M
Appendix M.


## M. Rain-On-Snow

The Rain-On-Snow guidance memo specifically explains the procedures to be followed when applying the rain-on-snow rule (WAC 222-22-100(2)) and some of the science behind peak flows and rain-on-snow events. Both the rain-on-snow rule guidance memo and rule are incorporated into the Forest Practices Habitat Conservation Plan.

This page is intentionally left blank.

# WASHINGTON STATE DEPARTMENT OF <br> Natural Resources 

BRIAN BOYLE

## TO: REGIONAL MANAGERS

Jack Hulsey, Forest Practices Division Manager Pack
Implementation of Rain-on-snow: WAC 222-16-046 (7)

The department has the responsibility to implement rules adopted by the forest Practices Board. The recent rule regarding rain-on-snow and clearcut size directed the department to implement a new type of rule. This rule required. the use of a new approach in the regulation of forest resources. The rule obligates the department to take a broader look at the landscape_and depart: from the reliance on regulations that only apply to the circumstances of a single application.

The department is committed to an "adaptive implementation" approach. I feel that our implementation strategy is sound. However, due to the complexities of the current rules that interact with existing harvest patterns and resource conditions, there may be unintended consequences.

I firmly believe that we need to give this approach an operational test, learn more by doing and make adjustments as necessary. With your cooperation, implementation will be successful and consistent with the overall policy. objectives of RCW 76.09.

Beginning on October 1, 1991 the department will implement WAC 222-16-046 (7) as outlined below.

$$
22-100(2)
$$

## RAIN ON SNOH: WAC 222-046(7)

## OVERVIEW

Using emergency rules, the Forest Practices Board directed the department to "condition the size of clearcut harvest applications in the significant rain-on-snow zones". Using "local evidence" to verify that peak flows "have resulted in material damage to public resources", the department has developed conditioning strategies based on reducing but not eliminating the potential for increased risk to public resources. Such an approach is seen as consistent with the provisions of RCW 76.09.010.

The approach is based on the understanding of how streamflows can be increased ${ }^{1}$ by timber harvest in the significant rain-on-snow zones. Operating on the assumption that moving more water more frequently through a stream is damaging, the size of clearcuts would be conditioned to reduce the risk to public resources. Alternative harvest practices, such as strip cutting or partial cutting, are permitted with restrictions. The restrictions are designed to retain harvest options while moderating hydrologic impacts and attendant risks to public resources.

## BASIC PRINCIPLES

Snow retention is modified by the nature of the forest canopy. Removal of the forest's canopy increases snow accumulation. The canopy also has a major influence on the rate of snow melt which is strongly controlled by energy movement into the snowpack. When the forest is immature or recently harvested, wind and rain can more rapidly move energy into the snowpack, substantially accelerating the rate of melt.

It is the combination of young forests (i.e. hydrologically immature), increased snow accumulation, and potential rapid rates of melt, that can increase the severity of storm effects. Channels unaccustomed to elevated storm intensities and frequencies can be degraded, producing material damage to public resources.

The conditioning strategies are based on the idea that there is not a likelihood that damage may be associated with rain-on-snow events unless certain conditions exist. There must be a reasonable amount of the basin in the significant rain-on-snow (ROS) zones and there must be enough of the basin that is hydrologically immature (HI). Thus, there are relationships between the proportion HI and proportion in the ROS zones and the potential increase in water available for runoff. These relationships are used to define Risk Classes (A,B or C: see Attachments 1,2, or 3) that set general limits on the use of conditioning on an individual application.

Due to regional climatic differences within Washington, the department has divided the state into three response zones. They are west of the Riparian Management Zone line ("western" Washington), east Cascades and Okanogan Highlands, and Pend Oreille and Blue Mountains. For each graph, two lines were developed that define the limits of Risk Classes A, B or C. Basins below the first line are in Risk Class $A$; basins between the two lines are in Risk Class B; basins above the second line are in Risk Class C. Risk classes directly relate to the likelihood of material damage to a public resource which is associated with peak flows.. As such, the risk classes are used to set general limits on conditioning clearcut size. Please refer to CONDITIONING STRATEGIES.

[^0]Before any conditions are applied to an application, all the following circumstances must occur:

1. The application must be in a significant ROS zone.
2. There are preliminary indications of "local evidence of peak flows which have resulted in material damage to public resources".
3. There are significant amounts of hydrologic immaturity in the basin.
4. An Interdisciplinary Team (IDT) has reviewed the previous three points and has provided recommendations to the department.
5. The department develops conditions that reflect the on-the-ground facts and recommendations of the IDT.

The lower lines on Attachments One, Two and Three define where, under modeled storm conditions, there can be an one-inch increase of water available for runoff. This is in addition to whatever direct precipitation may have occurred during the 24 -hour storm event. (All calculations are based on 24hour storm data.) The increment is due to the impact of accelerated melt of an increased snowpack in hydrologically immature areas. The net result is that a 10 -year storm now approximates a 50 -year storm.

The line in the upper right corner of the graphs corresponds to a two-inch increase of water available for runoff. This increment of water magnifies 10 year storm into a 100 -year storm. So the stream now "feels" as if there has been a 100 -year storm when precipitation onto hydrologically mature forested areas approximate a 10-year storm.

The approach is based on Type 3 streams. These are small enough to geographically focus attention on material damage to public resources ; they are closest to the possible site (s) that may have influenced storm intensities. Trying to assess impacts on larger streams is much more difficult, particularly if the objective is to geographically isolate probable areas of concern. The intent is to determine damage at the lower reaches of Type 3 streams ${ }^{2}$. It is in the lower reaches of $T-3$ streams that the contribution of ROS impacts can be most reasonably detected.

[^1]4 OF 7

Calculations of HI will be done on the portions of the T-3 basin that are in the significant ROS zones (i.e., the peak rain-on-snow and the snow-dominated precipitation zones)'. Please see Attachment Four. Unless site-specific factors dictate otherwise, HI is assumed to end at 25 years (total) age for areas west of the RMZ line and 35 years (total) for all other locations. For purposes of the calculation of HI , a pending or approved application should be treated as if it was completed.

## CONDITIONING STRATEGIES

The conditioning strategies for ROS employ the concept that any given applications are controlled by maximum permitted clearcut size, dependent on the particular risk class. Subject to the site-specific conditions, such as slope, aspect, nature of damage and age-class distribution, an application could have clearcut harvest size reduced below the maximum.

## OPERATIONS WITHIN RISK CLASS A

Routinely, no additional clearcut harvest restrictions for noS would be applied. Any ROS conditioning within Risk Class A would be on an exception basis, and done after a review of the site-specific facts after consultation with the Forest Practices Division. Existing rules and BMP's would guide routine conditioning.

## OPERATIONS WITHIN RISK CLASS B

Individual clearcuts would be limited to 80 acres ${ }^{4}$. Alternatives to tclearcutting would be considered ${ }^{5}$. Multiple 80 acre operations are being envisioned as being acceptable, dependent upon the facts within the subbasin.

[^2]
## OPERATIONS WITHIN RISK CLASS C

Clearcutting within areas of Risk Class $C$ would be substantially restricted. Clearcut size is reduced to zero until there is a change in the state of hydrologic maturity, i.e., the portion of older stands increases to move the sub-basin into risk Class B or Risk Class A. 'Alternatives to clearcutting would be considered ${ }^{6}$.

## INDICATORS OF MATERIAL DAMAGE TO PUBLIC RESOURCES

The method recommended by DNR for evaluating the existence of material damage to stream channels is the "Stream Channel Stability Evaluation Form" from USFS Hydrologist Dale Pfankuck's work in the 1970's. The form arrays indicators of upper bank, lower bank, and channel bottom condition across four condition levels(Appendix 2). This is an interim channel evaluation method, and may be augmented or changed later.

## how the rule will be applied

No conditioning under this rule should be applied until several steps have occurred. As in other circumstances, compliance with all rules, particularly road maintenance and abandonment, should be reviewed. Subsequently, there are five key events.

1. The application must be in a significant ROS zone

The department has mapped the five major precipitation zones (Attachment Four). For the purposes of this rule, the snow dominated and the rain on snow precipitation zones are considered significant. Attachment One explains their derivation. The department's Geographical Information System (GIS) has the base data and maps can be produced on an as needed basis. Additional information on storm intensities and precipitation are also available on the GIS.

Generally, in western Washington, the significant rain on snow zones starts near $1,600-1,800$ feet and extends to approximately 4,000 elevation. These numbers are only for the purposes of illustration. Please use the actual GIS data/maps are the numbers vary dependent on regional climatic differences, aspect, and other factors.

Upon receipt of an application, the department will make an initial determination that the proposed operation is in the significant rain
${ }^{6}$ Strip-cutting up to $20 \%$ of the remaining acres of mature timber would be considered as another type of maximum. Partial-cutting up to $30 \%$ of the remaining volume of the mature timber wold be considered as another type of maximum. Dependent upon the nature and extant of material damage to public resources, these percentages could be reduced.
on snow zone. This will be noted on the application. The application is mailed for comment.
2. There are preliminary indications of "local evidence of peak flows which have resulted in material damage to public resources".

FPA recipients are asked for a timely review. If there is no timely ${ }^{7}$ response or the response is that there are no indications of damage, then the application will be processed as any other application. If there are responses that there is "damage", the department will move to step three ${ }^{8}$.
3. There are significant amounts of hydrologic immaturity in the basin.

The department will ask the landowner to provide information regarding stand age in a sub-basin ${ }^{9}$. Age-class data is needed only for that portion within the significant rain on snow zones. Only very broad stand age data is necessary. For west of the RMZ line, acres of stands with (total) age 25 years or less is needed. For other locations, the age is 35 years or less.
-If the sub-basin is not totally under the ownership of the applicant, then the department will use photos or sources to determine the extent of hydrological immaturity.

Depending on location, Attachment One, Two or Three is used to assess Risk Class. Using the percent of the sub-basin that is in the snow dominated and rain on snow precipitation zones and the percent of HI within the these two zones, the graph is used to "calculate" Risk Class. If the application is Risk Class A, the application would not generally be subject to this rule; other rules, BMP's or conditioning for other purposes would still apply.

7 FPA recipients will be asked for their responsos within ten business days from the date of transmittal. WAC 222-20-020 imposes time limits that require a timely response since the the remaining steps are constrained by this rule. Consideration of late responses will be on a case-by-case basis only.
${ }^{8}$ Assessment of "local evidence of peak flows which have resulted in material damage to public resources" is a key step. Initially the department will use the approach outlined in Appendix 2 as a guideline for DNR decisions. Responding parties are encouraged to understand and use Appendix 2 as a basis for assertions of material damage. dame metrk
${ }^{9}$ Getieraliy, the calculations and assessments will be on a Type 3 stream map; also, see footnoie 2 . The water type maps will initially be the base for determining T-3 sub-basins.

If the proposed application is in Risk Class B or C, continue to step 4.
4. An Interdisciplinary Team (IDT) has reviewed the previous three points and has provided recommendations to the department.

The department will convene an IDT to site-specifically assess the facts. If the department agrees will the IDT's assessment that the first three steps have been correctly taken, then the IDT will be asked for conditioning recommendations. The following should be considered during the IDT process:

* nature and extent of peak flow damage
* age-class patterns within the sub-basin
* slope and channel stability factors
* resources at risk
* size and extent of previous harvests
* limitations of alternative silvicultural systems

The previous considerations are not intended to be an exclusive list. The department will consider any appropriate factors during the development of the sub-basin, basin or site-specific conditions.
5. The department develops conditions that reflect the on-the-ground facts and recommendations of the IDT.

The department conditions the application consistent with RCW 76.09. The content of any conditions is the statutory responsibility of the department.

```
attachments afpendices
```

c: Forest Practices Board
Art Stearns, Supervisor
Laura Eckert, Deputy Supervisor
Ted Price, Deputy Supervisor
Pat McElroy, Deputy Supervisor
Forest Practices Board Liaisons
Bill Jacobs, WFPA
Jim Anderson, NWIFC
David Bricklin, WEC
West of RMZ Line:
Attachment One: Conditioning

E. Cascades \& Okanogan Highlands Risk Classes
Attachment Two: Conditioning Strategies Rain-on-Snow



5. Highland


## RAIN-ON-SNOW:

WHAT IT IS, WHERE IT OCCURS, WHY WE ARE CONCERNED ABOUT IT, AND WHAT IS TO BE DONE ABOUT IT

## Introduction

Many individuals and organizations involved with forest practices have become aware of the problem of rain-on-snow (R/S) storms. Within the framework of Washington forestry regulations, the issue is currently being addressed through an interim rule, while the technical arm of the Timber/ Fish/Wildlife cooperators designs methods of watershed analysis to deal with the long-term and cumulative effects of forestry on peak flows and flooding (among other things). Members of the public have also become interested, because of concern over the use of public forests and because the off-site effects of forest practices can extend into populated areas.

Many people are currently trying to design a technical and policy structure to address various forest-hydrologic issues, including that surrounding rain-on-snow events. The solutions will involve an amalgamation of applied hydrology, silviculture, remote sensing, computer modeling, geomorphology, etc. into a set of procedural, technical, regulatory, and ameliorative strategies that will be adjusted as we learn more (adaptive management).

In this paper we explain the nature of rain-on-snow events; examine the reasons that they are the subject of such attention with respect to forest-practices planning and regulation; and describe the technical basis of the procedures designed to implement the interim rule.

## R/S: Processes, Occurrence, and Geography

The term rain-on-snow is commonly applied to snowmelt that occurs during cloudy weather, typically associated with winter storms bringing warm winds and heavy rains. Such conditions also affect the snowpack in between the storms, so in common usage R/S involves both the snowmelt during an event and to the accumulation that preceded it. Because the input to soils and streams during $R / S$ events consists of the storm precipitation plus the release of water stored as snow, the intensity of water inputs can exceed those expected on the basis of the storm's recurrence interval (if the water has time to pass through the snowpack).

In the Pacific Northwest, this phenomenon is responsible for many (east side) to most (west side) of the greatest episodes of flooding and landsliding. Thus, anxiety over $R / S$ focuses on the possibility of receiving more water than has been expected, predicted, or designed for; the effects on rapid runoff and slope stability; and consequent injury and damage to resources and property.

During rain-on-snow conditions, the major source of energy for snowmelt is the wind-aided transfer of sensible and latent heat to the snow surface. ${ }^{1}$ Long-wave radiation emitted by trees, clouds, and other parts of the forest environment also contributes to snowmelt during $R / S$ conditions. Heat added to the snowpack by the rain itself can be a major energy source, particularly when rainfall is heavy and air (thus rain) temperatures are high. Short-wave radiation (sunlight) is a minor contributor under $\mathrm{R} / \mathrm{S}$ conditions, in which short winter daylight periods, low sun angles, and cloudy weather restrict insolation; this is in contrast to clear-weather snowmelt, in which sunlight is the chief source of energy for melting.

In washington, rain-on-snow can cccur anywhere, from sea level to the alpine zone. The location, timing, and frequency of R/S events are ultimately controlled by the large-scale weather patterns affecting the Pacific Ocean and western North America, as modified by the terrain of the Pacific Northwest. Therefore, the specific conditions causing such events, and hydrometeorologic behavior during them, vary somewhat in different kinds of storms, in western versus eastern Washington, and with elevation.

Winter storms can hit Washington from September to June, but are most frequent and intense from late November to early February. Many North Pacific cyclonic storms are associated with air flow from the southwest; in some cases, strong flow from the vicinity of Hawaii (the "pineapple express") causes warm, moist air to approach the coastal and Cascade ranges almost perpendicularly, causing rapid air rise, cooling, and condensation. The result is warm temperatures, strong winds, and heavy rains (orographically enhanced precipitation). If there is snow on the ground (as is likely, at least in the mountains), these situations are ideal for melt, and produce the most significant R/S events. But since most winter storms are accompanied by tempera-

[^3]tures above seasonal normals, lesser amounts of snowmelt can occur even under moderate storm conditions.

The degree to which a particular storm causes rain-on-snow at a particular place depends on:

1) the amount of rain delivered by the storm at the site;
2) the presence and state (depth, water content, permeability, etc.) of snow on the ground; and
3) whether the freezing level rises above the site elevation for enough time that a significant amount of snow can be melted.
Thus, $R / S$-event input is greatest when and where the combination of rainfall, melt-inducing heat sources, and meltable snow is most favorable. The effect is maximal under the storm track, on the windward sides of mountains, where/when temperatures are highest, and where the snowpack contains exactly as much water as can be released during the event. It is reduced where rainfall is less (i.e. away from the area of peak magnitude and intensity, and on leeward slopes), temperatures are cooler (at higher elevations), and the snowpack is either too thin to yield much water (lower elevations), or so thick that it inhibits the liquid water (R+SM) from reaching the soil quickly (higher elevations).

Therefore, the occurrence of rain-on-snow is a probabilistic phenomenon: it is the result of the interaction of many factors, each of which varies geographically and in time. However, because each of these factors has an average or most-probable condition, we can make some general statements about the likelihood and magnitude of $R / S$ events.

Broadly speaking, the highest probability of rain-on-snow occurrence is associated with winter storms, peaking in November to February (thinner snowpacks are most vulnerable to melting earlier in this period). Because there tends to be more rain and more snow accumulation on the windward sides of mountains, the west- to southwest-facing slopes of the Cascades and Olympics generally experience the greatest $R / S$ events. They are most likely in a range of middle elevations, where rain and snow are both common, and the freezing level fluctuates $1,000 \mathrm{ft}$ or more over a series of storms. Termed the transient snow zone, this range of middle elevations is located at approximately $1,000-$ $4,000 \mathrm{ft}$ in the central-western Cascades; it is higher to the south and west, lower to the north and east. R/S events are both more frequent and (apparently) more hydrologically significant in this zone. Below it (rain-dominated zone), storms are more likely to strike bare ground, so there is little or no snow-
melt contribution; higher (snow zone), storm precipitation typically falls as snow, and any liquid water is likely to be refrozen in a deep snowpack.

A somewhat different kind of rain-on-snow event occurs in the spring, when late-winter cyclonic storms or summer-season convective st:orms, combined with warmer temperatures and more sunlight, can rapidly melt any surviving snowpack. This can be an important process when snow persists at lower-than-normal elevations, due to heavy winter snow and/or cool wet weather in the spring; higher elevations (in the snow zone and the upper transient snow zone) are typically affected by this type of $R / S$. However it can be significant, especially in certain regions: although the Columbia Basin, Blue Mountains, and Okanogan Highlands are less susceptible to winter storms, they are vulnerable to springtime R/S events (as in the floods of May 1948).

Given this variability in the factors controlling R/S processes, it should be clear that delineating a rain-on-snow zone is not a trivial exercise. Since $R / S$ can occur anywhere, the problem becomes one of identifying the places where it is most significant, in hydrologic or some other (damage ?) terms. This begs the question of degree of significance, in terms of the magnitude (simple amounts), intensity (amount per unit time), or proportional increases (relative to storm precipitation) of water input due to snowmelt: how much is important ? and how do these numbers vary regionally ?

## Forest Practices and R/S

Despite the uncertainties, it can be understood that rain-on-snow events are most consequential in and around mountainous areas. This is where it rains the hardest, where there is likely to be snow available for melting, and where the gravitational gradient exist:s to allow the resultant runoff to cause mischief, in the form of: flooding and erosion.

The mount:ains are also the home of most of Washington's forest land, so $R / S$ and forestry are linked if only because they both take place in the same areas. Furthermore, forest practices can influence elements of the environment that control hydrologic processes related to snowmelt. To the extent that logging and forest roads affect snow hydrology, they could also exacerbate the rates and effects of rain-on-snow events. If so, the consequences could be transmitted out to the mountain fringe, where forests merge with agricultural, recreational, and (increasingly) residential land uses, and where most water-related resources and

A-4
facilities are located. The existence and magnitude of these potential effects, and their control, form the crux of the forest practices-R/S issue.

Concern about the effects of forest clearing on the rate of water outflow from snowpacks (and thus water input to soil and streams) during rain-on-snow conditions focus on:

1) the magnitude of change in outflow that can be caused by clearcut logging;
2) the proportion of a basin that must be disturbed in order to produce a significant effect on runoff;
3) the persistence of increased outflow from a clearcut area, and the vegetation characteristics that control hydrologic recovery;
4) the possibility that changes in outflow can increase the magnitude and/or frequency of peak flows downstream;
5) the ability of any such increases to produce significant downstream flooding, channel changes, and damage to stream habitat;
6) the possibility that increased water input to soils can cause elevated rates of landsliding in clearcuts, or increased chances of debris torrents in channels;
7) the potential for forest roads to significantly amplify the damage due to $R / S$ events, through more rapid flow routing, failure of drainage structures, or movement of fills. Removal of forest vegetation, by harvesting (especially clearcutting) and road construction, can modify the rates of snow accumulation and melt, and consequently the rate of water outflow from snowpacks during $\mathrm{R} / \mathrm{S}$ conditions. In any given event, a difference in outflow between forest and clearing may be due to differences in either or both.

Imagine a series of snowfalls, each roughly equal to the forest canopy's capacity to intercept snow, occurring at nearfreezing temperatures. Most of the snow is caught by the canopy and melts there; the meltwater falls to the ground, enters the soil, and leaves the site. Under these conditions, a snowpack accumulating under forest is very wet, but shallow and discontinuous. In contrast, snow falling in a clearing is not intercepted, and so is less exposed to the heat sources so effective in melting snow in the canopy. Thus, snowpacks in clearcut areas (in middle elevations) are typically deeper and contain more water than those in adjacent forest stands. The amount of water
in the snowpack ${ }^{2}$ in clearcuts is commonly 2-3 times greater than that in adjacent forest stands.

Thus, the amount of snowfall, weather conditions (over periods of hours to weeks), and characteristics of the forest canopy are all important in determining differences in snow accumulation between forest and clearcut. Contrasts in accumulation are greatest after a series of light snowfalls at or near freezing, followed by temperatures slightly above freezing. There is little difference following prolonged snowfall at temperatures well below freezing.

The second basis for concern about effects of timber harvest involves snowmelt. Because the major source of heat for melting snow during $R / S$ conditions is usually the wind-dependent transfer of sensible and latent heat, any activity or situation that causes increased near-surface wind speed and turbulence will likely increase the rate of heat transfer to the snow, and consequently the rate of snowmelt. Thus, the removal of trees allows more rapid melting of snow in clearings.

In the Northwest there are a vast number of possible scenarios of snow accumulation and subsequent melt, determined by the weather in the time preceding and during a storm, and by the characteristics of a particular site. Thus, differences in response between adjacent cleared and forested lands will also depend on probabilistic elements. The extreme case entails large differences between forests and clear-cuts in snow accumulation, followed by a pineapple-express storm with heavy rainfall accompanied by strong winds and high air temperatures (50-60 ${ }^{\circ}$ ) : snowpacks in clear-cuts, deeper and extending to lower elevations, melt to yield much extra water, while forests at equivalent elevations receive little more than the storm precipitation. However, even the more frequent $R / S$ scenario, with moderate amounts of rain, lesser wind speeds, and temperatures up to about $45^{\circ}$, can also melt snowpacks rapidly and produce differences in water outfiow between forests and clearings.

If there is a difference, during a certain event or over a period of years, between the amounts of water available for runoff during $R / S$ from adjacent forested and clear-cut areas, then the issues enumerated above become pertinent. If the amount of runoff expected from harvested areas (particular large units) will be greater than it was before cutting, we need to be able to

[^4]A-6
predict whether the increase will be large enough to cause significant modifications of soil hydrology (increased pore-water pressures leading to mass movement) or channel behavior (higher or more frequent peak flows, acceleration of sediment transport, habitat degradation). If any of these apply, we want to know how much cutting will initiate significant effects, how great they might be, what damage they might cause to resources and property in and around the forest, and how long such changes might last.

It should be clear from the preceding discussion that the answers to these questions are delicately contingent upon regional and local terrain, vegetation, and basin hydrology, and to the sequence of weather conditions up to a particular time. We would like to be able to identify the areas where hydrologic processes during R/S events will be significantly altered by timber harvest and roads, evaluate the nature and magnitude of effects, and determine how the negative effects can be prevented or mitigated (by planning, regulation, or engineering). At this point we are just beginning to be able to generalize about these subjects.

## Addressing Rain-on-Snow Issues

We are addressing the what, where, and how questions of rain-on-snow through the $T / F / W-C M E R$ research program; some answers will not be available for a couple of years yet. But the existing body of research indicates that $R / S$ is an important hydrologic process in the forested lands of Washington; and we surmise that some forest practices can cause significant changes in these processes, leading to damage in some cases. Also, because most of the effects of forest operations on rain-on-snow processes take place downstream of and later in time than the operations themselves, the interaction seems to be an example of a cumulative effect of forest practices on the environment. As such, the issue has become wrapped up in discussions of cumulative effects, with all the scientific and political uncertainties incumbent thereon.

Nevertheless, based on the hydrologic information that now exists and the environmental and property damage that seems to have been caused by apparent increases in peak flows, the Forest Practices Board, the Department of Natural Resources, and the Timber/Fish/Wildlife cooperators have begun to manage and regulate forest harvest so as to reduce the potential deleterious effects of large clearcuts on $R / S$ processes.

Two interconnected approaches to the R/S issue are currently being pursued. As a result of the Sustainable Forestry Round-
table"and subsequent discussions, a CMER task force and the DNR were commissioned to develop methods for watershed screening and analysis, which would include analysis of the potential for environmental damage due to forestry-related increases in R/S frequency or magnitude. These methods are being developed; on August 14, the Forest Practices Board passed an emergency rule (WAC 222-16-046) setting deadlines for development and implementation.

## Interim R/S Fules

It is expected that the results of $R / S$ research and watershed analysis (to be done on forested basins of the state, over a period of several years) will be incorporated into the regulatory framework as the results become available. In the meantime, the Board passed a rule ${ }^{3}$ authorizing the DNR to begin regulating clearcut size in places where R/S-related "material damage" seems to have occurred. The technical tools for identifying "significant R/S zones" are in place, and procedures for implementing the rule have been developed over the past few weeks. Creating a map delineating $R / S$ zones has been problematic and time-consuming; and writing rules and procedures required political and administrative decisions to accept some scientific uncertainty in their formulation, and a commitment of substantial staff time in their execution. (Part of the problem was that drawing a map of significant rain-on-snow zones presupposed an agreement on a definition of "significance", which doesn't yet exist.)

However, it is possible to create a map of precipitation zones relevant to rain-on-snow processes, given a structure built around model events. We have done so, based on a variety of physical and biologic. factors, encompassing available snow data, elevation, aspect, vegetation, remote imagery, and predictive models, to create proxies and indices of R/S probability. This map, and the GIS-based modeling that it will be used for, constitute the first: steps in screening and analysis for R/S effects.

1. Precipitation Zones Map

Since there is no map that shows the magnitude and frequency

[^5]of water inputs to be expected from rain-on-snow events, we have attempted to create an index map based on what we know about the process controls and effects in the various climatic zones. If we assume that, averaged over many years, the seasonal storm tracks that bring warm, wet cyclonic storms to the Northwest have equal access to all parts of Washington ${ }^{4}$, then the main factors controlling the occurrence and magnitude of a rain-on-snow event in any particular place are:
a. climatic region: especially the differences between windward and leeward sides of major mountain ranges, which control seasonal climatic patterns;
b. elevation: controls temperature, thus the likelihood and amount of snow on the ground, and affects orographic enhancement of storm precipitation;
c. latitude: affects temperature, thus snow;
d. aspect: affects insolation and temperature (especially in winter), thus melting of snow;
e. vegetation: the component species of forest communities can reflect the climate of an area (tolerance or intolerance to warmth/cold, wet/dry conditions, deep and/or long-lived snowpack); the density of vegetation also partly controls the amount of snow on the ground.
Since natural vegetation integrates the effects of all of these controls, we tried to find or adapt floral indicators of the various zones of storm-water input; unfortunately, the information is not complete or consistent for all of Washington. Thus the designation of climatic zones was based on a combination of geographic (elevation, latitude, etc.), terrain, and vegetal indicators, and our knowledge of the effects of storms in particular areas. We have extrapolated from known to lesser-known regions. Consistent with the modeling approach, we created the precipitation zones to represent the amount of snow likely to be on the ground at the beginning of a storm. We assumed that a midelevation zone would experience the greatest water input due to $R / S$, because the amount of snow would be likely to be approximately the amount that could be melted. Higher and lower elevation zones would bear diminished effects, but for opposite reasons (no snow to melt, vs too cold to melt much). These considerations suggested a three- or five-zone system. We chose to

[^6]designate five zones, because it allows a finer calibration of effects in the model; also, having a larger number of classes reduces the importance of the dividing lines, and thus of the inherent uncertainties of those lines.

Thus, zones were defined based on the amount of snow that is likely to be on the ground, relative to the amount that could reasonably be melted during a model storm. We had to choose a particular time of year for the model event: because major winter storms are most common in November-February, and $R / S$ seems to be more likely earlier in this period, a model date in early December might have been best. However, snow-survey records were an important source of snow-accumulation data, and very few surveys are carried out in December; therefore, snow amounts for early January were used. ${ }^{5}$ The average ${ }^{6}$ snow-water equivalents (SWE) for the early January measurements at about 100 snow courses and snow pillows were compiled; snow depths for the first week in January at about 85 weather stations ${ }^{7}$ were converted into SWE by multiplying by 0.15 (the ratio of snow-water to depth is generally about 5-30\%, depending on snow density, wetness, etc.). For each region (western North Cascades, Blue Mountains, etc.), the snow amounts were sorted by station elevation to derive a rough indicator of the relationship between snow accumulation and elevation. (Subregional differences in snow accumulation patterns were also recognized.)

The amount of snow that can be melted in a day under a particular set of $R / S$ conditions can be estimated from a simple equation (developed by Corps of Engineers hydrologists):

$$
\begin{aligned}
\mathrm{SM}_{24 \mathrm{hr}}= & \mathrm{T}_{\mathrm{a}}\left[0.133+0.086 \mathrm{v}_{\mathrm{w}}+0.0126 \mathrm{P}_{24 \mathrm{hr}}\right]+0.23 \\
\text { for } \mathrm{SM}_{24 \mathrm{hr}} & =24-\mathrm{h} \text { snowmelt }(\mathrm{cm}) \\
\mathrm{T}_{\mathrm{a}} & =\text { average air temperature }\left({ }^{\circ} \mathrm{C}\right. \\
\mathrm{V}_{\mathrm{w}} & =\text { average wind speed }(\mathrm{m} / \mathrm{sec}) \\
\mathrm{P}_{24 \mathrm{hr}} & =24-\mathrm{h} \text { precipitation }(\mathrm{cm})
\end{aligned}
$$

[^7]Assuming that temperature and wind speed are uniform, snowmelt becomes a function of precipitation. Using the $10-\mathrm{yr} 24-\mathrm{hr}$ precipitation isohyets, it was possible to estimate the regional variation in snowmelt expected from an event of that frequency. Because snowmelt is not very sensitive to precipitation amount, the differences are not great; they vary from about 2.5 in. in the Columbia Basin to about 3.5 in . in the Olympics.

The middle (or peak rain-on-snow) elevation bands were delineated as the areas where the average amount of snow (SWE) on the ground approximated these 'ideal' snow amounts; the upper and lower zones were defined by greater and lesser proportions, respectively, of these amounts. After trying various combinations of ratios for areas where the snow hydrology is relatively well known, we decided on the following designations:
5. Highlands: >4-5 times ideal snow amount; high elevation, with little likelihood of significant water input to the ground during storms (most precipitation as snow, and liquid water probably refreezes in a deep snowpack); effects of harvest on snow accumulation are minor;
4. Snow-dominated zone: from about 1.25-1.5x ideal snow amount, up to $4 x$; melt occurs during $R / S$ (esp. during earlyseason storms), but effects can be moderated by the lag of percolation through the snowpack;
3. Peak rain-on-snow zone: about $0.5-0.75 \mathrm{x}$ up to 1.25 x ideal SWE; middle elevations: shallow snowpacks are common in winter, and big storms bring much rain, so likelihood and effects of $R / S$ are greatest; generally more snow accumulation in clearings than in forest;
2. Rain-dominated zone: about $0.1-0.5 x$ ideal SWE; areas at lower elevations, where rain occasionally falls on small amounts of snow;

1. Lowlands: <0.1x ideal SWE; coastal, low-elevation, and rain-shadow areas; rainfall intensities are lower, and significant snow depths are rare.
Mapping of the precipitation zones was done by hand on mylar overlays on $1: 250,000$-scale topographic maps. Because snow depth is affected by many factors, the correlation between snow and elevation is rough, and it was not possible to simply pick out contour markers for the boundaries. Ranges of elevations were chosen for each region, but allowance was made for the effects of subregional climates, aspect, vegetational indicators of snow depth, etc. Thus, a particular boundary would have been mapped somewhat lower on the north side of a ridge or in a cooler valley
(e.g." below a glacier), reflecting greater snow accumulations in such places; the same boundary would be mapped higher on the south side of the ridge, where interstorm sunshine could reduce snow accumulation. Conditions at the weather stations and snow courses were used as checks on the mapping, but in areas where measurements are scarce, some interpolation had to be performed. Attempts were made to make the mapping consistent within each region, and among adjacent regions.

The boundaries of the precipitation zones have been entered in the DNR GIS, and are available from the PR1ME computer (as FRA>GENERAL>ROS). Because of the small scale of the original mapping and the imprecision of the digitizing process, some errors have probably been introduced. It should not be expected that GIS images can be projected to large scales to find knifeedge zone boundaries, but they should be good enough to locate harvest units tens of acres or greater in size.

Some apparent anomalies in the map should be explained.

1. Much of western Washington is mapped in the lowlands or highlands zones. This does not mean that rain-on-snow does not occur in those areas; it does, but on average with less frequency and hydrologic significance than in the middle three zones.
2. Much of central and eastern Washington is mapped in the rain-dominated zone, despite the meager precipitation there; this means only that the amounts of snow likely to be on the ground are small, and storm-water inputs are composed dominantly of the rain itself, without much contribution from snowmelt.
3. Much of northeastern Washington is mapped in the peak $\mathrm{R} / \mathrm{S}$ zone, despite the fact that such events are less common in the $N E$ than in western Washington. This is due to the fact that much of that region is at elevations where the 'ideal' amounts of snow are liable to be on the ground when a model $\mathrm{R} / \mathrm{S}$ event occurs; it does not reflect the lower frequency of such $R / S$ storms in that area, which must be accounted for in other parts of the modeling and regulatory procedures.
4. Zones of Interest and Threshold Graphs

For the purposes of implementing the interim rule, it was decided that the 'significant rain-on-snow zones' would comprise the peak rain-on-snow and the snow-dominated zones (hereafter just 'R/S zones'). Although snowmelt also occurs with some fre-
quency in the rain－dominated zone（on the west side，at least）， the contribution to storm runofif from the lower zone is typically less than that from the higher two zones．However，applications for harvest on lands crossing the lower boundary of the $R / S$ zones should be considorcd as falling under the rule．（Due to the im－ precision of the mapping，areas at lower elevations might also be considered，on an exception basis．）

Once it has been established that a proposed clearcut is within the $R / S$ zones，it musl be ascertaincd whether there has been relevant material damage to lype 3 or better waters down－ st．ream（see Attachment．B）．If so，it is necessary to datermine whether the cutting pattern in the basin is probably causing the damage，by contributing increased runoff due to augmented snow accumulation and melt rates．In other words，it must be decided whether a sufficient proportion of the basin is covered by vege－ tation that is likely to be acting hydrologically immature（HI）．

The degree to which a basin is experiencing enhanced $R / S$－ related water input is controlled by both the proportion of the basin in the $R / S$ zones，and the proportion of those zones covered by $H 1$ vegetation．For example，a large basin having only a few tens of acres in the significant zones is probably not going to be feeling severe $R / S$ effects due to forest practices，even if they are completely clearcut．Likewise，even if the basin is completely in the zones of interest，there will be lititle effect if little of it has bcen cut．It is the basins where a major proportion is in the R／S zones，and a major portion of the zones are $H I$ ，that forestry－related $R / S$ effects are most jikely．Thus， it is necessary to define the basin of interest with respect to a proposed harvest，determine how much of the basin is in signifi－ cant $R / S$ zones，and cstimate the portion of those zones in $H I$ vegetation．

We are intercsted in basins large enough that $R / S$－influenced runoff effects arc jikely to be notable，and to affect streams having public－resource value．For these reasons it was decided that the area calculations would be made for basins of type 3 streams．In practice，areas should be defined and measured ${ }^{8}$ up－ stiream of the point at which a type 3 stream flows into a type 1 or 2 stream．This means that harvest appljcations that are com－ pletely outside such basins（in basins of type 4 or 5 streams

[^8]that drain directly into type 1 or 2 ）are not automatically regu－ lated they may be included by exception，though，where appropri－ ate）；however，most of the landscape is covered．The proportion of the basin within the R／S zones must also be measured．＇

Then，for all of the land in the $R / S$ zones in the defined basin，it must be determined how much of the vegetation is hydro－ logically immature，i．e．that has low canopy closure（density） and small tree heights．For implementation of the rule，age classes are to be used as proxies ${ }^{10}$ for maturity：stand data， air－photos，local knowledge，ctc．should be used to estimate the area in $\leq 25-y r$（west）or $\leq 35-y r$（east）ages．

Thus，three values will be measured：total basin area（ $A_{b}$ ）， area in the basin within the $R / S$ zones $\left(A_{r a}\right)$ ，and area in the $R / S$ zones that is in $H I$ vegetation $\left(\Lambda_{h 1}\right)$ ．Two ratios are calculated：
\％basin in $S$ and $R / S$ precip zones $=100 * A_{r a} / A_{b}$
$\%$ basin hydrologically immature $=100 * A_{h 1} / A_{z i}$ ．
The degree to which the combination of $H I$ vegetation in $R / S$－ susceptible areas can cause problems is estimated using the three graphs showing conditioning scenarios．These graphs are based on a simple model．For a basin，assume that when a storm starts the $R / S$ zones have an ideal amount of snow on the ground（i．e．about the maximum amount meltable by a $10-y r 24-h r$ storm）in areas with HI vegetation，and little or no snow in adjacent forests．＂The amount of extra snowmelt on hydrologically immature lands in $R / S$ zones is assumed to be about 3 in．in western Washington and the upper eastern Cascades（west of the RMZ line）， 2.75 in．in the Blue Mountains and in the wettcr parts of northeast Washington （roughly，east of the lower Kettle－Colville－upper Little Spokane valleys），and 2.5 in ．elsewhere．

The threshold iines on the graphs are based on the basin－ averaged effects of snowmelt－enhanced storm－water inputs．For example，if half of a basin is in $R / S$ zones，and half of that is

[^9]A－14 CORREETED（9－30－91）

HI, then 25\% of the basin area is receiving 3 in. (west side) of vegetation-influenced $S M$ in addition to rainfall, and the basin as a whole seems to be receiving 0.75 in. of additional storm water ${ }^{12}$. Alternately, if the basin has $80 \%$ in $R / S$ zones and $65 \%$ of that in HI vegctation, the average input enhancement is 1.56 in. Points represcnting thesc cases can be located on the graphs. Note that a particular basin's position along the x-axis is set by the its area in the precipitation zones, and is unchangcable; while its position along the $y$-axis can change in time, depending on the rate of harvest (moves up) or the regrowth of HI vegetation (down).

The threshold lincs that divide the graphs into bands represent 1 in. and 2 in. of basin-averaged, vegetation-influenced snowmelt enhancement. In very general terms, an addition of $1-2$ in, of water onto a $10-y r$ 24-hr storm is enough lo make it seem to the basin jike a 50- to $100-y r$ storm $^{13}$. We do not assume that every such situation results in parallel flood peaks (i.e., not every 50-yr storm causcs a $50-y r$ flood). But we believe that dumping more water into streams, more often, as a result of large-scale changes in the forest can cause a general increase in peak-flow magnitudes and frequencies; and we believe that this is probably not a good outcome.

Thus, the basin in the first hypothetical case (described above) plots in the $A$ band, in which the $R / S$ effects are considered minor. The basin in the second case plots in the $B$ band, in which harvest-related $k / s$ effects are probably becoming significant, and further examination and conditioning are required.
3. Conditioning St.rateqies

Information on conditioning is contained in Hulsey's memo (Sept 26, 1991). In general, conditioning of harvest applications for reduction of $R / S$ effecls should attempt to:

1. reduce snow accumulation: arrange cutting units to maximize canopy interception and melt of snow; orient strip cuts to maximize interstorm solaf melt;
2. reduce wind-affected melt rates: arrange units to reduce wind speed at the ground during $R / S$ storms.
[^10]Unfortunately, these two strategies could be in conflict on a particular site. The tactics to be used in any particular case will probably have to be based on site-specific conditions.

For strip cutting, some considerations of wind and the maximum unit proportions defined in the memo (footnotes 5 and 6) suggest limits on the strip sizes. Evidence from a few field studies indicates that strips any wider than one tree height (1H) experience wind speeds similar to those in large clearings. Thus, strips should be no greater than $1 H$ in average width, and oriented across the dominant direction of storm winds at that site. For strips 1H wide, separation between strips should be at least 2 H wide in risk class B (so that acreage cut is $\leq 358$ ); and at least 4 H wide in risk class $C$ (so acreage cut is $\leq 20 \%$ ).

## Watershed Screening for Hydrologic changes

Within a few months, we will be conducting screening of designated basins (sub-WRIA scale) for slope instability, wildife, fisheries, and hydrologic changes. The precipitation zone maps described above, along with other data layers and attributes; will be used to model the changes in basin storm-water input apparently due to past harvest.

## Conclusions

We believe that rain-on-snow is an important process in the forested lands of washington; that runoff from snowpacks during R/S events, particularly in (broadiy defined) middle elevations, can be increased by certain forest practices, notably clearcut harvest; and that such changes can contribute to damage of resources and property within and outside the forest. The interest in and concern about the interaction of forest practices and $R / S$, by state agencies, forest land-owners and operators, other $T / F / W$ cooperators, and the citizenry at large, are not misplaced.

However, because $R / S$ is a natural process, the incidence and magnitude of which are controlled by many environmental factors that vary in time and space, it is difficult to define precisely when and how forest practices will cause or contribute to such damage on a particular site.

The maps, graphs, and guidelines explained here are our attempts to apply scientific knowledge and techniques to management and regulatory questions. We acknowledge that they are based on incomplete information, debatable assumptions, approximations, and model calculations; but we think that each piece is reasonably valid.

A-16 ADDENDUM




$$
\cdots i
$$

C

STREN IEACI LiMEITUKY an OWNEL STABILITY EVMWATIOI

Channel evaluations are best made during periods of low flow.

Amplification of the Stream Channel Evaluation Itema


Space on
Space on the fiald form permits only the very briefest providas, in the text which follows, thane fiald booklet rationale in support of theas brief" "kamels" or core thoughta. Theae axplanstions are arranged in the sama
as tiey appear on the field form. arranged in the ama order
The channel crosa mection is abdivided into three components,
to focus your attention on the various indicators to focus your atiantion on the various indicators to be subjec-
 are interralated and all must be usad in an unblased way that have been included achieve consiatent evaluations of the current situation.

Stream channel ratinga should not be pezempted uithout
of the text has been kept rather field Guide. The language its use as a management tool to a amall geographicimiting These general descriptions, coupled with your local exper lence, will stimulate mental inages of indicator conditions
(1
tent, reproducible ratinga.
Illuatrations in tha text should ba considared general
and not epacific for all ituations. It la auggested tiat local
conditions be plotographod and the pictures added to tils pield Guide to achieve local uniformity. pictures added to this pield
evaluated of additional caution: Keep the scale of the reach being text and on the inventory form. Rating items were taylored for and best fit the 2nd to 4 th order stream reachese. Very small, unhcaliched, first order segments will require a scalling down some mental enlargement of the criteria given to fit require STRAAM ORDER CLASSIPICATION

[^11]

0

INVENTOHY DATA: (observod Dr moasured on this dato) Side 2


 WaterQuality Sample botile \# 34 Soy Stabllity Indlcatore br Clabses PCOR

 by wator durling high flous, inainent danger of same, | Present, volum and sizo | (6) | $\begin{array}{l}\text { Moderate to heavy amounts, } \\ \text { aro both Increasing. } \\ \text { aredoninantly larger alzes. }\end{array}$ | (8) |
| :--- | :--- | :--- | :--- | $50-7$ denairy. Lowar vigor (9) (12)

 cate poor, discontinuous,
and shallon root mass,
Ovarlank flows $\begin{aligned} & \text { Inadequate; } \\ & \text { coneon. }\end{aligned} / \mathrm{D}$ ratio $>25$. 3) common. W/D ratio $>23$. (6) gravel slzess $1-3^{n}$ or LeBs, Prequent obatructions and deflectors cause bank
sion yearlong. Sediment
traps full, channel
traps full, channal
Aldost continuous cuts,
some over 24" high. Fiall-
ure of overhaing frenuent,
1
$\frac{1}{2}$
0
$\frac{8}{2}$
$\frac{8}{2}$
$\frac{8}{2}$
$\frac{8}{2}$
$\frac{3}{2}$
$\frac{8}{x}$ doninantiy ferated har development

Accelerated har devolingan round In all dimen-
年


Masorked distribution chango.


In atale of flux or change nasery yearlons

Perennial types ncarco
abeent. rallou-eraen, short
t.urn bloom may be present.
$\frac{\text { L.ur: bloon }}{\text { PUY be preseant. }}$ Materials (Total to 100 ${ }^{\circ}$ )
ม. xax
1

$$
\begin{aligned}
& \text { Bareiy contains present } \\
& \text { peake. Occaselonal nverbank } \\
& \text { floxin. H/Dratio } 15 \text { to } 25
\end{aligned}
$$

20 to $4 \pi x^{5}$ w1th mosi. $\frac{1}{1 n}$

atoly uns table obstructions
d defjectors move
mater causing bank cuttink
$3 i$ nnficunt. Cuts $12^{\prime \prime}-24^{\circ}$



9 gravel coarsa band
10 Corners $\triangle$ adges vell round5
$\stackrel{\sim}{Z}$

$$
\begin{aligned}
& \text { Sone rilling of pooln. }
\end{aligned}
$$

15 In linckuatar aroan. Season-
a) jloonn make rucks alick.

09 पणारा800500 $021 \varepsilon$

1. Iixposed bedrock ...........


Upper Channel Banks The land area immediately adjacent to the stream channel is normally and typlcally a terrestrial environment. landforms narrow, steep termini of mountain slopes. Internitiently this dry land flood plain becomes a part of the water course. Forces of velocity and turbulence tear at the vegetation and 1 and. these hydraulic forces, while relativeiy short lived, have great potential for producing onsite enlargements of the stream
channel and downstream sedimentation damage. Resiatance of the component elements on and in the bank are lighiy variable. This section is designed to ald in rating this relative resistence to detachment and transport by floods.
A. Landform Slope: The steepness of the land adjacent to the wich banks can be eroded and the potential volume of alough which can enter the water. All other factors being equal, the ateeper the land adjacent to the atream, the greater the potential volume of slough materials. gravitational repose angle for unconsolidated soll materials. Slopes ateeper than this are rated poor alone, if denuded of their protectirig vegetation. The alone, if denuded of theit protectirg vegetation. The set as follows:
$\frac{\text { Excellent: Side slopes to the cham }}{\text { less than } 30 \text { percent on both banks. }}$
2. Cood: Side slopes up to $40 \%$ on one both banks.
3. Fair: Sid
4. Poor: ment of lateral bank cutting. of soll for downstream sedimentation for each incre-




Nass Nasting llizard This rating linvolves exlsting or potencial detacinient from the soll mantle and downslope movement Into waterways of relatively large pieces of introduces large volumes of soll and dubris into the introduces large volumes of soll and dubris into the
channel suddenly, causling constrictions or complete danming followed by increased strean flow velocletes, cutting power and sedimentation rates. Conditions deterlorate in this element with proximity, frequency poorer internal dratnage and steeper terrain:

Excellent: There is no evidence of mass wasting that
has or could reach the stream clannel.
2. Good: There 1s evidence of infrequent and/or very smal1 slumps. Those that exist may occasionally be "raw" but predominately the areas are revegetated
and relatively stable. 3. Fair: Frequency and/or magnitude of the mass wasting aggravates the problem of channel changes and subsequent undercutting of unstable areas with increased sedimen-
4. Poor: Mass wasting is not difficult to detect because or the proximity of banks are so close to potential sildes that any increases in the flow would cut the to stream water quality problens for a number of years.
C. Debris Jan Potential Floatable object are deposited on
Veretative Bank Protection: The sollin banke is held in unlimited water for both crown and root development. Their root mata generally increase in denaity with proximity to the open channel. Trees and shrubs senerally have deeper
root eystems than grasses and forbs. Roots seldoa extend root eyatems than grasses and forbs. Roots geldom extend
far into the watar table, however, and near the shore of lakes and atreams they may be comparatively shallow rooted. Some species are, therefore, subject to windthrow.
In actitition to the benefits of the root mat in stablifing the banks, the atems help to reduce the velocity of flood been laminar flow. The sertousneas of this energy release depends on the denalty of both overatory and underatory vegetation. The greater the density of both, the more resistence displayed. Damage from turbulence is greatest
at the bank edge and diminishes witr. diatance from the normal channel. Other factors to consider, in addition to the density of ateme, are the varleties of vegetation, the vigor of growth and the reproduction processes. Vegetal
variety is more dealrable than a monotypic plant commity Young planta, growing and reproducing vigorously, are better than old, decadent stands.

## . Excellent: Trees, shrubs, grass and forbs combined

 cover more than 90 percent of the ground. Openings inthis nearly complete cover are amall and evenly dispersed A variety of apectea and age classes are represented. Growth is vigorous and reproduction of species in both the under-and over-story is proceeding at a rate to.
inaure continued ground cover conditions. A deep, insure continued ground cove
dense root ant is inferred.
2. Good: Plants cover 70 to 90 percent of the ground. Shrub apeciea are more prevalent than trees. Openinga
in the tree canopy are larger than the space resulting
 growth vigor is generally good for all species, advanced root mut is not contlauous and more serious erosive incursions are possible in the openings.
Fair: Plant cover ranges from 50 to 70 percent. Lack of vigor is evident in some individuals and/or apecies. fair, based primatily an the percent of the area not covered by vegetation with a deup root taat potential and legs on the kind of plants that nake up the overstory.
Poor:
Trees are esaentially absent. Shrubs largely exist范

Obstructions and Flow Deflectcra: Objects within the pilings, etc., clange the direction of flow and sowetimes the veloclity an well. Obstructions may produce and deflect the flow finto unstabia increase the velocity and acrose unatable botto mnstable and unprotected banks duce favorable lepacta when velocity is decreased by proturbulence and pools are formed.
Sediment Trape: Channel obetructiong wifet: däii the fiow partly or wholly form pools or slack water areas. The energy the eediment tranaport power is this lose of Coarac particlea drop out firat at the head of the pooil. Some or all of the fine auspended particles may carry
on through.
Embedded logs and large boulderu can produce vary atable natural dams wifch do not add to cliannel instability. Some debris dams and beavar dams, however, are quite unatable and only serve to incrase the severity of channel
damage when they break up.
The effectiveness of these sedlaent traps depende on pool leasth relative to entrance valucity. Tho suifter the current, the longar the pool needed to riach zero velocity.
lurbulence caused by a falls at the liead of the pool shortens the lengeh required to reach zero velocity.
How lons these trape are effective depends on depth and uldth as well as pool length and, of course, the rate of sediwent accretion.
ltems of vegetation growing in the water, like alders, willows, cattalls, reeds, and sedges are also effective traps in some locations and reduce flow velocity and
sediment carrylng power.

E. Deposition: Lower bank channel areas are generally the steeper portions of the wetted perimeter and may tunity for deposition. Exceptions to this statement abound since deposition is often noted on the lee side of large rocks and log deflectors which form natural
jetties. However, these deposits tend to be shart and jetties. llowever, these deposits tend to le shart and
natiow. Un tine less stecp, lower bank, deposition during recession from peak flows can be quite large. The appearance of sand and gravel bars where they did not previously exist may be one of thie first signs of upstream erosion.
These bars tend to grow, primarily in depth and length, These bars tend to grow, primarily in depth and length,
with contfined watershed disturbance (a). Width changes are in a shoreward direction as overflow deposition takes place on the upper banks. Dinensional deposition "growth" to flow along the channel bankis, flow velocity and a continulng upstream sediment supply.
Deposiction may also occur on the inside radit of bends, particularly if active cutting is taking place on the opposite shore. Also, deposits are found below constric-
tlons or where thure is a sudden flattentag of atream thons or where thure is a sudden flattening of atreau
gradient is occurs upstrean above geologic nic points. 1. Excellent: Very little or no depogition of fresh exit, sand or gravel in channel bars in stralght renches or polnt bars on the Inside banks of curved
2. Good: Some fresh deposites on bars and belifind obetrucCoon: Some fresh Stzes tend to be predonimately from the larber
ilze classes - coarse gravels.
3. Fair: Deposits of fresh, coarse sands and gravels observed with moderate frequency. Bars are enlargin: and pools are filling so riffle areas predominate. 4. Poor: Extengive deposits of predominately fresh, ated bar developinent common. Storage areas are now full and sediments are moving even during low flow


## Channe 1 Botton

Water flows over the channel bottom nearly all of the time in perennial streams. it la, therefore, almoat totally an aquatic anvironment, composed of inorganic rock constituente
found in an infinite variety of kinds, shapes, and alzas. it is also a complex blological comanity of plant and animal life. Thio latter component is more difficult to discern and may in fact, at cimes and places, be totally lacking.

Both coaponents, by their appearance alone and in combination, offer :lues to the atability of the stream bottou. They are and emphasla during the evaluation process. Because of the high reliance on the visual sense, inventory work is beat accoaplished during the low flow sesson and when the water
is free of suspended or dissolved substances. If ratings ls free of suspended or dissolved substances. If rating be the only clue as to the atate of flux on the bottow.
A. Angularity; Rocke from atratified, metamorphic formtions break out and work cheir way Into chane forp cornors and edges wear and are rounded in time, but they resist the tumbling motion. These angular rocks
pack together well and may orlent themselves like
shingles (labricated). In this configuration they resiatant to detachment.

In contrast, igneous rocka often produce fragments that round up quickly, pack poorly and are easily detached
and moved downstream.

Excellent to Poor ratings relate to the amount of rounding exhibited and, secondarily, the smootliness or pollsh the surfaces have achieved. Some rocks never do smooth Both conditions, of course, are relative within the Inherent capability of the respective rock types.


Rounded


Bottom Size Distribution and Percent Stable Materials:
Rocks remaining on a strean's bottom reflect the geologic Rocks remaining on a streau's bottom reflect the geologic
sources within the basin and the flow forces of the past Normally, there is an array of slzes that you expect to see in any given local. After a little experience, you begin to "sense" abnornal situations. Generally, in the nuture topography typical of the Northern Region of the Forest Service and much of the other western Rekions as well, the flow in the small, steep upper stream reaches is sufficient to wash the soll separates and some of the gravels away. What remains is a gravelly, cobbly stream and flow is of len slower, deposition of the "Fines" less eroded above begin to drop out. The separates of sand, allt, and some clay begln to cover the coarser elements. Except where trapped in still water areas, these fines tend to be in constant motion to ever lower elevations. Two elements of bottom stability are rated in this Item: ponent size classes and (2) the percentage of all component size classes and (2) the percentage of all com-
ponents which are judged to be stable materials. Hedrock, large boulders, and cobble stones ranging in size from one to three feet or more in diameter are considered smaller rocks in sualler channels mightion. obvious ly ye classed as stable. The gizes are glven only to guide thought. Bedrock as a major component of bottom and bauks, no rate, always results channel or how the other elements rate, always results la an excellent classification of

$$
\begin{aligned}
& \text { 1. Excellent: There is no noticeable change in size } \\
& \text { distribution. The rock mixture appears to he nor- } \\
& \text { mal for the kind of geologic sources in the bastin }
\end{aligned}
$$ mal for the kind of geologic sources in the basin and the flow forces of streans of this slize and

locat lon in the watersiued.

If a shift or change has taken place so thare are greater percentages of large rock in the small It is a matter of degree as follows: (Stable Materials 80-100\%).
> 2. Cood: Slight shift in elther direction. (Stable Materials 50-80\%).
3. Falr: Moderate shift in size classes. (Stable Materials 20-50\%).


Aquatic Vegetation: When some measure of atabilization
of the soli-rock components is achleved, the channel
botton becomes fit habicac for plant and anlaal life. This process begins in. the slack vateve areas. and. eventur ally may include the sulft water portions of the strean
crosa section. Whtil a change in voluma of flow and/or cross aection. rateil a change in volume af thow and /or of the ivilng elements in the aquatic anvironment. This last item attempts to assess the one aacro-aquatlc blo-
wase indicator found to best express a change in channel anse. Indicator found to best express a change in channel Clinging Mo

Clinging Hosa and Algae: These lover plant forms do not have roots but cling to the substrate. Thay are low
growing and may first appear as a green to yellow-green growing and may first appear as a green to yalion-gree
slick spot on the bottom rocka. Moss. plants continue with alight variation in color but no great change in
masa fore season to season. Algae by contrast have a peak of growth activity and then die off in great numbers. The silppery conditions thay produce persist after death,
however. Both algae and mosa inhabit the awlft water areas as well as the quitet pools and backuater portions of the struam

1. Excellent: Clinging plants are abundant throughout Excellent: Clinging plants are abundant throughout
the reacli from bank to bank. A contlinuous nat of vegetation is not requilred but moss and/or algae
are ruadlly seen in all directions across the atre 2. Good: Plants are quite common in the alower portions of the reach but chin out or ar
flowing portions of the atream.
2. Falr: Plants are found but their occurrence is spotty. They are slmost totally absent from rocks
in the anfter portions of the reach and may also be absent in some of the slow and atill water areas Poor: Clinging plants are rarely found anywlere in the reach. (This is an unusual situation but could condicious).


Management Luplications
After beating the brush, getting your fect wet and figliting You amy now ask, "What do these numbers of chan and ratiags. uscd in making a managentent decision?"

Indepth answers there. The followis is complicated and precludes satsify you or they may ralst more guogt and answers may detalled, specific answers.

The numbers and the adjective ratings they relate to mean what they say. A stream channel reach that rates more Judicious upstream management of the tributary procedure was not designed to fix blame for poor rating and water management or to reward good management, although, In time, it could be used for this purpose. Before passing exhibit poor hydologic conditions. Conversely watersheds may developed and used watershed may have a draty, a highly good hydologic shape. The rating system will therefork in management goals, who can relate the who have definite water resource uses and activities, who understand natural other thons, and whoare willing and able to use the system to define status quo.

One use of this rating system is to assess conditions and define impacts along short reaches of stream. Channe 1 and potential for damaging vater quality at culvertility bridge sites, at campgrounds and administrative sites or a water course. A channel rated "poor" at near or across for example, cannot withstand as much constriction or site, gradient change as one rated "good". Armed with this additional knowledge, the decision could be to change type of structure to protect the aquatic iect a different prime to protect the aquatic liabitat.

The priaary use of this systen is to assess entire channel conjunction uith other hydrologic analyses to augment IVicultural prescriptions. Rapid changes in the denisity and areal extent of vegetation on a watershed cun incriase
stream discharges. Channel systems rated "excellent"



[^0]:    1 Please see Appendix One, Technical Bachoround, for an cxplanation of the scientific rationale that underpins this regulatory approach.

[^1]:    2 The routine focus will be on the lower reaches of T-3 streams. However, based on the site-specific facts, upper reaches of T-3 can be reviewed when appropriate. Likewise, for T-4 or T-5 streams where sediment/debris avalanches could reach type 1,2, or 3 and have produced material damage to public resources, WAC 222-16-046 (7) may be applied.

[^2]:    ${ }^{3}$ The maximum sizes or alternatives to clearcuts will generally control the conditioning actually applied. Exceptions to the conditioning strategies will be approved on an individual basis after consultation with the Forest Practices Division.

    4 Each application would be evaluated in the light of the sub-basin "facts". Size could be reduced. Eventually, as applications accumulate, the sub-basin could move into Risk Class $C$ where more stringent conditioning would be applied.
    ${ }^{5}$ Strip-cutting up to $35 \%$ of the remaining acres of mature timber would be considered as another type of maximum. Partial-cutting up to 45\% of the remaining volume of the hydrologically mature timber would be considered as another type of maximum. Clearcut harvest may be reduced below either of these maxima dependent upon sub-basin conditions.

[^3]:    ${ }^{1}$ Sensible heat is the warmth that can be felt, as in a home's forced-air heating system; the latent heat of vaporization is released when water vapor condenses on the snow surface.

    A-2

[^4]:    2 The snow-water equivalent (SWE), the depth of water that would result if the snow melted completely.

[^5]:    ${ }^{3}$ WAC 222-16-046 WATERSHED ANALYSIS IMPLEMENTATION
    (7) Effective September 3, 1991 the department shall condition the size of clearcut harvest applications in the significant rain-on-snow zones where the department determines local evidence of peak flows which have resulted in material damage to public resources. Such conditioning authority shail expire upon completion of watershed analysis in a waterresource inventory area or sub-basin.

[^6]:    4 A reasonable assumption for western Washington; on the east side, and particularly in northeast Washington, $R / S$ events are less common. Model values will be adjusted, where possible, to account for these differences.

[^7]:    ${ }^{5}$ We are assuming, at this stage, that most $R / S$ storms occur in winter; we have not attempted to model spring $R / S$ events at this time.

    6 Based on measurements in 1961-1985, recorded in Washington Cooperative Snow Survey sumaries.

    7 Also for 1961-85, or whatever part of that period was available; from National Weather Service reports on climatic data for Washington.

    A-10

[^8]:    －Basin boundaries should be delincated on a topographic map，and digi－ Lized into a GIS coverage．The basin area can then be obtained inom the GIS Altcrnately，area can be measured with a planimeter on the topographic map．

[^9]:    ＇In tho GIS，the precipitation zones map can be combined with the basin area to calculate this proportion．
    ${ }^{10}$ In watershed screening and anadysis，Landsat images will be interpret－ ed to evaluate actuad vegetation propertjes relevant to hydrologic maturity．
    ＂This is almost a worst－case scenario，but it is rot uncommon；further－ more，it seems justified since we are considering areas where material damage has already been established．

[^10]:    12 This amount i.s calculated from
    $5 M_{\text {moos }}-18 \mathrm{R} / \mathrm{S} 20 \mathrm{nes} / 1001$ * $18 \mathrm{HT} / 1001$ * 3 in
    $=50 / 100 * 50 / 100 * 3=0.75$
    1s The differcnces betwoen precipitalion magnitudes of various frequencies vary from onc place to another; those numbers are gencralized.

[^11]:    but not axalusively at tha head of drainage banins. Second order raaches are formad when two or more first order
    reaches aome together and so on as illustrated below.

