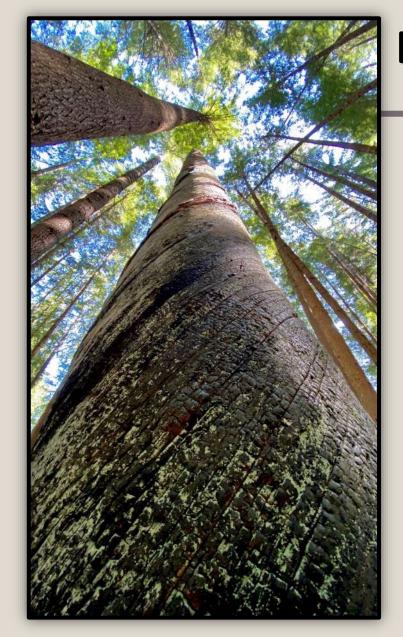


Alan Mainwaring


South Puget Sound Region -- Fish and Wildlife Biologist

Washington State
Department of
Natural Resources

DNR's Old-Growth Field Assessment Process

Agenda

- DNR's Old-Growth Definition
- Structure of DNR's Old-Growth Program
- Old-Growth Field Assessment Process
- Summary of Old-Growth Field Assessments

DNR's Old-Growth Definition

Short History:

- The 2004 Washington Legislature directed DNR to inventory old-growth forest stands on state lands as defined by a panel of scientists.
- Old-Growth Definition Committee: Dr. Jerry Franklin, Dr. Thomas Spies, Dr. Robert Van Pelt with Dr. Paula Swedeen and Dr. Rex Crawford assisting alongside DNR Scientists (2005).

DNR's Old-Growth Definition

- Stands in the most structurally complex stage of stand development, sometimes referred to as fully functional; and
- A stand with a natural origin date prior to 1850.
- Five acres is the minimum size for an old-growth polygon. Areas less than 5 acres are protected utilizing other procedures.

DNR's Old-Growth Definition

- The DNR's old-growth policy also recognizes single, very large diameter, structurally unique trees as important habitat elements.
- These trees, sometimes referred to as old-growth remnants, are often characterized by a large diameter (60+ inches DBH) and possess large limbs, open crowns, broken tops and deeply furrowed bark.
- These trees are the focus for retention to meet HCP requirements for large diameter, structurally unique trees.

Structure of DNR's Old-Growth Program

Led by Forest Resources Division and Dr. Dan Donato

Each west-side region has trained OG "designees"

OG trainings are conducted every ~1-3 years

Approach:

- Expose a lot of staff to training to increase awareness
- "Designee" status conferred only after several assessments are completed satisfactorily

Proposed harvest units Probability of OG Unlikely Moderate likelihood High likelihood

What triggers an OG assessment?

1. Forest Inventory Data

 Weighted Old-Growth Habitat Index model scores also known as "WOGHI" scores

Proposed harvest units **Probability of OG** Unlikely Moderate likelihood High likelihood

What triggers an OG assessment?

1. Forest Inventory Data

"WOGHI" scores

(Weighted Old Growth Habitat Index)

- Model developed by original old-growth expert panel (Franklin, Spies, Van Pelt, Pabst, et al.)
- Statistical regressions based on abundance of:
 - Large trees
 - Large snags
 - Down wood
 - Diameter diversity (canopy layers)

Proposed harvest units Probability of OG Unlikely Moderate likelihood High likelihood

What triggers an OG assessment?

1. Forest Inventory Data

"WOGHI" scores

(Weighted Old Growth Habitat Index)

- Model developed by original old-growth expert panel (Franklin, Spies, Van Pelt, Pabst, et al.)
- Statistical regressions based on abundance of:
 - Large trees
 - Large snags
 - Down wood
 - Diameter diversity (canopy layers)
- Moderate & High points in or next to proposed activity trigger an assessment

What triggers an OG assessment?

1. Forest Inventory Data

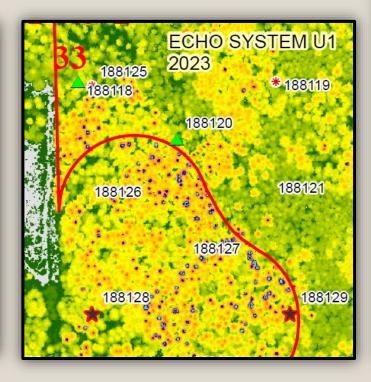
• "WOGHI" scores
(Weighted Old Growth Habitat Index)

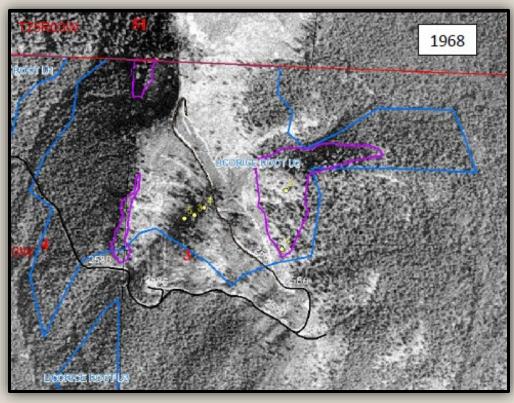
2. Observations on the ground

What triggers an OG assessment?

- 1. Forest Inventory Data
 - "WOGHI" scores
 (Weighted Old Growth Habitat Index)
- 2. Observations on the ground
- 3. Aerial/remote sensing data

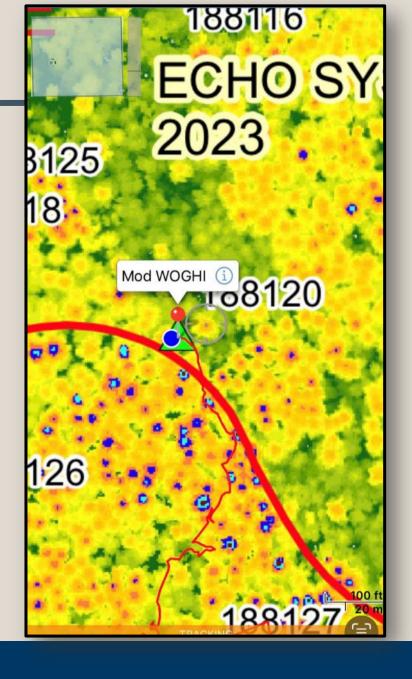
What triggers an OG assessment?

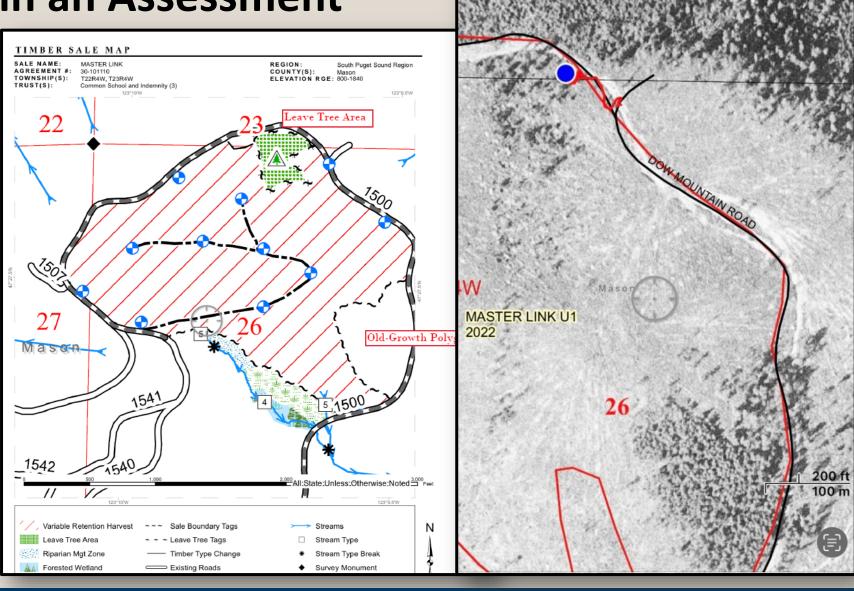

- 1. Forest Inventory Data
 - "WOGHI" scores
 (Weighted Old Growth Habitat Index)
- 2. Observations on the ground
- 3. Aerial/remote sensing data
- 4. Other sources


(e.g. neighbor/public input)

Field work begins in the office.

FID_OLD_GROWTH_INDEX_PTS_NEW	21295
HCPUNIT_NM	S. COAST
OBJECTID	292756
RIU_ID	61841
Shape	Point
SPT_DNWOOD_CUB_METERS_HECT	234
SPT_DNWOOD_WGTSCORE	13.5
SPT_LGTREE_STEMS_HECT	25.8
SPT_LGTREE_WGTSCORE	21.8
SPT_LIVETREE_DIADIVER_WGTSCORE	28.1
SPT_NO	9
SPT_OG_POTEN_CLASS	HIGH
SPT_SNAG_STEMS_HECT	0
SPT_SNAG_WGTSCORE	0
SPT_UNIQUE_ID	618410009
SPT_WOGHI	63.4





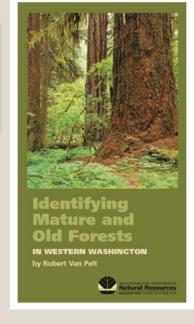
Create geo-referenced maps.

Visit WOGHI points

Walk, walk, walk the stand (spatially thorough)

Evaluate stand for:

- Structural development
- Pre-1850 age


Acreage

old-growth definition

Evaluate Structural Development

Utilize the Stand Development in Western Washington Key (Van Pelt 2007)

Stand Development in Natural Douglas Fir Forests

Key to Stand Development Stages in Western Washington for Western hemlock, Sitka spruce, and Pacific silver fir zones.

While this key has been tested in a wide variety of stands in western Washington, there may exist stands that do not key out properly. In these situations, relax the percentage values slightly and retry.

Cut stumps present throughout stand No cut stumps									. 1	Nat	ura	l fo	rest	*.3
---	--	--	--	--	--	--	--	--	-----	-----	-----	------	------	-----

Washington State Department of Natural Resources

Stand Development in Natural Douglas Fir Forests

_	Not as above
12.	Douglas fir overhead, epicormic branches present, western hemlock, western redcedar, or Pacific silver fir seedlings, saplings, or small poles present, yet no main cannot trees

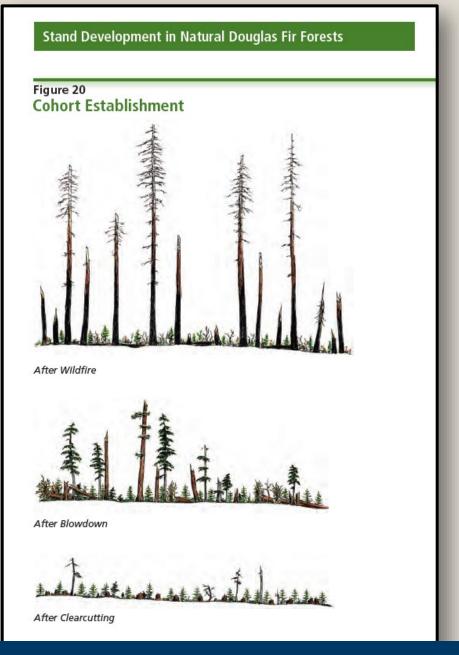
 Douglas fir overhead, self pruning; western hemlock, western redcedar, or Pacific silver fir present only in understory

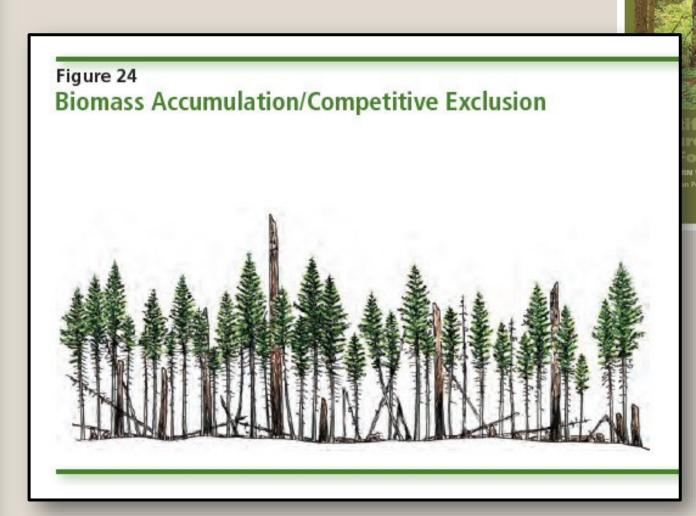
Maturation I—Forests originating after Euro-American settlement***

Maturation II — Forests originating before Euro-American settlement***

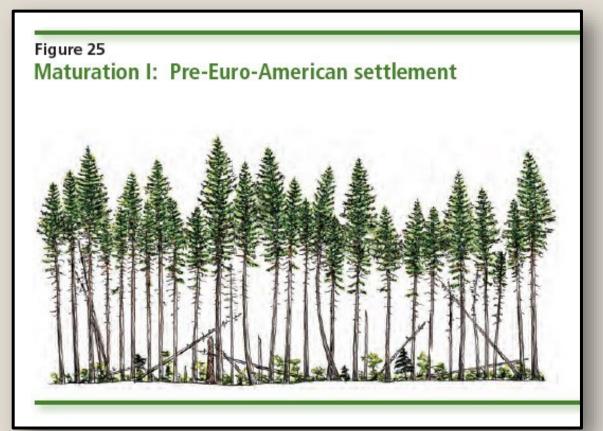
- 14. Douglas fir canopy patchy, large canopy gaps present, western hemlock, western redcedar, or Pacific silver fir abundant in all canopy levels

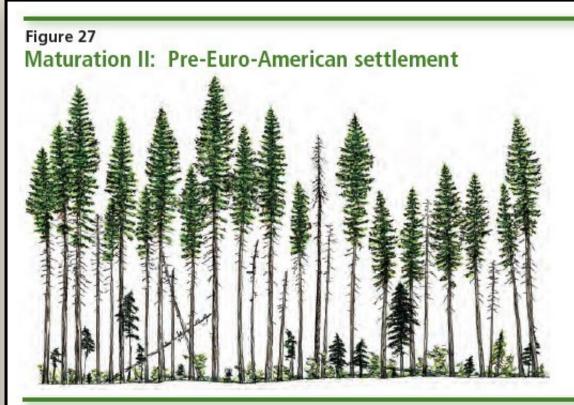
 Horizontal diversification
 All Douglas fir trees dead (snags or logs), western hemlock, western redcedar, or Pacific silver fir abundant in all canopy levels.
 Ploneer cohort loss
- 15. Sitka spruce, noble fir, or red alder ≥ 25 % of main canopy stems

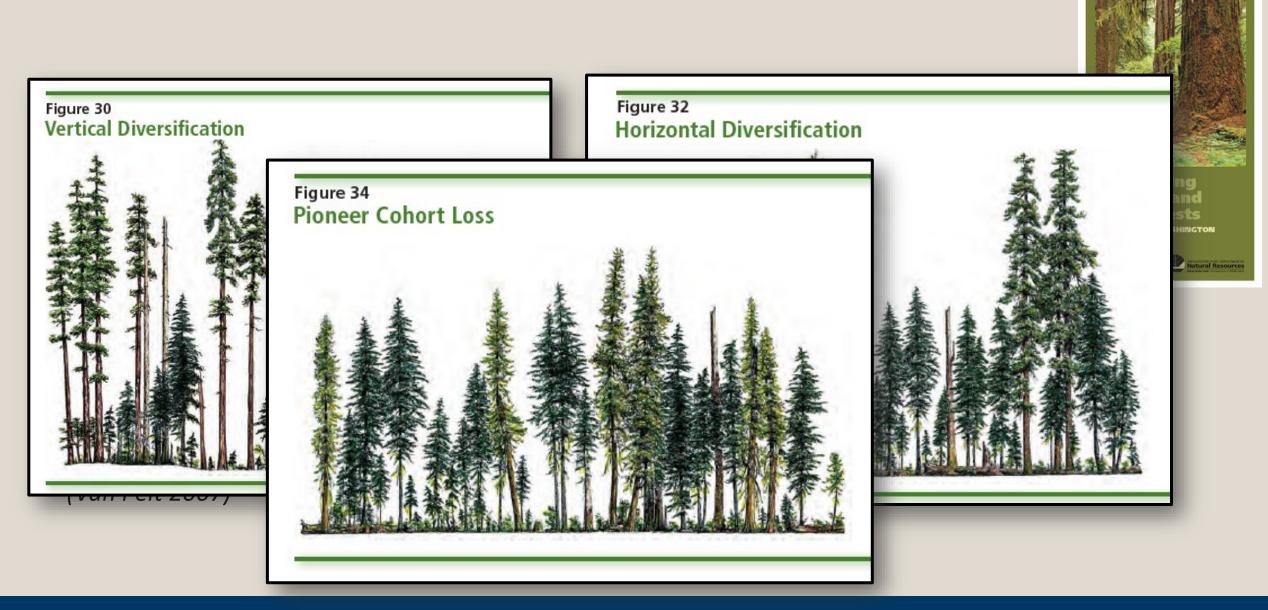

 steps 7-14, replacing Douglas fir with Sitka spruce, noble fir, or red alder
 Sitka spruce, noble fir, or red alder < 25 % of main canopy stems

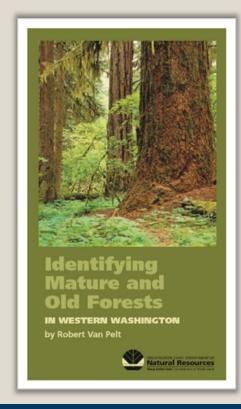

 use steps 7-14, replacing Douglas fir for
 western hemlock, western redcedar, and Pacific silver fir collectively****
- * Certain areas in the Puget Basin were cleared of stumps during the early days of Euro—American settlement. While very few of these cleared areas have been reconverted to forests, the occasional stand may be encountered.
- ** For Douglas fir legacies, see the Rating System for Aging Legacy Trees on page 64. For Sitka spruce, western hemlock, or western redcedar legacies, use visual indicators under their individual sections.
- *** Key was written in 2007. While stands keying out to Maturation I and II will be valid in any year, their relation to Euro-American settlement will not.
- **** The horizontal diversification stage in this sequence is equivalent to the pioneer cohort loss stage of both the Douglas fir and Sitka spruce sequences.

Identifying Mature and Old Forests in Western Washington


47







Stand Origin Assessment

 Individual Tree Age Score Key

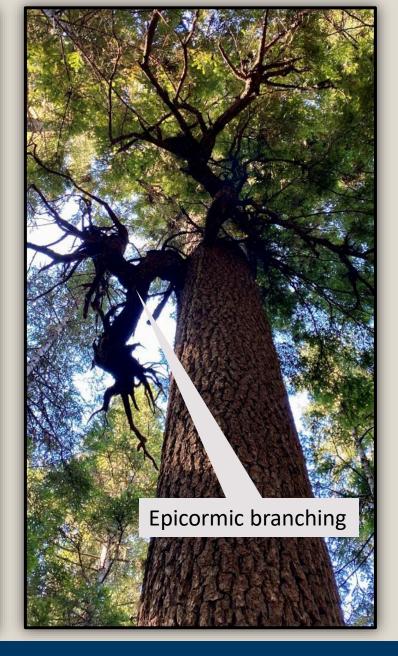
(Van Pelt 2007)

Rating system for determining general age of Douglas fir legacy trees

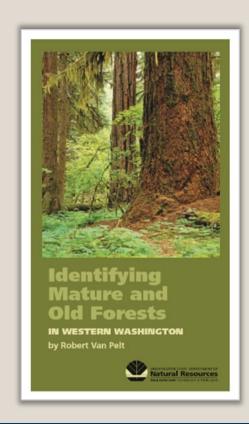
Choose one score from each category and sum scores to determine developmental stage

Bark condition, lower one-third of tree																		5	Sco	or
Hard, boney bark with small fissures																				
Hard bark with deep fissures																				
Hard bark with charcoal present																				
Soft, flaky bark with deep fissures																				
Flaky bark with charcoal present																				
Knot indicators, lower one-third of tree																				
Branch stubs present																				
Old knot/whorl indicators visible																				
No knot/whorl indicators visible																				
Lower crown indicators																				
No epicormic branches																				
Small epicormic branches present																				
Large and/or gnarly epicormic branches pres																				
Scoring Key																				
<2	on	nas	Si	CC	un	nu	lat	ior	V/SI	ten	n e	XC	lus	io	n (35	-8	0	/ea	H
2-3 Maturation I – Forests originati	na	af	ter	F	irc).A	m	ori	car	ns	ett	Ho	me	nt	17	0_	16	0	100	ar.

64


Washington State Department of Natural Resources

Old-growth (210+ years)



Stand Origin Assessment

- < 2 Biomass
 Accumulation/Stem
 Exclusion
- 2-3 ..Maturation I
- 4-5... Maturation II
- >5... Old-Growth

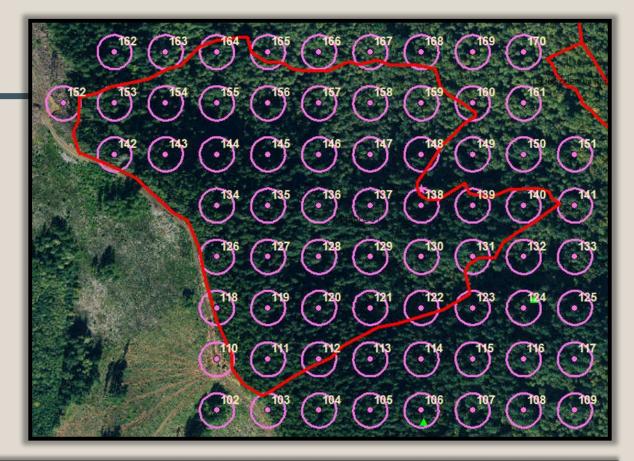
Rating system for determining general age of Douglas fir legacy trees

Choose one score from each category and sum scores to determine developmental stage

Bark condition, lower one-third of tree																5	Sco	or
lard, boney bark with small fissures																		
lard bark with deep fissures																		
lard bark with charcoal present																		
oft, flaky bark with deep fissures																		
laky bark with charcoal present																		
(not indicators, lower one-third of tree																		
Branch stubs present																		
Old knot/whorl indicators visible																		
No knot/whorl indicators visible																		
ower crown indicators																		
No epicormic branches																		j
small epicormic branches present																		
arge and/or gnarly epicormic branches present																		
Scoring Key		-		-		-				-	-		-			-	-	
<2 Biom.	acc	acc	un	nul	lati	ion	/st	em	10	xcl	lus	ioi	10	25	_8	n,	vo:	are
2–3 Maturation I – Forests originating																	_	
I–5 Maturation II – Forests originating bef																		
>5																		
																	1100	

64

Washington State Department of Natural Resources


When close to an 1850 stand age?

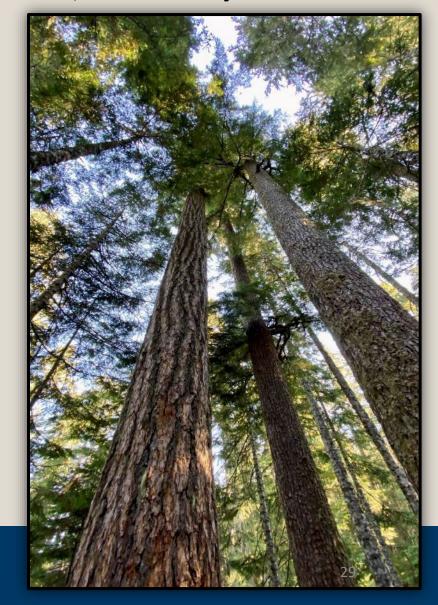
- When close to an 1850 stand age?
- If necessary, Intensive Plot Grid Coring
 - Minimum 10 cores
 - Can be >50 cores
 - Extra levels of statistical rigor when pre-1850 call is less certain initially.

When close to an 1850 stand age?

If necessary, Intensive Plot Grid Coring

- Minimum 10 cores
- Can be >50 cores
- Extra levels of statistical rigor when pre-1850 call is less certain initially.

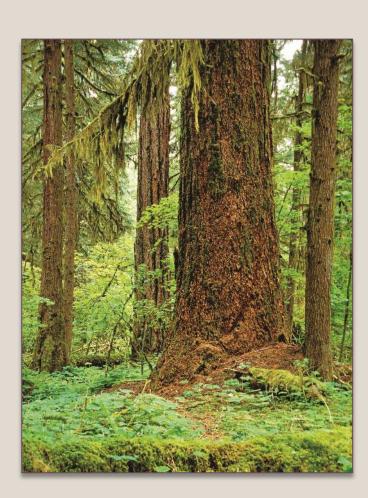
- When close to an 1850 stand age?
- If necessary, Intensive Plot Grid Coring
 - Minimum 10 cores
 - Can be >50 cores
 - Extra levels of statistical rigor when pre-1850 call is less certain initially.



Some outcomes are simple...

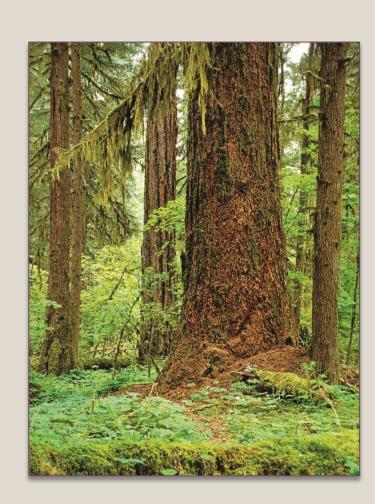
Clearly NOT Old Growth

Clearly Old-Growth



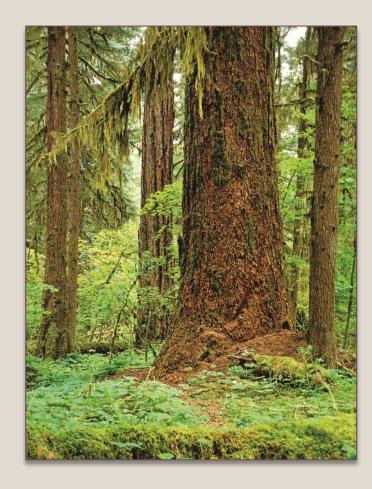
Some are challenging...

Clearly NOT Old Growth


Not all outcomes are simple...

Clearly NOT Old Growth

Clearly Old-Growth



Not all outcomes are simple...

Clearly NOT Old Growth

Clearly Old-Growth

Some are challenging...

Documented on an Assessment Form

WADNR WEST SIDE OLD GROWTH ASSESSMENT

June, 2007

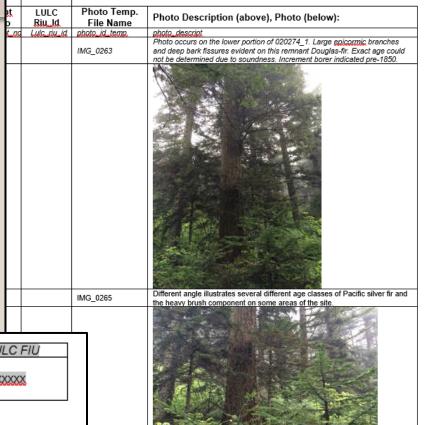
1. BATCH COVER SHEET TABLE

Older Forest Batch_ld	Prima <u>Twn-Rg</u> e	,	Name of Assessor	Exam Date	Number Sample Points Visited	Number Old Growth Polys Created	Number LULC FIUs Visited
QE_batch_id	Pri_township	Pri_sect	Assessor_name	Exam_date	num_spt_visit	num_QGpolys	num_lulc_visit
020274-07062015	T03R04E	13	Sirrine, Doug	07/06/2015	6	2	х

	Access notes: Sale is accessed from the L-1200 to L-1210, to L-1211. A single gate is
Moonster	located on the L-1210 and can be accessed with a PCP1 key.

Opt. #1: Describes Old Gro	wth Polygon	Opt.	#2: Describe	s FRIS San	nple Point	Opt. #3: De	scribes LULC FIU
Old Growth Polygon Id	020274_2	RIU Id	020274	Spt No	XXXX	Lulc Riu Id	XXXXXX
OG poly id	_	Riu_id		spt_no	00000	Lulc riu id	0000000

5a. Large Tree Characteristics (largetree_narr):


Old-growth Douglas-fir trees dominate this stand (see IMG_0276), comprising >20% of the canopy cover. Trees are 50+ inches in diameter, have hard bark with deep fissures, no knot indicators on the lower bole, large epicormic branches, and dead tops. These large trees are evenly distributed throughout the delineated polygon.

5b Snag Characteristics (snag_narr):

Very few snags exist on the site. Snags that do exist are from a younger cohort and are a result of competitive exclusion or damage done by a bear.

5c. Down Wood Characteristics (downwood nam):

Down wood amounts are below average for the Larch landscape. No evidence of snagging that occurred after the Yacolt Burn was present

Outcomes

1. When an assessed area meets <u>all</u> old-growth policy criteria

The stand is delineated and deferred from harvest

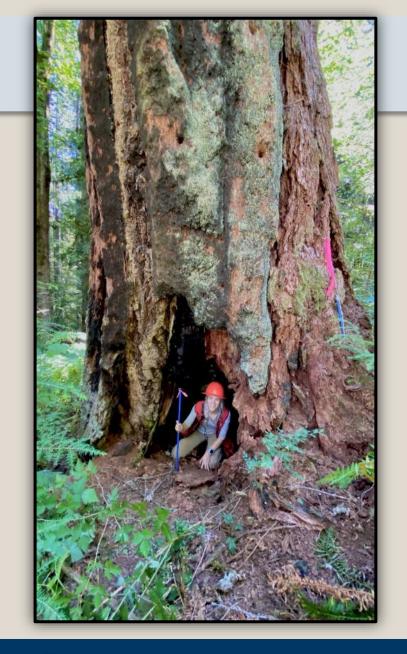
Outcomes

1. When an assessed area meets <u>all</u> old-growth policy criteria

The stand is delineated and deferred from harvest

2. When old trees or small patches with oldgrowth components are present, but less than 5 acres

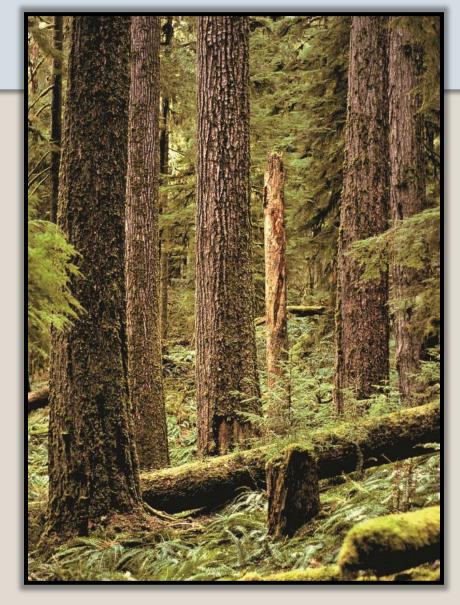
Not an OG stand deferral BUT, trees/patches emphasized for retention under different procedures.



Outcomes

- 1. When an assessed area meets <u>all</u> old-growth policy criteria
 - The stand is delineated and deferred from harvest
- 2. When old trees or small patches with oldgrowth components are present, but less than 5 acres
 - Not an OG stand deferral BUT, trees/patches emphasized for retention under different procedures.
- 3. When no old-growth components present
 - Activity proceeds, standard per HCP

A Summary of Old-Growth Field Assessments


Old-Growth Assessments completed to date in Western Washington...

- 320 field assessments
- 1,700 points assessed

2,450 acres in 91 Old-Growth stands protected.

Are there other old-growth stands on DNR lands?

Old-Growth Field Assessment Summary

Yes, there are areas yet to be evaluated and lands already in conservation status.

Areas yet to be evaluated

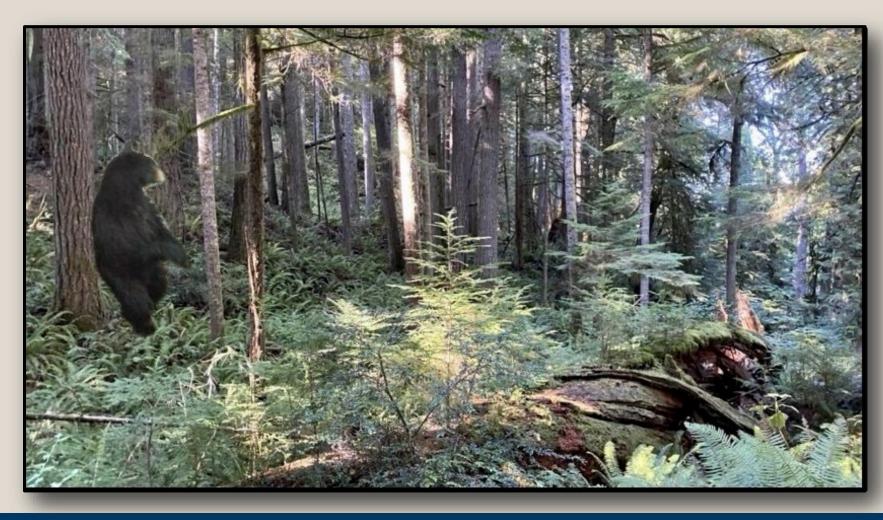
WOGHI points needing assessment

Permanent conservation status

- Marbled Murrelet Long-Term Conservation Strategy
- Northern Spotted Owl Long-Term Conservation Strategy
- Riparian and Wetland Management Zones
- Natural Area Preserves (NAPs) and Natural Resource Conservation Areas (NRCAs)

Wolf Creek, Black Diamond Unit, King County

Wolf Creek, Black Diamond Unit, King County


The Kitsap NAP and Stavis NRCA, Kitsap County

The Kitsap NAP and Stavis NRCA, Kitsap County

Thank you, questions?

