

Stream Temperature Monitoring in the Olympic Experimental State Forest

Teodora Minkova, OESF Research & Monitoring Manager Warren Devine, Natural Resource Scientist

Presentation Focus

Long-term monitoring project in the Olympic Experimental State Forest (OESF)

Evaluation of riparian conservation measures across the OESF

The effects of specific timber sales on stream temperature are not evaluated

Information Source

Status and Trends Monitoring of Riparian and Aquatic Habitat in the Olympic Experimental State Forest 2013-2020 Results

Channel Morphology

Channel Substrate

Stream Flow

Water Temperature

Riparian Microclimate

Habitat Units

e Stream Shade

In-Stream Wood

Riparian Vegetation

Board of Natural Resources, July 5, 2023 Subject to changes and amendments over time

Study Purpose and Objectives

Goal: Document long-term change in stream habitat in managed watersheds

Objectives

- Evaluate DNR's progress in meeting the State Lands HCP riparian conservation objectives
- Reduce uncertainties around the integration of habitat conservation and timber production

Monitoring Design

Type 3 streams (smallest class fish-bearing streams) 50 DNR-managed watersheds 12 reference watersheds

Avg. watershed area: 545 ac Avg. stream width: 16 ft Timber harvest 2013-2022: 4.8% thinned, 2.8% VRH

OESF Riparian Management

- Riparian buffers
- Protection of unstable slopes
- Protection of wetlands
- Road management plans
- Watershed-level riparian protections (hydrologic maturity, rain on snow, etc.)

(Forestry Handbook PR-14-004-160)

Board of Natural Resources, July 5, 2023 Subject to changes and amendments over time

Field Sampling Methods

Board of Natural Resources, July 5, 2023 Subject to changes and amendments over time

Results: Average Daily Temperature

15-19 °C - optimal growth for steelhead

12-15 °C - optimal rearing of juvenile coho

Richter, A. and Kolmes, S.A., 2005. *Reviews in Fisheries Science*, *13*(1), pp.23-49.

Board of Natural Resources, July 5, 2023 Subject to changes and amendments over time

Results: Maximum Summer Temperature

Board of Natural Resources, July 5, 2023 Subject to changes and amendments over time

Results: Maximum Summer Temperature

Board of Natural Resources, July 5, 2023 Subject to changes and amendments over time

Results: Maximum Summer Temperature

Board of Natural Resources, July 5, 2023 Subject to changes and amendments over time

Results: Predictors of Maximum Summer Temperature*

Effect	Result	<i>p</i> -value
Year	Significant effect (year-to-year differences)	<0.01
Gradient of reach	No significant effect	0.32
Channel width of reach	No significant effect	0.12
Elevation of reach	Significant effect (higher = colder)	0.047
Shade above reach	No significant effect	0.12
Channel bedrock in reach	Significant effect (more bedrock = warmer)	<0.01
Watershed solar exposure	Significant effect (more sunlight = warmer)	<0.01
Watershed % harvested during last 5 years	No significant effect	0.79

* In the 50 DNR-managed watersheds

Harvest Level in Monitored DNR-managed Watersheds 2013-2022

- 18 of the 50 watersheds had no harvest
- 19 watersheds had 1-10% harvest
- 8 watersheds had 11-20% harvest
- 5 watersheds had >20% harvest

Board of Natural Resources, July 5, 2023 Subject to changes and amendments over time

Summary

- OESF stream temperatures remain cool during the summer
- Natural factors explained most of the temperature variation
- Year-to-year changes in stream temperature show climate influence
- Cause-effect relationships between timber harvest and stream temperature will be evaluated through T3 Watershed Experiment

Additional Information

Acknowledging the hard work of all field crews

DNR website: www.dnr.wa.gov/oesf "Research and Monitoring Projects" link

- 2022 report of project results
- Monitoring protocols
- Published scientific papers
- Other project reports

Board of Natural Resources, July 5, 2023 Subject to changes and amendments over time

