

MMLTCS and SHC A report to the Board of Natural Resources

presented by

Angus Brodie and Andy Hayes July 5, 2017

Today's Outline

- Timeline
- Response to last month's questions
- Financial analysis
- Public comments/proposed alternatives

Timeline

dnr.wa.gov

Preferred alternative timeline -

April: Summary of public comments

May: MM/SHC background and deferral summary

June: MMLTCS/Arrearage/Riparian and decision process

July: Financial analysis and proposed alternatives

August: 2-day BNR retreat

September: BNR selects a preferred MMLTCS alternative

Response to last month's questions

6/6/17

1. Maps of MMLTCS components and alternatives

Visit the Story map @ dnr.wa.gov/mmltcs

2. PVA analysis – Risk vs. Enhancement

Risk runs use a 0.87 annual nonjuvenile survival rate based on historical trends.

Enhancement runs use a 0.90 annual non-juvenile survival rate based on Peery's 2006 marked-recapture research in California.

3. Survey effort by land ownership

Ownership	# of survey stations	# of occupied detections
DNR	10,077 (56%)	2,861 (56%)
Private Lands	3,865 (21%)	730 (14%)
US Forest Service	2,763 (15%)	840 (16%)
National Park Service	836 (5%)	596 (12%)
Other	591 (3%)	127 (2%)
TOTAL	18,132	5,154

Financial Analysis murrelet, arrearage, riparian scenarios

Purpose

To provide financial projections to help the board understand how each scenario affects DNR's ability to meet its trust management obligations, including:

- The generation of revenue for trust beneficiaries
- Ability to generate revenue in perpetuity
- Impartiality with respect to current and future beneficiaries
- Maintaining the corpus of the trust

Decisions and Metrics

DNR has identified 48 possible combinations of the three decision options. Of these, 12 would produce identical results as others, so 36 combinations are analyzed and shown.

Options

Marbled Murrelet (6x) Arrearage (4x) Riparian Thinning (2x)

Metrics Analyzed

Net Present Value Volume Area Management Funds

Western WA 10-Decade NPV

Each circle represents one combination of murrelet, arrearage, and riparian options.

NOTES

Letters indicate corresponding MMLTCS alternative.

Orange dots indicate SHC alternatives.

Western WA Planning Decade Volume

Each circle represents one combination of murrelet, arrearage, and riparian options.

Letters indicate corresponding MMLTCS alternative.

NOTES

Orange dots indicate SHC alternatives.

Color gradient corresponds to relative relationship between cells.

Example:

	Factor 1	Factor 2	Factor 3
Factor A	1	5	5
Factor B	2	5	8
Factor C	9	7	3

10-decade NPV (\$ billions) Western Washington

			Arrearag	e harvest		
Marbled	702 N	/IMBF	462 MMBF		No specific level	
LTCS Alt			Riparian	thinning		
	10%	1%	10%	1%	10%	1%
Alt A	4.77	4.71	4.77	4.70	4.75	4.67
Alt B	4.91	4.85	4.91	4.85	4.89	4.81
Alt C	4.72	4.66	4.72	4.65	4.70	4.62
Alt D	4.72	4.66	4.72	4.66	4.70	4.62
Alt E	4.70	4.64	4.70	4.64	4.68	4.60
Alt F	4.30	4.25	4.30	4.25	4.28	4.21

Range of change in NPV as a percent of maximum NPV

The following percentages are calculated by taking the greatest difference between the highest and lowest NPV of a given factor (*murrelet, arrearage, or riparian*) while keeping the other two factors constant, and then dividing by the maximum NPV reached by any combination of choices.

Range of change in NPV as a percent of maximum NPV

EXAMPLE ——

Common School 10-decade NPV

			Arrearag	e harvest			
Marbled	702 MMBF		462 N	462 MMBF		Rolled in	
LTCS Alt			Riparian	thinning			
	10%	1%	10%	1%	10%	1%	
Alt A	1,679	1,654	1,679	1,652	1,674	1,638	
Alt B	1,711	1,685	1,709	1,683	1,704	1,670	
Alt C	1,664	1,639	1,664	1,637	1,655	1,621	
Alt D	1,655	1,631	1,655	1,628	1,648	1,614	
Alt E	1,659	1,636	1,659	1,633	1,651	1,617	
Alt F	1,476	1,456	1,477	1,457	1,477	1,449	

Range of change in NPV as a percent of maximum NPV

EXAMPLE -

Common School 10-decade NPV

			Arrearag	e harvest		
Marbled	702 MMBF		462 MMBF		Rolled in	
LTCS Alt	Riparian thinning					
	10%	1%	10%	1%	10%	1%
Alt A	1,679	1,654	1,679	1,652	1,674	1,638
Alt B	1,711	1,685	1,709	1,683	1,704	1,670
Alt C	1, 6 64	1,639	1,664	1,637	1,655	1,621
Alt D	1,655	1,6 31	1,6 <mark>5</mark> 5	1,6 28	1,6 48	1,614
Alt E	1,659	1,636	1,659	1,633	1,651	1,617
Alt F	1,476	1,456	1,477	1,457	1,477	1,449
	=235	=229	=232	=226	=227	=221

1. Find differences between highest and lowest NPV for a given factor (murrelet) within the same combination of the other two factors.

Range of change in NPV as a percent of maximum NPV

EXAMPLE ·

Common School 10-decade NPV

			Arrearag	e harvest		
Marbled	702 MMBF		462 MMBF		Rolled in	
LTCS Alt			Riparian	thinning		
	10%	1%	10%	1%	10%	1%
Alt A	1,679	1,654	1,679	1,652	1,674	1,638
Alt B	1,711	1,685	1,709	1,683	1,704	1,670
Alt C	1, 4 64	1,F39	1,664	1,637	1,655	1,621
Alt D	1,655	1,6 31	1,655	1,628	1,6 48	1,614
Alt E	1,659	1,636	1,659	1,633	1,651	1,617
Alt F	1,476	1,456	1,477	1,457	1,477	1,449
	(=235)	=229	=232	=226	=227	=221
			202			

1. Find differences between highest and lowest NPV for a given factor (murrelet) within the same combination of the other two factors.

2. Select largest difference.

Range of change in NPV as a percent of maximum NPV

EXAMPLE

Common School 10-decade NPV

			Arrearag	e harvest		
Marbled	702 MMBF		462 N	462 MMBF		ed in
LTCS Alt			Riparian	thinning		
	10%	1%	10%	1%	10%	1%
Alt A	1,679	1,654	1,679	1,652	1,674	1,638
Alt B	1,711	1,685	1,709	1,683	1,704	1,670
Alt C	1,/ 64	1,F39	1,664	1,637	1,655	1,621
Alt D	1,655	1,6 31	1,655	1,628	1,648	1,614
Alt E	1,659	1,636	1,659	1,633	1,651	1,617
Alt F	1,476	1,456	1,477	1,457	1,477	1,449
	(=235)	=229	=232	=226	=227	=221

1. Find differences between highest and lowest NPV for a given factor (murrelet) within the same combination of the other two factors.

2. Select largest difference.

3. Divide that number by the largest NPV on the chart, regardless of factor combination. Multiple by 100.

$$\frac{235}{1711} * 100 = 14\%$$

Effect of Murrelet on 10-decade NPV for <u>each trust</u> Range of change in NPV as a percent of maximum NPV

11+%

State Forest Transfer (11%) Agriculture School (13%) Common School (14%) Normal School (15%) Capitol Grant (16%) Scientific School (17%) CEPRI (22%) University (31%)

Effect of Murrelet on 10-decade NPV for <u>each county</u> Range of change in NPV as a percent of maximum NPV

<u>1-10%</u>

Skamania (1%) Grays Harbor (2%) Thurston (2%) Jefferson (4%) King (10%)

11+%

Snohomish (11%) Clallam (12%) Skagit (17%) Lewis (19%) Whatcom (25%) Pacific (27%) Pierce (36%) Wahkiakum (48%)

Effects of MMLTCS on individual counties

10-decade NPV (\$ millions) State Forest Transfer Trust lands in Wahkiakum County.

	Arrearage harvest						
	702 N	IMBF	462 N	MMBF	Rolle	ed in	
Marbled			Riparian thinning				
Murrelet LTCS Alt	10%	1%	10%	1%	10%	1%	
Alt A	36	35	36	35	36	35	
Alt B	48	47	48	47	48	46	
Alt C	32	31	32	31	32	30	
Alt D	31	30	31	30	30	29	
Alt E	32	31	32	31	32	30	
Alt F	25	24	25	24	25	24	

10-decade NPV (\$ millions) State Forest Transfer Trust lands in Jefferson County.

		Arrearage harvest							
	702 N	/IMBF	462 N	/MBF	Rolle	ed in			
Marbled			Riparian	thinning					
Murrelet LTCS Alt	10%	1%	10%	1%	10%	1%			
Alt A	55	55	55	55	55	55			
Alt B	57	57	57	57	57	57			
Alt C	57	57	57	57	57	57			
Alt D	57	57	57	57	57	57			
Alt E	57	57	57	57	57	57			
Alt F	57	57	57	57	57	57			

Effect of Arrearage on 10-decade NPV for <u>each trust</u> Range of change in NPV as a percent of maximum NPV

Effect of Arrearage on 10-decade NPV for <u>each county</u> Range of change in NPV as a percent of maximum NPV

Effects of Arrearage on individual counties

10-decade NPV (\$ millions)

State Forest Transfer Trust lands in Skamania County

	Arrearage harvest						
	702 N	IMBF	462 N	/IMBF	Rolled in		
Marbled			Riparian	thinning			
LTCS Alt	10%	1%	10%	1%	10%	1%	
Alt A	108	107	107	106	105	104	
Alt B	108	107	107	106	105	104	
Alt C	108	107	107	106	105	104	
Alt D	108	107	107	106	105	104	
Alt E	107	107	107	106	105	104	
Alt F	108	107	107	106	105	104	

Effect of **Riparian Thinning** on 10-decade NPV for <u>each trust</u> Range of change in NPV as a percent of maximum NPV

3+%

Agriculture School (3%) CEPRI (3%) Scientific School (3%) Community College (5%)

Effect of **Riparian Thinning** on 10-decade NPV for <u>each county</u> Range of change in NPV as a percent of maximum NPV

29

Effects of Riparian Thinning on individual trusts

10-decade NPV (\$ millions) Common School and Indemnity Trust lands.

		Arrearage harvest					
	702 N	IMBF	462 N	1MBF	Rolled in		
Marbled Murrelet		Riparian thinning					
LTCS Alt	10%	1%	10%	1%	10%	1%	
Alt A	1,679	1,654	1,679	1,652	1,674	1,638	
Alt B	1,711	1,685	1,709	1,683	1,704	1,670	
Alt C	1,664	1,639	1,664	1,637	1,655	1,621	
Alt D	1,655	1,631	1,655	1,628	1,648	1,614	
Alt E	1,659	1,636	1,659	1,633	1,651	1,617	
Alt F	1,476	1,456	1,477	1,457	1,477	1,449	

Effects of Riparian Thinning on individual counties

10-decade NPV (\$ millions) State Forest Transfer Trust lands in Pacific County

			Arrearag	e harvest			
Marbled	702 N	/IMBF	462 N	IMBF	No specific level		
strategy			Riparian	thinning			
alternative	10%	1%	10%	1%	10%	1%	
Alt. A	45	44	45	44	45	44	
Alt. B	52	51	52	50	52	50	
Alt. C	43	42	43	42	43	41	
Alt. D	41	40	41	40	41	40	
Alt. E	43	42	43	42	43	41	
Alt. F	38	37	38	37	38	37	

Harvest volume over time

10-decade harvest level under all scenarios

Scenarios with the maximum, median, and minimum 10-decade NPVs are shown in color

Planning decade timber harvest volume

Planning decade Volume (MMBF/decade)

Western Washington.

	Arrearage harvest						
Marbled Murrelet	702 N	/IMBF	462 MMBF Riparian thinning		No specific level		Decadal rate based on FY
Strategy Alternative	10%	1%	10%	1%	10%	1%	2011-2015 performance
Alt A	4,686	4,704	4,681	4,642	4,497	4,384	4,560
Alt B	4,961	4,926	4,955	4,859	4,772	4,656	
Alt C	4,646	4,653	4,639	4,596	4,455	4,350	
Alt D	4,671	4,666	4,666	4,610	4,483	4,378	
Alt E	4,624	4,638	4,624	4,582	4,441	4,338	
Alt F	4,026	4,110	4,021	4,039	3,910	3,800	

Effect of Murrelet on planning decade Volume for each trust Range of change in volume as a percent of maximum volume

11+%

State Forest Transfer (13%) Capitol Grant (18%) Scientific School (24%) Agriculture school (25%) Common School (27%) Normal School (30%) **CEPRI (33%)** University (44%)

Effect of **Murrelet** on planning decade Volume for <u>each county</u> Range of change in volume as a percent of maximum volume

Effect of **Riparian Thinning** on planning decade Volume for <u>each trust</u> Range of change in volume as a percent of maximum volume

Effect of **Riparian Thinning** on planning decade Volume for <u>each county</u> Range of change in volume as a percent of maximum volume

Effect of Arrearage on planning decade Volume for <u>each trust</u> Range of change in volume as a percent of maximum volume

<u>1- 10%</u>

State Forest Transfer (3%) Capitol Grant (5%) Other (5%) Common School (8%) State Forest Purchase (8%)

CEPRI (11%) Agriculture school (19%) Normal School (19%) Scientific School (19%) Community College (40%) University (40%)

Effect of Arrearage on planning decade Volume for <u>each county</u> Range of change in volume as a percent of maximum volume

Area in production

Area in production is different than LTFC, as it incorporates all of Western Washington, as well as a few deferred areas not included in LTFC

Marbled murrelet long-term conservation strategy	Lands managed for forest cover (acres)	Lands where harvest may occur (acres)	Total (acres)
Alternative A	708,000	758,000	1,466,000
Alternative B	700,000	766,000	1,466,000
Alternative C	729,000	737,000	1,466,000
Alternative D	731,000	735,000	1,466,000
Alternative E	732,000	734,000	1,466,000
Alternative F	816,000	650,000	1,466,000

Management Costs

Planning decade Management Costs (\$ millions/year)

	Arrearage harvest						
D.C. sub-Level	702 MMBF			462 MMBF		ed in	Deserved
Murrelet	Riparian thinning						based on FY
Strategy	10%	1%	10%	1%	10%	1%	2011-2015
Alternative							performance
Alt A	47	48	47	47	45	44	48
Alt B	50	50	50	49	48	47	
Alt C	47	47	47	46	45	44	
Alt D	47	47	47	46	45	44	
Alt E	46	47	46	46	45	44	
Alt F	41	41	40	41	39	38	

Public Comment

Major Themes

Public Comments - Overarching Themes

Arrearage

• 702 vs. 462 vs. 0

Riparian Thinning

• Higher or Lower

Marbled murrelet

- More conservation is needed
- Conservation is needed in SW Washington
- Recreational activities should be allowed
- Alternative B as suitable option

43

How to Pick a Preferred Alternative

Arrearage Option

• Be in the best interest of the trust

Riparian Thinning Option

• Be in the best interest of the trust

Marbled murrelet Option

- Meet issuance criteria
- Provide a significant contribution
- Be in the best interest of the trust

44

Arrearage considerations -*short term*

Harvest volumes under different arrearage options (MMLTCS Alt A, Riparian Thinning 10%)

KEY MESSAGES

- To achieve higher volumes in first decade volume must be brought forward from future decades
- Implementation of arrearage harvest will lower the 1st decade Sustainable Harvest Level

Arrearage considerations -*long term*

KEY MESSAGES

 Arrearage options do not appear to have significant long-term impacts to sustainable harvest levels

Arrearage considerations *-flow*

KEY MESSAGES

 In arrearage option 462mmbf / 1 year, forester staffing needs in OESF would drop from approximately
33 FTEs to 16 FTEs between years 1 and 2.

(Based on an estimate of 1 FTE per 4mmbf. This does not include engineering or administrative support)

Arrearage considerations *-flow*

Western WA harvest volumes

KEY MESSAGES

 In the first 3 decades, the 702 and 462 arrearage options result in greater harvest level variability

Riparian considerations

KEY MESSAGES

- Relative impact of 3% in planning decade
- Higher number comes with greater risk of target not being achieved

Public Comments - Overarching Themes

• 702 vs. 462 vs. 0

Riparian Thinning

• Higher or Lower

Marbled murrelet

- More conservation is needed
- Conservation is needed in SW Washington
- Recreational activities should be allowed
- Alternative B as suitable option

ABC	American Bird Conservancy
EPA-E	Environmental Projection Agency
EPA-F	Environmental Projection Agency
PSG	Pacific Seabird Group
WDFW	Washington Department of Fish and Wildlife
Coalition	Marbled Murrelet Coalition

ABC American Bird Conservancy 281,000 marbled murrelet specific conservation acres

+ Conserves all current and future habitat

- + Add Alternatives E's EAs and SHAs to Alternative F
- + 150m buffers on Old Forest in the OESF and all occupied sites

52

EPA-EEnvironmental Protection Agency
110,000 marbled murrelet specific conservation acres

Modified Alt. E to include:

+ Addition of all MMMAs from Alt. F

EPA-FEnvironmental Protection Agency
274,000 marbled murrelet specific conservation acres

Modified Alt. F to include:

+ No harvest in occupied sites, of current habitat, or of future habitat

54

- + All SHAs and EAs from other alternatives
- + Land identified for conservation under Alternative A

PSG Pacific Seabird Group 523,000 marbled murrelet specific conservation acres

Modified Alt. F to include:

- + No harvest in occupied sites, of current habitat, or of future habitat
- + 150 m buffers on occupied sites, suitable (current and future) habitat, old forest habitat, SHAs and EAs
- + All SHAs and EAs from Alt. E

WDFWWashington Department of Fish and Wildlife
88,000 marbled murrelet specific conservation acres

Modified Alt. E to include:

- + 100m buffers on all occupied sites
- + MMMAs from Alt. F in the OESF and four MMMAs from the NPPU
- + Habitat identified by USFWS/WDFW as HQ (20 polygons, 1,506 acres)

56

Coalition

Marbled Murrelet Coalition 279,000 marbled murrelet specific conservation acres

Modified Alt. F to include:

+ No harvest of current or future habitat

+ All EAs and SHAs from Alt. E

+ No managed 150m buffers on Old Forest in the OESF and all occupied sites

57

The six proposed alternatives were received as comments during the DEIS public comment period.

Lands where harvest may occur

Western WA 10-Decade NPV

Each circle represents one combination of murrelet, arrearage, and riparian options.

Orange circles represent estimated NPV of the proposed alternatives based upon LTFC value

Summary of MM Comments

Key messages from the proposed alternatives

- Lower the impact on the species (minimization)
- Increase the mitigation
- Alternative B suitability

Key outcomes

- Amount of mitigation far exceeds impact
- Financial impact to the trusts and the Department exceeds Alt. F

62

• Goal of HCP should be to fully offset the impacts of take

How to Pick a Preferred Alternative

Arrearage Option

• Be in the best interest of the trust-- ensure guiding trust principles are met

Riparian Thinning Option

• Be in the best interest of the trust– ensure guiding trust principles are met

Marbled murrelet Option

- Meet issuance criteria *balance impact and mitigation*
- Provide a significant contribution *outcome of the conservation strategy*
- Be in the best interest of the trust *ensure guiding trust principles are met*

63

Timeline

Preferred alternative timeline -

April: Summary of public comments

May: MM/SHC background and deferral summary

June: MMLTCS/Arrearage/Riparian and decision process

July: Financial analysis and proposed alternatives

August: 2-day BNR retreat

September: BNR selects a preferred MMLTCS alternative

