STATE OF WASHINGTON
DEPARTMENT OF NATURAL RESOURCES
BRIAN J. BOYLE, Commissioner of Public Lands
JAMES A. STEARNS, Department Supervisor

DIVISION OF GEOLOGY AND EARTH RESOURCES
Raymond Lasmanis, State Geologist

PRELIMINARY GEOLOGIC FRAMEWORK STUDIES SHOWING BATHYMETRY,
LOCATIONS OF GEOPHYSICAL TRACKLINES AND EXPLORATORY WELLS,
SEA FLOOR GEOLOGY AND DEEPER GEOLOGIC STRUCTURES,
MAGNETIC CONTOURS, AND INFERRED THICKNESS OF TERTIARY ROCKS ON
THE CONTINENTAL SHELF AND UPPER CONTINENTAL SLOPE OFF
SOUTHWESTERN WASHINGTON BETWEEN LATITUDES 46°N. AND 47°30'N.
AND FROM THE WASHINGTON COAST TO 125°20'W.

by
Holly C. Wagner
Consulting Geologist and Principal Investigator

and

L. Darlene Batatian
Physical Science Technician

for

Washington State Offshore Geologic Framework Studies
between 46°N. and 47°30'N.

Prepared under Cooperative Agreement No. 14-12-0001-30115
between U.S. Minerals Management Service and
The University of Texas at Austin,
Bureau of Economic Geology

Washington Department of Natural Resources
Division of Geology and Earth Resources
Olympia, WA 98504

Open-File Report 85-1

January 1985
Final report submitted to the Minerals Management Service through the Washington State Department of Natural Resources, Division of Geology and Earth Resources under

Cooperative Agreement No. 14-12-0001-30115

by

Holly C. Wagner
Consulting Geologist and Principal Investigator

and

L. Darlene Batatian
Physical Science Technician

for

Project titled: Washington State Offshore Geologic Framework Studies between 46°N. and 47°30'N.

with

Effective dates of December 1, 1983 to December 31, 1984

and

Budget in the amount of $24,000.00

Report Titled

Preliminary geologic framework studies showing bathymetry, locations of geophysical tracklines and exploratory wells, sea floor geology and deeper geologic structures, magnetic contours, and inferred thickness of Tertiary rocks on the continental shelf and upper continental slope off southwestern Washington between latitudes 46°N. and 47°30'N. and from the Washington coast to 125°20'W.
INTRODUCTION

1. Objectives of Project

A. To compile existing published and unpublished geologic and geophysical data of the U.S. Geological Survey, as well as a major part of studies published by other workers, on the Continental Shelf of Washington between latitudes 46°N. and 47°30'N.

B. To prepare a map of said area at a scale of 1:250,000 showing the major faults and folds (including diapirs) on the Washington Continental Shelf based upon geologic interpretations of single and multichannel seismic-reflection profiles.

C. To prepare a map of said area at a scale of 1:250,000 showing the inferred thickness of Tertiary rocks based upon seismic, gravity, and magnetic data, as well as subsurface information from oil company deep exploratory wells drilled on the continental shelf and onland near the coast.

D. To compile, at a scale of 1:250,000, a map showing all aeromagnetic data acquired by the U.S. Geological Survey.

E. To prepare a bathymetric base map for use in plotting the above geologic and geophysical data onto scale-stable base material and provide such a base map to the Washington Department of Natural Resources, Division of Geology and Earth Resources.

2. Accomplishments

All above objectives have been completed; however, because of the proposed extension of the study area northward to the Canadian border, and because the purpose of this report is to provide in map form the geologic hazards and other knowledge in the study area, a more comprehensive text and listing of reference materials will be delayed until completion of the northern extension of the area.

A. Preliminary bathymetric map. The preliminary bathymetric map (plate 1) was compiled from bathymetric contours developed by Gerin in 1977 and from an older map by Venkataramnan and McManus (1973). The contour interval is 20 m on the Continental Shelf but changes to 200 and 400 m on the Continental Slope. Plate 1 was particularly helpful in analyzing the distribution of geologic hazards such as slumps and landslides observed on the seismic reflection profiles. A new compilation of all sea floor topographic data is currently underway by NOAA but has not yet been completed into useful form. Hopefully it will be available for use prior to completion of the northern part of the study area.

B. Trackline map. Approximately 2,500 km of seismic reflection profiles, shown on plate 2, were used in this study. Of these, more than 2,000 km produced single-channel profiles and 425 km produced multichannel profiles. Single-channel profiles were obtained using the University of Washington Research Vessel Thomas G. Thompson in 1967 by Grim and
Bennett (1969) and in 1970 by Silver (1972). Additional single-channel profiles were taken aboard the U.S. Geological Survey Research Vessel Samuel P. Lee in 1976, 1977, and 1980 by Snively in conjunction with multichannel profiles along most of the lines. Reconnaissance, V-shaped, tracklines are laid out to provide the greatest areal coverage in the shortest amount of shiptime and the 1967 single-channel profiles and 1976-1980 multichannel profiles were run under those restrictions. Such coverage makes correlation of acoustic units from line to line very tenuous. The mainly east-west profiles of Silver's 1970 7-tow cruise were very helpful in bridging the gaps in the other surveys.

Also shown on the trackline map are the positions of five offshore exploratory test wells. The lithologic faunal and sonic data from these wells (Snively and others, 1977) were used to extrapolate "ground truth" into locally distinct acoustic units observed on the seismic reflection profiles where they crossed over or near the exploratory wells. Without the well data the actual seismic stratigraphy generated from the seismic reflection profiles would have been essentially nameless because the several periods of tectonic activity as clearly revealed by unconformities on the profiles could not be correlated with those seen in poor exposures onshore. Needless to say, we are extremely grateful to members of the oil industry who made offshore stratigraphic data available.

C. Sea floor geologic map. The sea floor geologic map (plate 3) depicts in graphic form the geology that one would encounter if the seawater cover were removed. Because of the wide spacing of multichannel seismic reflection data in many parts of the area, the 7-tow seismic data of Silver were used in conjunction with stratigraphic knowledge gained from onshore geologic mapping in the adjacent onshore area (Wagner, 1967a, b) in order to make judgmental correlations of offshore units. However, many rock outcrops may have been omitted and contacts between stratigraphic units in places may be off by as much as several kilometers because of the variable line spacing. Furthermore, preliminary bathymetry was used to its maximum extent in depicting landslide direction and continuity. The user should keep these qualifying statements in mind when utilizing the map.

In the preparation of this map, the senior author made geologic interpretations of all seismic-reflection profiles onto mylar overlays. These overlays were then reduced to the same horizontal scale in order to make more accurately the correlations of structures from trackline to trackline. Also, intersections of all profiles were determined and plotted, and water depths and acoustic-stratigraphic data at crossings were compared. Navigation problems, made obvious by differences in depth to sea floor and noncorrespondence of geology, were discovered and corrected prior to correlation of acoustic-stratigraphic units. The acoustic-stratigraphic units on the profiles were determined through use of sonic-log data from the exploratory wells. The well data (Snively and others, 1977, p. 17) were then changed from a foot-depth mode to a time-depth mode, and fossil-dated stratigraphic units in the wells (W. W. Rau, written communications, 1973-1982) were correlated with acoustically characteristic units on
the seismic-reflection profiles. Determination of whether Quaternary sediments overlie Tertiary sediments at the sea floor is unclear on many profiles due to the masking effect of a thick (20-60 m) bubble pulse, particularly on the 3- to 4-second single-channel and the 6- to 7-second multichannel records. The presence of this bubble pulse precluded accurate differentiation of the Holocene and Pleistocene acoustic equivalents on many profiles. The position of the contact between these two units is questionable in many places, and since additional data from high-resolution seismic profiles is sparse and generally poor it was not very helpful in refining this contact. However, sea floor sediment maps by Moore and Lukin (1979) were helpful in places by showing the positions of gravel deposits that are assumed to be Pleistocene in age. On some profiles, steeply dipping Tertiary strata could be seen projecting to the sea floor; on others, bubble-pulse masking was complete. On many profiles, basins between outer ridges and in downslope valleys of the Continental Slope were filled with flat-lying sediments during Quaternary time as noted by Barnard (1978).

The rocks encountered during oil company exploration drilling range in age from middle Eocene to Holocene and indicate that the unbroken sedimentary sequence is nearly 3,000 meters thick locally. These strata, which are described briefly in Snively and Wagner (1982, p. 6), have been subjected to two major periods of convergence between the Pacific (Juan de Fuca) and North American plates creating a highly faulted and folded terrain. Each period of convergence developed a thick zone of melange and broken formation which has a generally non-stratified acoustic signal made up of a series of small hyperbolic curves. In many places this melange has been remobilized and been injected into and through the overlying stratigraphic sequence as diapirs. Snively and others (1977, p. 22) show an excellent example of diapirs on a seismic reflection profile, and piercement structures along the Washington coastline are well described by Rau and Grocock (1974). Their description of the lithologic character of these onshore structures agrees well with the acoustic characters observed in the seismic reflection profiles. Eleven structures with these characteristics have sea floor outcrops as shown on plate 3; two others lie beneath the sea floor under Quaternary and upper Tertiary deposits. These units, as described onshore, consist of phacoidally shaped mobilized blocks of massive siltstone, sandstone, and volcanic rocks in a matrix of clay- to silt-size particles.

A brief appraisal of the map shows that many of the faults, although active during Miocene and even Pliocene time, were inactive during the Quaternary. However, many faults appear to reach near or to the sea floor in very young rocks, and some offset the sea floor. These latter faults may have had accompanying earthquakes that triggered much of the landsliding and slumping on the upper part of the Continental Slope and possibly on the Continental Shelf. The three faults off the mouth of the Columbia River, which are shown with question marks, are boundaries between different basement rocks to the west and east, as shown by bottom-hole data from offshore wells 5 (melange) and 6 (Crescent(?) basalt) of Snively and Wells (1984, plate 1 and table 2, p. 7).
Many folds, both anticlines and synclines, are noted on the seismic reflection profiles. In several places, folds in the pre-upper Miocene rocks (dotted lines on plate 3) were folded and then subjected to erosion which truncated the crestal parts of the anticlines. These truncated surfaces were then covered by horizontally or near-horizontally deposited sediments which were themselves subjected to stresses which folded them. In many places, and at various time intervals, the younger sediments, too, were subjected to erosion as shown clearly on the seismic reflection profiles.

D. Preliminary magnetic map. The magnetic map (plate 4) was developed from several sources. Two aeromagnetic maps of western Washington were contracted for by the U.S. Geological Survey (U.S. Geological Survey, 1980a, 1980b, 1984). However, these maps did not overlap and an unmapped area was present between them offshore. Magnetic data, taken during the 7-tow cruise of 1970, were kindly made available to us by Eli Silver (personal communication, 1983). By contouring that information, we were able to develop a magnetic map that filled the gap between the USGS data (plate 4). The western edge of the magnetic map lies between high magnetic anomalies 4 and 5 as shown on NOS magnetic map 12042-12M (NOS, 1974b).

E. Preliminary sediment thickness maps. The preliminary isopach map of post middle Miocene sedimentary rocks offshore from southwestern Washington (plate 5) was constructed from acoustic-stratigraphic data obtained from the interpretation of USGS multichannel seismic reflection profiles taken during cruises by Snively in 1976, 1977, and 1980, and from the single-channel 1970 7-tow survey by Silver (1972), and the 1967 T. G. Thompson survey by Bennett and others (1967). These interpretations were tied to faunal and stratigraphic data from offshore exploratory test wells drilled in 1966-67 by the Union Oil Co., the Shell Oil Co., and the Pan American Petroleum Corp., by magnetic data prepared for this report, and by gravity data (at scale 1:1,000,000) published by the National Ocean Survey (NOS, 1974a). Age correlation data for onshore wells (Rau and McFarland, 1982) and offshore wells (W. W. Rau, personal communications, 1973-1982) were used liberally.

Construction of this map involved initial interpretation of seismic reflection profiles that traversed across or very near test well sites, extrapolation of these data laterally, plotting points showing thickness above the late Miocene unconformity at .25-second intervals, contouring these points, and then generalizing these contours into 500-meter isopachs using velocities obtained in the exploratory wells. The isopachous lines represent only approximate thicknesses due to the paucity of well data and the wide and diverse distribution of multichannel trackline coverage available in the study area (plate 2). An inferred total thickness of sedimentary rocks above the oceanic crust can be obtained by adding 6 to 14 km of upper Oligocene to upper middle Miocene sheared siltstone and melange to thicknesses on plate 5. The addition would be in an eastward direction from the west edge of plate 5, as suggested by models of Silver (1972, p. 247) and McClain (1981, p. 69, 79).
REFERENCES CITED

Moore, G. W., and Lukin, M. D., 1979, Offshore sand and gravel resources of the Pacific northwest: Oregon Geology, v. 41, no. 9, p. 143-151.

U.S. National Ocean Survey, 1974a, NOS Seasmap Series--Gravity Map: Map NOS 12042-12G, 1 sheet, scale 1:1,000,000.

____, 1974b, NOS Seasmap Series--Magnetic Map: Map NOS 12042-12M, 1 sheet, scale 1:1,000,000.

PLATE 1. PRELIMINARY BATHYMETRIC MAP OF THE CONTINENTAL SHELF AND UPPER CONTINENTAL SLOPE OFF SOUTHWESTERN WASHINGTON

by

Wally C. Wagner
U.S. Geological Survey

Prepared under Cooperative Agreement No. 14.12-003-05390
between U.S. Minerals Management Service and Washington Association
of State Geologists
PLATE 2. MAP SHOWING LOCATIONS OF TRACK LINES AND EXPLORATORY TEST WELLS ON THE CONTINENTAL SHELF AND UPPER CONTINENTAL SLOPE OFF SOUTHWESTERN WASHINGTON

EXPLANATION

- Single-channel seismic reflection profile
- Multi-channel and single-channel seismic reflection profile
- Exploratory well

SOURCES OF SEISMIC REFLECTION DATA

- NGDC, NOAA, NOS, Washington, 1988
- British Columbia Natural Resources, 1986
- Oregon Department of Fish and Wildlife, 1985
- Washington Department of Natural Resources, 1984
- Idaho Department of Geology and Geochemistry, 1983
- Washington Department of Natural Resources, 1982

PLATE 3. PRELIMINARY MAP OF THE SEAFLOOR GEOLOGY AND DEEPER STRUCTURES OF THE CONTINENTAL SHELF AND UPPER CONTINENTAL SLOPE OFF SOUTHWESTERN WASHINGTON
PLATE 4. PRELIMINARY MAGNETIC MAP OF THE CONTINENTAL SHELF AND UPPER CONTINENTAL SLOPE OFF SOUTHWESTERN WASHINGTON

By Molly C. Good
U.S. Geological Survey

PLATE 5. PRELIMINARY ISOPACH MAP SHOWING INFERRED THICKNESS OF POST MIDDLE MIOCENE ROCKS OF THE CONTINENTAL SHELF AND UPPER CONTINENTAL SLOPE OFF SOUTHWESTERN WASHINGTON

by

Holly C. Hopkins
U.S. Geological Survey