.0001	RHIM	MUCKLE	655	VES	VES	CYCLONE CREEK
09.0201	CHARLEY	E11	VII	1.30	2.50	2003.0	RHLM	MUCKLE	CSS	VES	VES	
09.0201	CHARLEY	E13	V13	2.80	3,40	581.0	RHLM	MUCKLE	CSS	YES	VES	CYCLONE CREEK
09.02??	CHARLEY TRIB.	E11	V10	0.40	0.60	339.0	R,H,L,M	NWIFC	CSS	YES	YES	EAGLE GORGE, CYCLONE CR.
09.02??	CHARLEY TRIB.	G31	H31	0.00	0.40	614.0	R,H,L,M	NWIFC	CSS	YES	YES	CYCLONE CREEK
09.0206	CHARLEY TRIB.	E21	V21	0.00	0.50	920.0	R.H.L.M	NWIFC	CSS	YES	YES	CYCLONE CREEK
09.0206	CHARLEY TRIB.	G21	H21	0.50	1.10	1624.0	R,H,L,M	NWIFC	CSS	YES	YES	CYCLONE CREEK
09.0207	CHARLEY TRIB.	G21	H21	0.00	0.48	782.0	R,H,L,M	NWIFC	CSS	YES	YES	CYCLONE CREEK
09.0222	CANTON	E21	∨20	0.00	1.20	1777.0	R,H,L,M	MUCKLE	CSS	YES	YES	GREENWATER
09.0222	CANTON	G21	H20	1.20	2.70	2641.0	R,H,L,M	MUCKLE	CSS	YES	YES	GREENWATER
10.0122	GREENWATER	E21	V20	9.70	11.30	10937.0	R,H,L,M	MUCKLE	CSS	YES	YES	NOBLE KNOB
10.0122	GREENWATER	E31	V40	8.40	9.70	2340.0	R,H,L,M	MUCKLE	CSS	YES	YES	NOBLE KNOB, SUN TOP
13.0028	DESCHUTES	EII	V10	48.00	51.00	5037.0	R,H,L,M	SQUAXIN	CSS	YES	YES	NEWAUKUM LAKE
13.0009				1.50	2.30	893.0	R,H,L,M	INWIFC	CSS	YES	YES	BALD HILL
13.0009		E12	1/21	2.70	3.50	202.0	R,H,L,M	NWIFC	CSS	YES	YES	BALD HILL
13 0069	MITCHELL	E21 E31	1//1	2.30	1.50	1599.0		NUTC	C35	YES	YES	BALD HILL
13.0072	MITCHELL	F21	V21	0.00	0.10	126.0	DHIM	NM/ISC	C33	VEC	VES	
13.0072	MITCHELL TRIB.	F22	V22	1.00	2	312.0	RHIM	NMIEC	<u></u>	VES	VES	
13.0072	MITCHELL TRIB.	E31	V41	0.10	1.00	1449.0	RHIM	NWIEC	<u>C</u>	VES	VES	
13.0073	MITCHELL TRIB.	E31	V41	0.00	0.40	493.0	R.H.L.M	NWIFC	CSS	YES	YES	BALD HILL
13.0073	MITCHELL TRIB.	E21	V21	0.40	0.90	1135.0	R,H,L,M	NWIFC	CSS	YES	YFS	BALD HILL
13.0073	MITCHELL TRIB.	G21	H21	0.90	1,10	335.0	R,H,L,M	NWIFC	CSS	YES	YES	BALD HILL
13.0073	MITCHELL TRIB.	G31	H31	1.10	1.20	138.0	R,H,L,M	NWIFC	CSS	YES	YES	BALD HILL
13.0126	W. F. DESCHUTES	E11	V10	0.00	2.00	3629.0	R.H.L.M	SQUAXIN	CSS	YES	YES	NEWAUKUM LAKE
13.0129	HARD	E21	V20	0.00	0.50	869.0	R.H.L,M	SQUAXIN	CSS	YES	YES	NEWAUKUM LAKE
13.0130				0.00	0.50	423.3	R,H,L,M	SQUAXIN	CSS	YES	YES	NEWAUKUM LAKE
14 0012		1221	V20 E20	0.50	0.80	644.0	RHLM	SQUAXIN	CSS	YES	YES	
14.0012	KENNEDY	C21	N10	0.30	2.10	1701.0		SQUAXIN	CSS	YES	YES	
14.0012	KENNEDY	C41	M20	0.70	1.50	2123.0		SOLIAVIN		VES	YES VEC	
14.0012	KENNEDY	FII	VIO	2 10	2.30	600 D	PHIM	SOLIAYIN	<u></u>	VEC	VES	
15.0203	BLACKJACK	1		0.00	2.70	007.0	RHIM	000/0/61	~~~	11.5	VES	
15.0400	SEABECK	C21	M10	0.30	1.30	2361.0	RHLM	NWIFC	CSS	VES	VES	SEARECK WILDCATLAKE
15.0420	DEWATTO	C41	M21	0.00	1.80	3428.0	RHLM	NWIFC	CSS	YES	YES	
15.0420	DEWATIO	C42	M22	1.80	2.20	1389.0	R,H,L,M	NWIFC	CSS	YES	YES	
15.0420	DEWATIO	C43	M23	2.20	3.20	783.0	R,H,L,M	NWIFC	CSS	YES	YES	LILLIWAUP
19.0113	PYSHT	B21	F30	1.00	8.60	2832.0	R,H,L,M	NWIFC	CSS	YES	YES	PYSHT, WEST OF PYSHT
19.0113	PYSHT	E31	∨40	8.60	12.00	5254.0	R,H,L,M	NWIFC	CSS	YES	YES	WEST OF PYSHI
19.0115	S.F. PYSHT	C21	M10	2.00	3,40	2330.0	R,H,L,M	NWIFC	CSS	YES	YES	WEST OF PYSHT
19.0115	S.F. PYSHT	C41	M20	0.00	2.00	3164.0	R,H,L,M	NWIFC	CSS	YES	YES	WEST OF PYSHT
19.0115	S.F. PYSHT	D11	U20	3.40	5.20	2871.0	R,H,L,M	NWIFC	CSS	YES	YES	PYSHT, WEST OF PYSHT
19.0120	GREEN	C41	M20	0.00	1.40	3075.0	R,H,L,M	NWIFC	CSS	YES	YES	WEST OF PYSHT
10 0120	CDEEN	1211	V10	1,40	2.70	2330.0	R,H,L,M	NWIFC	CSS	YES	YES	WEST OF PYSHT
20 0443		E21 C07	V20	2.70	2.90	256.0	R,H,L,M	NWIFC	CSS	YES	YES	WEST OF PYSHT
20.0442		021	UNIU	0.00	3.20	0043.0	K,H,L,M	HOH	CSS	YES	YES	
20.0447	FIK	B31	F10	1 10	1.10	0/0 0	RITIL	NUTC	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	YES	YES	WINFELD CREEK
20.0447	ELK	C21	MIN	1 70	2 60	1446.0	RHEM	NWIEC	C00	TES VEC	VES	
· · · · · · · · · · · · · · · · · · ·	A					, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	I V Is all VI Is a VI	D 177 B C	ິ		ига	INVINCIPITI L. REPEK

1989	TFW AMB	IEN	ТМ	ON	[TO]	RING	G STR	EAM	SUI	RVEY	'S	
WRIA	STREAM NAME	OLD	NEW	RM	RM	SEG	SURVEY	DATA	SUM	FIELD	Gis	
		SEG	SEG	LOW	(UPR)	LEN (M)	TYPE	AFFIL.	RPĭ	FORMS		
			1									
20.0448	ALDER	C11	F50	1.80	2.60	791.0	R,H,L,M	НОН	CSS	YES	YES	WINFIELD CREEK
20.0448	ALDER	C21	M10	0.70	1.80	1809.0	R,H,L,M	НОН	CSS	YES	YES	WINFIELD CREEK
20.0451	WILLOUGHBY	C21	M10	0.00	0.30	762.0	R,H,L,M	HOH	CSS	YES	YES	WINFIELD CREEK
20.0451	WILLOUGHBY	E11	V10	0.30	1.40	1689.0	R,H,L,M	НОН	CSS	YES	YES	WINFIELD CREEK
20.0452	W.F. WILLOUGHBY	E11	V10	0.00	0.70	1077.0	R,H,L,M	HOH	CSS	YES	YES	WINFIELD CREEK
20,0504	TWIN	C21	M10	0.00	1.20	1588.0	R,H,L,M	HOH	CSS	YES	YES	OWL MTN., SPRUCE MTN.
20.0505	EAST TWIN	C11	F50	0.00	0.70	764.0	R,H,L,M	HOH	CSS	YES	YES	OWL MOUNTAIN
21.0025	HURST	B21	F30	0.00	2.00	6128.0	R,H,L,M	QUINAUL	CSS	YES	YES	QUEETS
21.0065	CHRISTMAS	C21	M10	0.50	2.70	4391.0	R,H,L,M	NWIFC	CSS	YES	YES	CHRISTMAS CREEK
21.0065	CHRISTMAS	C41	M20	2.70	3.30	1409.0	R,H,L,M	NWIFC	CSS	YES	YES	CHRISTMAS CREEK
39.1128	S.F. TANEUM	E11	111	1.70	2.10	1389.0	R,H,L,M	NWIFC	CSS	YES	YES	FROST MTN.
39.1128	S.F. TANEUM	E12	V12	6.70	7.70	1705.0	R,H,L,M	NWIFC	CSS	YES	YES	QUARIZ MIN,
39.1128	S.F. TANEUM	E21	V20	4.70	6.70	3182.0	R,H,L,M	NWIFC	CSS	YES	YES	QUARTZ MIN.
39.1128	S.F. TANEUM	E31	V41	0.00	1.70	3282.0	R,H,L,M	NWIFC	CSS	YES	YES	FROST MTN.
39.1128	S.F. TANEUM	E32	V42	2.60	4.70	3361.0	R,H,L,M	NWIFC	CSS	YES	YES	FROST MTN., QUARTZ MTN.
39.1128	S.F. TANEUM	G21	H20	2.10	2.60	819.0	R,H,L,M	NWIFC	CSS	YES	YES	FROST MTN.
39.1351	M.F. TEANAWAY	B21	F30	0.00	4.20	6869.0	R,H,L,M	NWIFC	CSS	YES	YES	TEANAWAY BUTTE
39.1351	M.F. TEANAWAY	E31	V40	4.20	5.50	925.1	R,H,L,M	NWIFC	CSS	YES	YES	TEANAWAY BUTTE
39,1378	W.F. TEANAWAY	B21	F30	0.00	8.00	12272.0	R.H.L.M	NWIFC	CSS	YES	YES	TEANAWAY BT., CLE ELUM LK.
51.0046	NORTH STAR	B21	F31	0.00	3.50	3391.D	R,H,L,M	NWIFC	CSS	YES		
51.0046	NORTH STAR	C21	M11	5.00	5.80	1131.0	R,H,L;M	NWIFC	CSS	YES	1	
51.0046	NORTH STAR	C41	M21	3.50	5.00	1503.0	R.H.L.M	NWIFC	CSS	YES	[
51.0046	NORTH STAR	E11	V11	6.10	6.70	1012.0	R,H,L,M	NWIFC	CSS	YES		
51.0046	NORTH STAR	E21	V21	6.70	7.10	532.0	R,H,L,M	NWIFC	CSS	YES		
51.0046	NORTH STAR	E31	V41	5.80	6.10	. 534.0	R,H,L,M	NWIFC	CSS	YES		
51.0046	NORTH STAR	E32	∨42	7,10	8.00	1436.0	R,H,L,M	NWIFC	CSS	YES		
58.0016	SIX MILE	B31	F40	0.00	0.30	471.0	R,H,L,M	NWIFC	CSS	YES	1	
58.0016	SIX MILE	E21	V20	0.30	1.10	1271.0	R,H,L,M	NWIFC	CSS	YES		
58.0016	SIX MILE	E31	V40	1.10	2.70	2597.0	R,H,L,M	NWIFC	CSS	YES		
58.0356	HALL	E31	V40							YES		
62.0547	TACOMA	C41	M20	0.00	0.30	137.0	R,H,L,M	NWIFC	CSS	YES		
62.0547	TACOMA	E11	V10	0.30	1.00	320.0	R,H,L,M	NWIFC	CSS	YES		
62.0547	TACOMA	E31	V40	1.00	2.80	865.0	R,H,L,M	NWIFC	CSS	YES		
02.004)		1201	1*40	1.00		000.0	IV, 1, 1, 1, 1 1	TAMALEC		1150	ــــــ	<u> </u>

TFW Ambient Monitoring Program 1993-94 Status Report

APPENDIX B

SPAWNING GRAVEL FINE SEDIMENT DATABASE

DATA DICTIONARY

· , ·

DATA TABLES

Ta De No.	ble: Stream escr: Stream informa Column Name	ation Attribute	es
1	WRIA	Type : Consrnt: Comment:	TEXT 7 NOT NULL PRIMARY KEY Water Resource Inventory Number
2	SegNo	Type : Consrnt: Comment:	TEXT 3 NOT NULL PRIMARY KEY Stream segment identification number
3	Collect_Date	Type : Consrnt: Comment:	DATE NOT NULL PRIMARY KEY Collection Date
4	Process_Date	Type : Comment:	DATE Sample processing date
5	Sampler_First_Name	Type : Comment:	TEXT 20 Sampler's First Name
6	Sampler_Last_Name	Type : Comment:	TEXT 20 Sampler's Last Name
7	GradCat	Type : Comment:	TEXT 1 Stream gradient category
8	GradUMC	Type : Comment:	TEXT 1 Channel confinement category
9	BegRivMi	Type : Comment:	NUMERIC (6, 3) Beginning River Mile
10	EndRivMi	Type : Comment:	NUMERIC (6, 3) Ending River Mile
11	Affil_Name	Type : Comment:	TEXT 40 Affiliation Name
12	Act_Gradient	Type : Comment:	NUMERIC (5, 2) Actual % of Gradient
13	Act_Confine	Type : Comment:	NUMERIC (5, 2) Actual Confinement-No of bankful channel widths
14	trib	Type : Consrnt: Comment:	TEXT 3 NOT NULL PRIMARY KEY unlisted tributary number

. . .

Table: Sieve_Sample Descr: Sieve sample No. Column Name	information Attributes
1 WRIA	Type : TEXT 7 NOT NULL Consrnt: PRIMARY KEY Comment: Water Resource Inventory Number
2 SegNo	Type : TEXT 3 NOT NULL Consrnt: PRIMARY KEY Comment: Stream segment number
3 Collect_Date	Type : DATE NOT NULL Consrnt: PRIMARY KEY Comment: Collection Date
4 Riffle	Type : TEXT 3 NOT NULL Consrnt: PRIMARY KEY Comment: Riffle crest number
5 Sample	Type : TEXT 3 NOT NULL Consrnt: PRIMARY KEY Comment: Sample number
6 Sieve_Size	Type : NUMERIC (6, 3) NOT NULL Consrnt: PRIMARY KEY Comment: Sieve Size
7 Measure	Type : NUMERIC (6, 1) Comment: Measure of Gravel in millileters or grams
8 Process_flag	Type : TEXT 1
9 Calc_Grav_Dens	Type : NUMERIC (4, 2) Comment: Calculated Gravel Density
10 Act_Grav_Dens	Type : NUMERIC (4, 2) Comment: Actual Gravel Density
11 trib	Type : TEXT 3 NOT NULL Consrnt: PRIMARY KEY Comment: unlisted tributary number

Table: Sieve_Size Descr: Hold sieve sizes No. Column Name Attributes ____ _____ Type : NUMERIC (6, 3) 1 Sieve_Size Comment: size of sieve in mm Current number of rows: 7 Sieve_Size -----56.800 0.085 0.185 0.087 1.065 26.500 1.000

DATA DICTIONARY for SEDIMENT SYSTEM

LOOKUP TABLES

Table: WRIA_Lookup Descr: WRIA Lookup table	
No. Column Name A	ttributes
l wria	Type : TEXT 7 NOT NULL Consrnt: PRIMARY KEY Comment: Water Resource Inventory Number
2 Str Name	Type : TEXT 25 Comment: Stream Name
3 Basin_Name	Type : TEXT 25 Comment: Basin Name
4 trib	Type : TEXT 3 Comment: unlisted tributary number
Current number of rows:	0
Table: Gradient-Lookup Descr: Gradient lookup ta No. Column Name Att	ble ributes ~
1 GradCat	Type : TEXT 1 NOT NULL Consrnt: PRIMARY KEY Comment: Stream gradient category code
2 Gradient_Desc	Type : TEXT 25 Comment: Gradient description
3 Grad Min	Type : NUMERIC (5, 2) Comment: Gradient minimum for category
4 Grad_Max	Type : NUMERIC (5, 2) Comment: Gradient Maximum for category
Current number of rows:	7

GradCat Gradient_Desc		Grad Min Grad	Max
1	Less than .1% gradient	0.00	0.10
2	0.1-1% gradient	0.10	1.00
3	1.0-2% gradient	1.00	2.00
4	2.0-4.0% gradient	2.00	4.00
5	4.0 6.0% gradient	4.00	6.00
6	6.0-17.0% gradient	6.00	17.00
7	>17% gradient	17.00	100.00

DATA DICTIONARY for SEDIMENT SYSTEM

Table: Cc	nfinement	Lookup
-----------	-----------	--------

Descr: Confinement lookup table Attributes No. Column Name Type : TEXT 1 NOT NULL 1 GradUMC Consrnt: PRIMARY KEY Comment: Channel confinement category code Type : TEXT 20 2 Confinement_Desc Comment: Channel confinement description : NUMERIC (5, 2) 3 Conf_Min Type Comment: Confinement minimum for category Type : NUMERIC (5, 2) 4 Conf_Max Comment: Confinement maximum for category 4 Current number of rows:

GradUMC Confinement_Desc Conf_Min Conf_Max

		0 00	0 00
t	Tightly: <2 cw	0.00	2.00
m	Moderately: 2-4 cw	2.00	4.00
u	Unconfined: >10 cw	10.00	999.99
1	Loosely: 4-10 cw	4.00	10.00

Table: GravDens_Lookup	
Descr: Gravel Density	Lookup Table
No. Column Name	Attributes
1 Calc_Grav Dens	Type : NUMERIC (4,2)
Current number of rows	: 3

Calc_Grav_Dens

2.	90
2.	20
2.	60

DATA DICTIONARY for SEDIMENT SYSTEM

Table: Affil_Lookup

Descr: Affiliation Lookup

No. Column Name Attributes

1 Affil_Name	Type Consrnt Comment	TEXT 40 NOT NULL PRIMARY KEY Affiliation Name
2 Calleral	Type Comment:	TEXT 3 ID Number of organization

Current number of rows: 64

Affil_Name	Calleral
AMSC	54
AMSC-U.W./CSS	59
Chehalis	02
Chinook	03
CMER S.C., Other	58
Colville	04
Cowlitz	05
DNR	09 70
DUE	70 06
	66
Fish St Comm	55
Hoh	33 07
Hoh-Clw. ExpFor	52
Lower Elwha	08
Lummi	09
Makah	10
Medicine Cr T.C.	43
Muckleshoot	11
Nez Pierce	12
Nisqually	13
Nisqually RMP	51
Nooksack	14
NWIFC	01
Point Ellio5	41
Point No Point	40
Port Gambre	10
Public Coop. Puvallup	03
Ouileute	10
Ouinalt	44
RMP, other	53
Samish	19
Sauk-Saiattle	20
SHAM	56
Shoalwater	21
Skagit Sy. Coop.	45
Skokomish	22
Snohomish	24
Snoqualmie	25
Spokane	46
Squamisn Gruenin Telend	28
Squaxin ISland	26
Stellacoom	27
Suipomich	30
Swinomish Ab	30
TFW Cooperator	50
Tulalip	31
U.S. Govt, Other	68
U.S./CSS	60
UCUT	47
Umatilla	32
UNDEFINED	78
Upper Skagit	33
USFS	64
USFWS	67
USGS	65
warm Springs	34
WDF	71
weyernaeuser	61
WQSC	57
Iakima RMD	35
TONTING INTE	50

TFW Ambient Monitoring Program 1993-94 Status Report

APPENDIX C

DATABASE DESIGN

FOR RELATIONAL TFW AMBIENT MONITORING DATABASE

CONTAINING ALL SURVEY YEARS AND SURVEY TYPES

MAIN DATABASE

MAIN DATABASE

MAIN DATABASE

.

AMBIENT MONITORING DATABASE

MAIN DATABASE

MAIN DATABASE

DATABASE LOOKUP TABLES

<u>'89 - '94 LOOKUPS</u>

AUXILARY DATABASE (Ingres only)

