Evaluating the Potential of Lidar to Improve the Stream Typing Model

Luke Rogers & Jeff Comnick

Natural Resource Spatial Informatics Group Precision Forestry Cooperative University of Washington

Background

Geography & Data

Geography & Data

Methodology

- Task 1: Build Digital Elevation Models (DEM)
- Task 2: Generate streams
- Task 3: Create points at 10 meter spacing along streams
- Task 4: Attribute stream points with independent variables
 - basin area, basin weighted precipitation, upstream and downstream gradients, elevation and measurement and processing variables (stream mile, stream order)
- Task 5: Digitize end-of-fish points from DNR Water Type Modification forms
- Task 6: Run logistic regression model to predict fish presence probability
- Task 7: Run stopping rule using a "cut point" and "block size" to predict fish presence/absence
- Task 8: Generate maps and descriptive statistics

Darland Mtn Field Data

Darland Mtn Validation Data

Darland Mtn Results

Logistic Model

Stopping Rule

DEM	Correct	Over	Under	DEM	Correct	Over	Under
LIDAR				LIDAR			
3	99.80%	0.00%	0.20%	3	99.83%	0.00%	0.17%
10	98.99%	0.84%	0.18%	10	99.83%	0.00%	0.17%
30	98.92%	0.93%	0.15%	30	99.90%	0.10%	0.00%
USGS				USGS			
30	98.26%	1.74%	0.00%	30	96.46%	3.54%	0.00%

Stream Type	Field Verification Method	# WTMF
Non-Fish	Biological	2
Non-Fish	Physical	10

Darland Mtn Results

Error Distances

DEM LIDAR	Error Distance	Absolute Error Distance	Average Error Distance
3	253	3 25	3 127
10	240	24	0 120
30	-93	3 9	3 -47
USGS			
30	-2,868	3 2,86	8 -1,434

Mashel Field Data

Mashel Validation Data

Mashel Results

Logistic Model

Stopping Rule

DEM	Correct (Over l	Under	DEM	Correct	Over	Under
LIDAR				LIDAR			
3	87.96%	0.85%	11.18%	3	88.80%	1.47%	9.73%
10	86.22%	0.02%	13.76%	10	88.18%	0.10%	11.73%
30	81.95%	0.04%	18.01%	30	83.56%	0.06%	16.38%
USGS				USGS			
30	85.25%	0.11%	14.64%	30	87.67%	0.12%	12.21%

Stream Type	Field Verification Method	# WTMF
Fish	Biological	36
Non-Fish	Biological	66
Fish	Physical	9
Non-Fish	Physical	20

Mashel Results

Error Distances

DEM	Error Distance	Absolute Error Distance	Average Error Distance
LIDAR			
3	60,938	64,944	984
10	82,944	84,044	1,184
30	86,580	87,274	1,015
USGS			
30	81,508	83,112	966

Challenges **DNR Hydro Layer**

8/10/2016

8/10/2016

Challenges Lidar 10 foot derived streams

Challenges - Roads

Challenges - Roads

29

Conclusions

- Lidar derived Digital Elevation Models and derived stream networks appear to improve both the East and Westside models for predicting fish presence.
- High-resolution lidar creates some challenges:
 - The methodology and models were built to run at ~10 meters. Refining the methodology used to create the independent variables would *likely* improve model results;
 - The detail in high-resolution lidar creates unrealistic stream networks, making model predictions worse;
 - Large datasets make model runs slow (2-3 days per WAU);
 - Lidar data does not exist everywhere;
 - Lots more streams, depending on Perennial Initiation Point locations and contributing area.
- Not all Water Type Modification Forms are created equal. Some are more appropriate for model formulation and validation than others.
- The entire process has been coded in a modern programming language making model runs and comparisons relatively quick.

Recommendations

- Investigate independent variable creation to determine if altered methodology more appropriate for higher-resolution DEMs could improve model predictions. (\$)
- Research producing modified hydrologically correct DEMs by creating "digital culverts" to more realistically model stream flows. (\$)
- Expand pilot to include additional watersheds, and if needed, collect additional field verified end-of-fish data with protocol surveys to support more robust model validation. (\$\$)
- Leverage existing investment in coded process to rapidly investigate additional resolutions and alternative flow accumulation models. (\$\$)
- Consider a pilot to reformulate the models using high-resolution DEMs natively. (\$\$\$)

Thank You

Jeff Comnick Research Scientist jcomnick@uw.edu

Luke Rogers
Research Scientist
lwrogers@uw.edu

Precision Forestry Cooperative
School of Environmental and Forest Sciences
College of the Environment, University of Washington
355 Bloedel Hall
Box 352100
Seattle, WA 98195-2100
(206) 543-7418