Geologic mapping of the Wenatchee area

by

Randall Gresens

1975

Open File Report 75-6
Quaternary-Recent, undifferentiated.

Quaternary-Recent, landslide. Block pattern on erosional cut through old landslide.

Quaternary, terrace deposits. Pref ormationally thinly laminated, unconsolidated clay and silt. Bedding commonly less than 1 cm thick. Occasional tops or bases of beds are confirmed within thin laminae. Beds are commonly ungraded. Small erosion surfaces may occur between laminae, but more commonly bedforming planes are remarkably smooth. Near accretion of beds by concurrent sandstone deposition, beds may be very thin. Turbidite sands may occur up to 10 feet or so of the terrace contains clays and silts with local lenses of sandstone. Sandey clay, with or without crossbedding, may be present. Sand, silt, or clay layers may be stained with limonite, iron oxide, or the lives of plants. Clayey sands may be common on upper terrace near the borders of the terrace with bedrock, and this may make up the contact of the terrace in the extreme up-canyon part of the terrace. Cobblels and gravells are generally plutonic and metamorphic rocklirgs foreign to the immediate area.

Tertiary, Clyde River Basin. Probably Faculty Basin.

Tertiary, zones of hydrothermal alteration. Sillicification and/or hematitization of predominantly sedimentary rocks.

Tertiary, intrusive rocks. Predominantly andesite, but ranging from diabase to rhyolite.

Tertiary, Winchamb Formation.

Tertiary, Pitcher Member. White arkose pebbly conglomerate. Contains clasts of (1) allitic volcanic rocks ranging from porphyritic andesite to basaltic trachyte and andesitic bombs and pebbles and of (2) plutonic and metamorphic rocks, including feldspar, hornblende, amphibole, quartz, and plagioclase.

Tertiary, Dry Gulch Member. Light gray to gray-brown, yellow-waterring, arkose. Predominantly composed of angular, very subangular, and subrounded quartz grains. Traces of feldspar and illitic clay minerals. Minor crossbedding occurs locally. Top and bottom usually gradational but locally sharp contact with underlying unit. Small, rounded, dark gray, clayey ferruginous nodules may be present in a gray-brown matrix. Small amounts of granite or gneissic rock fragments are commonly present. Matrix is generally very fine-grained sand and silt size. Ironstone is common in the uppermost parts of the formation. Silt size layers may occur in sandstone, and net not in the associated shale. Small slabs of limestone are common to rare. Crossbedding, laminae, and wave marks are often visible in interiors, may occur locally. The sandstone forms Bed 0 outcropping.

Tertiary, Shelly Member. Pebbly andesite. Locally the unit is probably lake laven.

Tertiary, Valley Member. Upper sandstone. Predominantly a grayish- white, coarse quartzite sandstone. Locally it is a quartz pebble conglomerate. This sandstone is almost always present near the top of the formation. Light-gray, siliceous grits are rare or lacking. Locally it may resemble the lower part of the Tualatin Formation.

Tertiary, Walla Walla Formation.

Tertiary, Walla Walla Member, lower clays. Predominantly a blue-gray shale to grayish-green, arkosic gray sandstone. Locally it is a yellowish brown sandstone. arkosic flaxes almost always present near the top of the formation. Light-gray, siliceous grits are rare or lacking. Locally it may resemble the lower part of the Tualatin Formation.

Tertiary, Walla Walla Member, lower clays. Predominantly a blue-gray shale to grayish-green, arkosic gray sandstone. Locally it is a yellowish brown sandstone. arkosic flaxes almost always present near the top of the formation. Light-gray, siliceous grits are rare or lacking. Locally it may resemble the lower part of the Tualatin Formation.

Tertiary, Walla Walla Member, middle clays. Predominantly a grayish-white, coarse quartzite sandstone. Locally it is a quartz pebble conglomerate.

Tertiary, Walla Walla Member, basal sandstone. A buff-colored, medium- to fine-grained sandstone. Occasional clasts of rock fragments, to the interiors, may occur locally near the base of the formation. Locally it may resemble the lower part of the Tualatin Formation.

Tertiary, Tualatin Group. Generally a graywacke to yellowish-white, white, light-gray, or blackish-gray, arkosic, siltstone, or claystone. This pebble conglomerate lavers contains clasts of predominately andesitic volcanic rocks ranging from porphyritic andesite to basaltic trachyte and andesitic bombs and pebbles, together with small quantities of quartz, feldspar, and hornblende. Small amounts of granite or gneissic rock fragments are commonly present. Matrix is generally very fine-grained sand and silt size. Ironstone is common in the uppermost parts of the formation. Silt size layers may occur in sandstone, and net not in the associated shale. Small slabs of limestone are common to rare. Crossbedding, laminae, and wave marks are often visible in interiors, may occur locally. The sandstone forms Bed 0 outcropping.

Tertiary, Tualatin Group. Generally a graywacke to yellowish-white, white, light-gray, or blackish-gray, arkosic, siltstone, or claystone. This pebble conglomerate lavers contains clasts of predominately andesitic volcanic rocks ranging from porphyritic andesite to basaltic trachyte and andesitic bombs and pebbles, together with small quantities of quartz, feldspar, and hornblende. Small amounts of granite or gneissic rock fragments are commonly present. Matrix is generally very fine-grained sand and silt size. Ironstone is common in the uppermost parts of the formation. Silt size layers may occur in sandstone, and net not in the associated shale. Small slabs of limestone are common to rare. Crossbedding, laminae, and wave marks are often visible in interiors, may occur locally. The sandstone forms Bed 0 outcropping.

Tertiary, Tualatin Group. Generally a graywacke to yellowish-white, white, light-gray, or blackish-gray, arkosic, siltstone, or claystone. This pebble conglomerate lavers contains clasts of predominately andesitic volcanic rocks ranging from porphyritic andesite to basaltic trachyte and andesitic bombs and pebbles, together with small quantities of quartz, feldspar, and hornblende. Small amounts of granite or gneissic rock fragments are commonly present. Matrix is generally very fine-grained sand and silt size. Ironstone is common in the uppermost parts of the formation. Silt size layers may occur in sandstone, and net not in the associated shale. Small slabs of limestone are common to rare. Crossbedding, laminae, and wave marks are often visible in interiors, may occur locally. The sandstone forms Bed 0 outcropping.

Tertiary, Tualatin Group. Generally a graywacke to yellowish-white, white, light-gray, or blackish-gray, arkosic, siltstone, or claystone. This pebble conglomerate lavers contains clasts of predominately andesitic volcanic rocks ranging from porphyritic andesite to basaltic trachyte and andesitic bombs and pebbles, together with small quantities of quartz, feldspar, and hornblende. Small amounts of granite or gneissic rock fragments are commonly present. Matrix is generally very fine-grained sand and silt size. Ironstone is common in the uppermost parts of the formation. Silt size layers may occur in sandstone, and net not in the associated shale. Small slabs of limestone are common to rare. Crossbedding, laminae, and wave marks are often visible in interiors, may occur locally. The sandstone forms Bed 0 outcropping.