

Forest Inventory Before, now, and for the future

Presented By

David Bergvall Assistant Division Manager for Forest Informatics

Department of Natural Resources

Purpose of an inventory

"The quicker the inventory can be completed the quicker the management of state forest lands can reach maximum efficiency" -Gene Little, inventory program, 1958

Statistically sound and replicable

Provide for decisions

Provide flexibility

Feasible, practical, cost effective

Chronology of inventory points

Strategic Forest Inventory

Remote-Sensing Forest Inventory

- A new inventory paradigm
- Building a new inventory
 - Ground (inventory plots)
 - Air (remote sensing)
 - Modeling
- How well does it work?

Shifting the Inventory Paradigm

Previous Paradigm

- Measure sample points across the landscape
- Diameter at breast height (DBH) is accessible to measure
- Diameter is linked to height and then volume
- Focus goes to lowering sample error by measuring more plots

Shifting the Inventory Paradigm New Paradigm

- Measure everywhere across the landscape (remote sensing)
- Height is now accessible and precise
- Height is linked to diameters and then volume through models
- Focus on increasing accuracy of data based on <u>ground plots</u> and acquiring fresh remote sensing data

Inventory Plot Locations

- Ground plots are used to reinforce models
- Goal is to measure 400 plots per year
- Forested landscape is diverse across the state but having plots on a grid ensures we are sampling everywhere

Remote Sensing Data Light Detection and Ranging (LiDAR)

- Typically on fixed-wing aircraft but also helicopters
- Acquisitions cover 10's to 100's thousand acres
- Data transferable amongst landowners

PhoDAR (photo based)

- Need LiDAR ground model
- Utilizes highly accurate photography
- Much cheaper than LiDAR

Remote Sensing Modeling

Goal: predict what we measure on the ground using data that we measure from the air

Modeling Results

1/10th Acre Scale (raster)

Stand Scale

How Well Does it work?

Validation Block

- Small stands: 3.6 acres
- 10 ground sample plots
- 36 predicted cells
- Used to test and validate our remotesensing predictions

Ground Sample

RS Predictions

Validation Block Results

Ground Sample

15

Remote Sensing Forest Resource Inventory System

Continuous Refinement Program

-region/user feedback is important

-validation blocks give confidence in the statistics

-comparing strategic forest inventory to our tactical inventory and harvest data

Statistically sound and replicable

Provide for decisions

Provide flexibility

Feasible, practical, cost effective

Forest Inventory

- Critical to sustainable forest management
- Informs EISs and sustainable harvest calculation
- Provides up-to-date and accurate information
- Cost effective

Want to Learn More

 2017 Operational LiDAR Meeting, Olympia, April 20th, 2017 (sponsored by PNW research station)

