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Executive Summary §  Variance Estimation for STR Sampling 1 

Executive Summary 
 
 
The Washington Department of Natural Resources (DNR) has conducted annual 
monitoring of the seagrasses in greater Puget Sound since 2000 through the Submerged 
Vegetation Monitoring Program (SVMP) (Christiaen et al. 2019). For selected sites, the 
SVMP estimates the abundance of native seagrasses and the change in abundance over 
time. These estimates are based on randomly selected transects that are surveyed with 
underwater video and classified for the presence of native seagrass. These site estimates, in 
turn, are the basis for regional estimates and the eelgrass vital sign indicator reported by 
the Puget Sound Partnership. 
 
Initially transects were selected at a site by simple random selection (SRS). Unbiased 
estimators were available for seagrass area and variance we well as seagrass change and its 
variance (Skalski 2003). While the set of all possible SRS samples has the desirable 
property of being unbiased, when the population sampled is heterogeneous and the SRS 
sample by chance exhibits clumping of transects, the sample can be a poor representation 
of the population. In such a case, the result obtained may depart strongly from the true 
value to the point where this can be discerned just upon inspection.  
 
In response to these concerns, starting in 2013 transects were also selected by stratified 
random selection with one transect per stratum (STR). The STR transects were first used 
on an exploratory basis but have since been made the primary method for SVMP transect 
selection. 
 
The benefit of STR over SRS is better spatial distribution over the sampling area and 
greater precision in the estimate of site seagrass area, especially at sites with spatial 
heterogeneity in seagrass abundance or in change in abundance. The challenge with STR 
sampling is that there is no generally unbiased variance estimator for these samples. This 
challenge also applies to systematic sample selection (SYS), which has been the subject of 
work to assemble a set of alternative variance estimators (Wolter 1984) and apply them to 
vegetation sampling with transects (McGarvey et al. 2016). The performance of these 
variance estimators was found to be mixed in the case of SYS sampling (McGarvey et al. 
2016).  
 
In this study, we evaluate these SYS variance estimators modified for analysis with the 
SVMP STR samples. Our approach was to construct spatial models of native seagrass for 
six contrasting sites based on available SVMP data. We then drew and analyzed a large 
number of Monte Carlo transect samples from these site models. We analyzed these results 
in aggregate to assess the performance of the variance estimators in terms of precision and 
bias. We also evaluated performance in terms of confidence interval coverage and bias in 
interval width. 
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We compared the performance of the standard SRS variance estimator (denoted v1) with 
six alternative estimators developed for analysis of SYS samples. None of these estimators 
performed well consistently across the six site models. The v1 estimator was the only one 
to not exhibit negative bias for any of the six models. This is important because negative 
bias leads to greater risk of spurious results (e.g., a conclusion that seagrass area is 
significantly different than some reference value, or that a change estimate is significant). 
 
Normally the concern about a positively biased variance estimator is that precision is 
diminished and the power to detect change is reduced. However, if the change from SRS to 
STR transects is considered with other methodological changes made by the SVMP (repeat 
transect sampling and full site sample polygons), power to detect change is increased in 
most cases and at least not reduced in the most challenging cases. 
 
We recommend the use of the v1 estimator for the analysis of SVMP STR samples based 
on the low risk of negative bias as and the expectation of greater power when the suite of 
methodological changes is considered together. However, due to the potentially high 
positive bias in variance estimates, results must be treated with greater caution than in the 
SRS case. Consideration of the distribution of values across the transects in a sample can 
aid in interpreting results. 
 
In the future as the STR data record is extended, the SVMP should place greater weight on 
trend analyses that do not require variance estimates as input. This approach will gain the 
benefit of greater precision with STR while avoiding the difficulty in variance estimation. 
In cases where STR variance estimates are used and there is concern about bias, 
development of additional site models may be helpful in quantifying the level of bias. 
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1 Introduction 
 

1.1 The Submerged Vegetation Monitoring Program 
The Submerged Vegetation Monitoring Program (SVMP) has conducted annual 
monitoring of the seagrasses in greater Puget Sound since 2000 (Christiaen et al. 2019). 
For native seagrasses, estimates are made of their abundance and the change in their 
abundance at a sample of sites across the study area.  These sites are selected under a 
regional monitoring design that also provides for estimation of regional seagrass 
abundance and change based on the site-level estimates. 
 
The Washington State Department of Natural Resources (DNR) implements the SVMP. 
DNR initiated seagrass monitoring in its role as steward of state-owned aquatic lands and 
the attached or embedded resources such as seagrass. State-owned aquatic lands in 
Washington total 2.6 million acres (1.1 million hectares) and include all subtidal areas and 
a substantial amount of the state’s intertidal lands. 
 
The monitoring (or sampling) design specifies how data is collected and analyzed and is 
critical to ensure analyses and associated estimates are reliable. As the monitoring record 
has grown this has allowed for assessment of the sampling design performance. Also, the 
priorities of the monitoring program have shifted since the onset of the program. For 
example, there has been an increasing focus on change and trend detection as opposed to 
seagrass area estimation. Also, there has been an increasing focus on the quality of site 
level results independent of the quality of the soundwide results. Both the work on 
sampling design performance and the shifting priorities have prompted adjustments to the 
design. This report assesses one of these adjustments and makes a recommendation for 
associated analysis. 

1.2 Stratified Random Sampling (STR) and Variance 
This report focuses on the use of stratified random sampling with one unit per stratum 
(STR) that was introduced into SVMP site sampling in 2013. It was initially introduced on 
an exploratory basis but the program has now made this the primary method for transect 
selection in sampling of most sites. The move to STR transect selection was part of a suite 
of methods changes that included transect sample replacement policy and sampling area 
delineation. 
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STR sampling presents a unique challenge because there is no generally unbiased variance 
estimator for STR samples. The standard variance estimator is unbiased only for simple 
random sampling (SRS). The same issue applies to systematic sampling (SYS) and the 
SVMP has relied on previous work on SYS variance estimators to inform evaluation of 
potential STR variance estimators (Wolter 1984, McGarvey et al. 2016). 
 
Wolter (1984) and McGarvey et al. (2016) evaluated a collection of variance estimators 
denoted v1 through v8 (McGarvey et al. also evaluated several additional estimators that 
are not considered here). The estimator denoted as v1 is just the standard SRS variance 
estimator. McGarvey et al. found the v8 estimator to be the most promising for the SYS 
transect sampling of different simulated vegetation patterns, but they also noted that its 
performance was inconsistent and could be very poor in some scenarios. 
 
A previous SVMP study showed that the bias incurred by using the standard variance 
estimator on STR samples in SVMP sampling can be large and highly variable between 
sites with different spatial patterns of seagrass and change (Dowty et al. 2017). 
 
Based on the results of McGarvey et al. (2016), the previous SVMP work (Dowty et al. 
2017) included evaluation of the v8 estimator for contrasting site seagrass models based on 
data from core001 and flats26. That work showed that the v8 estimator outperformed the 
v1 estimator for some STR site sampling scenarios, but that it was inconsistent and, most 
importantly, could have negative bias, thereby increasing the likelihood of elevated Type I 
error (false positives, or spurious results). Dowty et al. recommended further work that 
evaluated the other Wolter estimators (v2-v7) on SVMP site models. That recommendation 
led to the work presented in this report. 
 
Additional SVMP work developed a broader suite of site models to support expanded 
modelling work. While the focus of that work was to evaluate sensitivity of change 
detection to sample size, the additional site models are more generally useful and were 
included in the work reported here. 

1.3 Objectives and Approach 
The overall goal of this work was to contribute to the development of SVMP operational 
procedures for analysis of STR data. Five alternatives were identified: 
 

1. Use the standard SRS variance estimator (denoted here as v1) for STR samples. 
2. Select one of the alternative Wolter variance estimators (v2-v8) for STR samples 
3. Select a variance estimator on a site-by-site basis based on an assessment of site 

characteristics. 
4. Select a variance estimator on a site-by-site basis based on modelling studies that 

use site models developed for each site. 
5. Deprecate the presentation and use of results that rely on STR variance estimation, 

regardless of which estimator is used based on the premise that no consistently 
highly performing variance estimator is available. This would preclude change 
analysis between two sampling occasions (variance estimates are required for this) 
but would not preclude trend analysis that estimates variance from residuals. 
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The goal, then, was to narrow down this list of alternatives or highlight top alternatives for 
further consideration. 
 
More specifically, the objectives of this work were to: 

• Evaluate the entire suite of Wolter (1984) variance estimators (v1-v8) for SVMP 
site sampling with STR. 

• Synthesize this work with previous work to present current understanding of issues 
surrounding the use of STR transect selection. 

• Recommend an STR variance estimator for immediate operational use, and 
possibly a path forward to reach a longer-term recommendation based on further 
analysis. 
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2 Methods 
 
 
This study uses a modelling approach to assess the performance of variance estimators. 
First, spatial models of seagrass distribution at six contrasting sites were selected from 
previous SVMP work (Dowty et al. 2017 and unpublished analysis of sample size). Then 
these site models were subjected to simulated transect sampling in a Monte Carlo 
framework using 10,000 iterations for each variance estimator and site. Each Monte Carlo 
iteration involves selection of an STR transect sample of size n=10 transects and the 
calculation of sample estimates. The resulting population of sample estimates comprises 
the sampling distribution and allows for calculation of population parameters and the 
performance of sample estimates in terms of proximity to the population parameters. 
 
The Monte Carlo sampling, the associated calculations and the visualization of results was 
conducted in R. 
 
The SVMP is concerned with three categories of estimates at the site level: 

(1) seagrass area estimates at a given sample occasion 
(2) change in seagrass area between two sampling occasions 
(3) trend in seagrass area over a series of sampling occasions. 

 
Only the estimates of site seagrass area and change in seagrass area will typically require 
accompanying estimates of sample variance. Trend estimation, e.g., by linear regression, 
will typically assume variance in seagrass area estimates is the same across all estimates 
and estimate that variance as part of the regression. 
 
Variance estimators may perform quite differently when estimating variance of site 
seagrass area and when estimating variance of change in site seagrass area. This is because 
the distributions of transect fraction and change in transect fraction may be quite different. 
 
The scope of the modelling work conducted for this study was restricted to site seagrass 
area estimates. 

2.1 Site Models 
The site models used are simplified spatial representations of the seagrass distribution at 
selected sites surveyed by SVMP. The models represent sites as a set of 1000 transects of 1 
meter width that comprehensively cover the site in the longshore dimension and span the 
sampling area in the cross-shore dimension. They include detail down to the length of each 
transect and the vegetation length of each transect based on existing SVMP transect data 
and some form of interpolation to fill in between surveyed transects. The model does not 
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represent the spatial arrangement of the vegetation along the transects which is not relevant 
to the estimators used. 
 
Two of the site models used were generated in the work reported in Dowty et al. 2017. 
These sites are core001 and flats26. Both sites have seagrass distributed through the entire 
longshore dimension and a simple linear interpolation was used to construct the site 
models. 
 
Four additional site models were generated in the work conducted by Bart Christiaen in 
2015 that includes sites with discontinuous seagrass in the longshore dimension and used 
an interpolation technique that relied on a spline. This work is documented in a summary 
presentation, R code and the resulting site models. The site models used from this work 
include core004, cps1035, cps1054, and cps2565. The cps1035 site model seemed to 
depart from the available survey data in the seagrass distribution and the transect lengths 
but it was used in this study as is. Given that each site is modelled as having a 1000 m 
longshore dimension, the core001 model departs from the actual larger site in terms of 
spatial scale while retaining the characteristic spatial distribution of seagrass at the site. 
 
The site models are presented in Figure 2-1 and the SVMP survey data used to generate the 
site models is presented in Figure 2-2. 

2.2 Wolter Estimators Adapted for SVMP 
Wolter (1984) first compiled the eight variance estimators (v1-v8) for SYS samples. These 
were later assessed for sampling of vegetation spatial patterns with transects selected by 
SYS (McGarvey et al. 2016). Here, we utilize these same estimators but apply them to 
STR samples and make modifications to conform to SVMP requirements.  
 
The v7 estimator was excluded from this study because it was not completely clear how to 
implement the estimator as presented by Wolter (1984). Given the poor performance of v7 
reported by McGarvey et al. (2016), this estimator was dropped from this study rather than 
dedicating effort to resolve this ambiguity. The R code used by McGarvey et al. (2016) 
was obtained from the lead author so their specific implementation of v7 is available if 
assessing this estimator becomes a priority in the future. 
 
The v1-v8 estimators of Wolter (1984) and McGarvey et al. (2016) give an unweighted 
sample estimate. These estimators had to be adapted for use within the SVMP framework 
because site sample estimates are weighted by transect length. When the standard variance 
estimator (v1) is weighted (e.g., to estimate the variance associated with the weighted 
mean) each term of the sum of squares represents one sample unit and it is multiplied by an 
attribute of that sample unit to serve as a weighting. The v2-v8 estimators have an added 
complication that each term of the sum of squares involves multiple sample units. The 
approach taken here was that each weight was a sum of terms involving transect lengths 
that followed the form of the term being squared. This is shown in the adapted estimators 
used in this study (Table 2-1). 
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Figure 2-1.  The six site models used in this study. The longshore dimension of each site is represented as 1000 
1m wide transects arranged along the x-axes in these figures. The y-axes of the figures represent the cross-
shore dimension. Green areas represent the vegetated length along each transect. Gray areas represent 
segments of the transects where seagrass is absent. The site survey data that were the basis for these site 
models are presented in Figure 2-2. 
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Figure 2-2. SVMP site survey data that was used to develop the site models in Figure 2-1. In (a) and (f), red 
indicates eelgrass, black represents Z. japonica and purple is mixed. For the remaining panels, green represents 
native seagrass. 

 
 
  

(a) core001 (c) cps1035 

(d) cps1054 

(e) cps2565 (f) flats26 

(b) core004 
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Table 2-1.  The variance estimators of Wolter (1984) adapted with weighting for use as SVMP site estimators. The 
v1 estimator (denoted here as 𝑽𝒂𝒓𝟏$ ) is the standard SRS site variance estimator from Skalski (2003). 
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Symbols: 𝑙! = the vegetated length of transect i 
 𝐿! = the total length of transect i 
 �̅�% = the sample estimate of mean transect vegetated fraction at a site 
 𝐿& = mean transect length at a site 
 𝑤! = weighting term 

 

2.3 Calculation of Estimator Performance Metrics 
For each Monte Carlo iteration, a sample estimate of site seagrass area (𝐴) is calculated 
using the SVMP estimator from Skalski (2003), i.e., the product of the weighted estimate 
of mean transect fraction (�̅�%) and the sample polygon area (𝐸), or 
 

𝐴% = �̅�% ∙ 𝐸 
 
The sample polygon area in m2 is simply the sum of all transect lengths (in meters) in the 
site model (n=1000) since the transects are 1 m wide. This expressed as 
 

𝐸 = , 𝐿!

"###

!$"

 

 
Similarly, the true seagrass area of each site model is 
 

𝐴 = , 𝑙!

"###

!$"

 



 

 

12 Washington State Department of Natural Resources 

The variance estimators (Table 2-1) are first evaluated on their precision and accuracy. 
These performance metrics are easily compared across variance estimators by comparing 
the associated box plots that show dispersion in the variance estimates and position of the 
estimates relative to the true variance. Each box summarizes the variance estimates from 
the 10,000 Monte Carlo iterations for each site and variance estimator. 
 
The true variance is calculated as the variance of the set of all site seagrass area estimates 
for a site (7 sets x 10,000 iterations = 70,000 estimates). 
 
The sample confidence interval widths were calculated with z rather than t statistics. While 
the t-based interval is more appropriate with n=10 transects, it was not clear how the 
degrees of freedom vary across the variance estimators and it was assumed that the 
differences in results across estimators would be much larger than the difference between 
z- and t-based confidence intervals. The sample estimate of the 95% confidence interval 
half-width based on the jth variance estimator was calculated as  
 

𝐶𝐼%&/ = 𝑧'"() *+ , ∙ 1𝑉𝑎𝑟-/ 5𝐴%6 

 
with a = 0.05 and the sample confidence interval was determined as 
 

𝐴% ± 𝐶𝐼%&/  
 
The confidence interval coverage for a given variance estimator gives the proportion of the 
sampling distribution encompassed within the confidence interval. In principle, a 95% 
confidence interval should encompass 95% of the sampling distribution. In practice, any 
given confidence interval estimate can be expected to vary from the nominal value. We 
calculate the confidence interval coverage here simply as the proportion of 10,000 sample 
estimates that fall within the estimated confidence interval. This is given by 
 

𝐶𝐼./012 =
∑ 𝑚!
"####
!$"

𝑁3/3
 

where 𝑁3/3 = 10,000 and 

𝑚! = >
0 𝐴 < 5𝐴% − 𝐶𝐼%&/ 6	𝑂𝑅	𝐴 > 5𝐴% + 𝐶𝐼%&/ 6
1 𝐴 ≥ 5𝐴% − 𝐶𝐼%&/ 6	𝐴𝑁𝐷	𝐴 ≤ 5𝐴% + 𝐶𝐼%&/ 6

I 

 
The true 95% confidence interval width for each site, 𝐶𝐼%&, is found iteratively starting 
with an initial guess. The bisection root finding method is used to evaluate the coverage of 
the initial guess, to improve the guess and then evaluate again. The true 95% confidence 
interval was found when subsequent guesses did not vary by more than 0.0001 ha.  
 
Confidence interval bias was the departure of the mean of the confidence interval estimates 
from the true confidence interval. This is expressed as  

𝐵𝑖𝑎𝑠 = 𝐶𝐼%&/&&&&& − 𝐶𝐼%& 
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3 Results 
 
 

3.1 Variance Results 
The performance of the variance estimators is shown in Figure 3-1 when estimating site 
seagrass area on a given sampling occasion with STR transects. In general, the variance 
estimators are highly biased. Of the 42 scenarios assessed (6 sites x 7 estimators), the 
boxes in Figure 3-1 only span the true variance in 8 scenarios. In some cases, the entire 
variance sampling distribution is disjunct from the true variance.  
 
More problematic for the operational utility of these variance estimators is the fact that the 
bias for four of the seven estimators (v1, v3, v6, v8) clearly varies between sites. The bias 
is not only large but also variable. Estimators v2-v4 appear consistently negatively biased 
across all sites but some lesser variation would be apparent with an expanded scale. The v1 
estimator is the only one whose bias is positive across all sites although the magnitude of 
the bias shows the greatest variation among the estimators. 

3.2 Confidence Interval Results 
The confidence interval coverage results are presented in Figure 3-2. The ramifications of 
negative bias in variance estimation are clearly seen in the low coverage of the confidence 
interval that reach as low as 40%, rather than the nominal 95%. The ramifications of 
positive bias in variance estimation are not as apparent because the coverage scale only 
extends to 100% regardless of how oversized the confidence intervals are. 
 
One simple way to compare variance estimators is the proximity of coverage to the 
nominal 95%. If we define coverage values in the range of 90-99% as in close proximity to 
the nominal 95%, then three of the seven variance estimators lead to at least one instance 
with coverage that is proximal to the nominal value: 

v1:  coverage proximal to 95% for three sites (core001, core004, cps1035) 
v3:  coverage proximal to 95% for one site (cps2565) 
v8:  coverage proximal to 95% for four sites (core001, core004, cps1035, cps1054) 

 
Bias in confidence interval width is presented in Figure 3-3. If we define the range of -20% 
to +20% as having modest levels of bias, then there are three variance estimators leading to 
at least one instance of modest bias: 

v3: modest bias for two sites (cps2565, flats26) 
v6: modest bias for three sites (core001, cps1035, flats26) 
v8: modest bias for one site (cps1035). 



 

 

 
Figure 3-1.  Box plots that depict performance of the v1-v8 variance estimators when estimating site seagrass area with STR transect samples. The six panels show results 
for the six different site models that were sampled. The horizontal blue lines represent the true variance that is being estimated. The box size represent precision 
(dispersion in estimates) and the position of the box relative to the blue line represents accuracy (distance from blue line to box mean [not shown] is bias). 

  



 

 

 

 
Figure 3-2.  Coverage of the 95% confidence intervals based on the v1-v8 variance estimators. The six panels show results for the six different site models that were sampled. The 
horizontal blue line indicates 95%. The green region highlights a region in the vicinity of the target 95% (90-99%). 

 



 

 

 
Figure 3-3.  Bias in the 95% confidence interval estimators based on the v1-v8 variance estimators. The green region highlights a region in the vicinity of zero bias (-20 to 20%). 
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4 Discussion 
 
 

4.1 Current Understanding of STR Analysis Options 
Earlier we demonstrated that in SVMP sampling scenarios the standard variance estimator 
(v1) tends to be biased with STR samples (Dowty et al. 2017). In that work, we also 
demonstrated that the v8 estimator, given a mixed recommendation by McGarvey et al. 
(2016), tended to have a lower magnitude bias but it tended to be negative while the v1 
bias tended to be positive. The v8 estimator had potential but the negatively biased 
variance seemed problematic. 
 
The main purpose of this study was to extend that investigation to include the other 
estimators in the v1-v8 set presented by Wolter (1984). Now, all the Wolter estimators 
(except v7) have been evaluated in simulated SVMP scenarios. 
 
We have now seen that none of the v1-v8 estimators is consistently unbiased with STR 
sampling and they are typically biased. In addition, no estimator was clearly better 
performing than the v1 estimator. 
 
While the earlier work showed that the v1 estimator tended to be positively biased with 
STR samples, there was also an instance of negative bias. The fact that the bias could 
possibly be of either sign makes inference more challenging than if bias was known to be 
of one sign. 
 
But the shortcomings of the v1 estimator in the STR context must be considered in the 
context of the suite of site sampling method changes that have been made by the SVMP in 
recent years. In particular, the shift from sample replacement (new sample draw) each 
occasion to sample retention (repeat transects), in conjunction with the shift to full site 
polygons, can be expected to result in a large net gain in power to detect change. This is 
shown clearly in the simulation results in Figure 4-1 which were drawn from Dowty et al. 
(2017).  
 
In Figure 4-1, there is a strong gain in power to detect change when new draw SRS 
transects are replaced with repeat STR transects. This is true even with the shortcomings of 
the v1 estimator when used with STR samples. This gain in power is seen in almost all of 
the different spatial change scenarios investigated. 
 
 
 



 

 

 
Figure 4-1.  Power to detect change (y-axis) of increasing intensity (x-axis is proportional change) under the “old” site sampling design (left), the “new” sampling design (middle) 
and a hypothetical potential design (right) for the core001 site model (top row) and flats26 model (bottom row). The old method is SRS transect selection with newly drawn 
transects each occasion and use of the v1 variance estimator. The new method utilizes STR, repeat transects and the v1 estimator. The potential method also utilizes STR and 
repeat transects but instead of estimating variance it uses the true variance available from the Monte Carlo results. Each curve represents a specific spatial pattern of change 
with spatial pattern 0 being homogeneous change throughout the site while change in the other scenarios is restricted to different subsets of the site. These results were 
extracted from Dowty et al. (2017). 
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Figure 4-1 also compares the power to detect change using the “new” method (STR, 
repeat, v1 estimator) with the “potential” power that would hypothetically be achieved 
with a perfect variance estimator. This comparison does not show strong loss of power 
associated with the use of the v1 estimator with STR. The “potential” power was assessed 
by conducting statistical testing with the true value of variance obtained from the Monte 
Carlo results. This result suggests that even if a more reliable STR variance estimator 
could be identified, the gain in power would be modest relative to usage of the v1 
estimator. Given the attention this problem has received in the literature (Cochran 1977, 
McGarvey et al. 2016, Wolter 1984) as well as the work conducted here and in Dowty et 
al. 2017, without successfully identifying a reliable alternative variance estimator, it is not 
clear that continued effort along these lines would be successful. Certainly, such an effort 
would be a major time-intensive undertaking to move beyond the work already reported. 
 
An alternative approach given at the beginning of this report (section 1.3, p.4) was that the 
optimal STR variance estimator among v1-v8 could be selected on a site-by-site basis. 
This approach acknowledges that there is no single optimal STR estimator, but that one of 
the v1-v8 estimators may be optimal for a particular situation based on a site’s seagrass 
spatial pattern and the spatial pattern of change. Our assessment from the results presented 
in this study is that this approach is not promising. For example, the site models for 
core004, cps2565 and flats26 (Figure 2-1, p.9) have basic similarities in being essentially 
two-phased beds that were continuous in the longshore dimension but estimator 
performance varied strongly among these cases (Figure 3-1, p.14). While the reason for the 
variable performance among these could presumably be identified through focused 
modelling work, it seems ambitious to think a general set of rules could be developed to 
reliably assign all sites to an optimal estimator based on inspection. 
 
Given the challenges of variance estimation with STR samples, it is relevant to ask if there 
is a benefit to STR over SRS. This question was not addressed in the work conducted for 
this study, but Dowty et al. (2017) showed how STR achieves a major gain in precision, 
particularly in spatially heterogeneous cases where SRS performs poorly. This is the 
motivation for integrating STR selection into the SVMP site sampling. 

4.2 Recommendation for STR Analysis 
For estimating variance of statistics derived from STR samples, we recommend using the 
v1 estimator. This includes usage for both confidence interval estimation and statistical 
testing. 
 
Given the expected bias associated with using the v1 estimator with STR samples, the 
results must be used and interpreted with caution. This applies to the variance estimates 
themselves, derived confidence interval estimates and testing results. This is especially true 
since the bias is of uncertain magnitude or sign. In the expert review of site results, this 
essentially lessens the weight placed on the statistical results and puts more weight on 
other available results and the expert assessment. 
 
Deprecating the influence of the statistical result seems to parallel the drive to change the 
scientific community’s reliance on p-values (Smith 2020, Wasserstein and Lazer 2016). 
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They both emphasize inference based on weighing of multiple pieces of information rather 
than deference to the clarity of the threshold-based statistical test. 
 
We also recommend that as soon as a data record of STR repeat transects begins to 
accumulate, we should look for opportunities to apply trend analysis. As long as the 
assumption of uniform variance (homoscedasticity) is reasonable, a trend analysis such as 
linear regression does not require variance estimates as input. This effectively bypasses the 
challenges of variance estimation with STR samples. This doesn’t hold where we cannot 
assume uniform variance in which case the variance estimates are needed for a weighted 
regression. 

4.3 Future Work 
With a recommendation in place, there is no further work identified that would be needed 
for implementation of STR sample analysis. This position should be re-evaluated after 
STR analyses have been implemented for some time. If it becomes clear that the lack of 
reliable variance estimates is problematic in site analysis, then further work may be 
warranted.  
 
One path toward more reliable variance estimates would be to develop spatially-explicit 
site models for every site sampled. These models would be subjected to Monte Carlo STR 
sampling to determine exact variance for sampling at a given modelled site. The reliability 
of these results relies mainly on the integrity of the spatial representation in the model. In 
the context of change analysis, the reliability depends on the integrity of the spatial 
representation of the pattern of change (rather than abundance). Change models will be 
more challenging to construct than abundance models. 
 
Even in cases where integrity of the model representation is in question for a particular 
site, it may be possible to run multiple sets of Monte Carlo iterations with contrasting 
model characteristics that are thought to bracket the true value. Comparison of the variance 
from the bracket points and the v1 sample variance should indicate whether the v1 estimate 
needs adjustment. Such adjustment could be informed by the model results. 
 
There are certainly other approaches that could be pursued to improve the STR variance 
estimation. But this future work should only be considered if the initial implementation 
indicates it is necessary. 
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