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QUATERNARY UNITS CORRELATION DIAGRAM

NONGLACIAL
DEPOSITS
. . Age of dacite-rich alluvium near Burlington (Beget, 1981, 1982;
Hol ficial deposit g & et ’ ’
0 glocene surliclal deposit ages Dethier and Whetten, 1981; Pessl and others, 1989); probably
| t1 47:2 ts t1 conventional radiocarbon age from peats or paleosols fekll)arate, much 1§ss e{;tensw.e, 1?lhar runout ever&‘;. Wi: coqﬁla}t:: the
to within unit Qn (Dragovich and others, 2000c) I ahar runout sand (un.lt Qul) in the anway quadrangle with the
‘ r av | 1,800-yr-old dacite-rich volcaniclastics near Burlington. Late
— «~—1t6 | VI — . . .
t2-5 conventional radiocarbon ages from peats or paleosols R Eolocene (<20(c)10hyr B.P) lahars near Qlac1er P.ea.k conta}lln augite,
| within unit Qn; dates were obtained from human settlements, I}Lpersthene an h ornblende F e-(ll\r/lg n;me;lrals 51m1.1ar tﬁ t elianl\(j[y
probably near the Skagit River delta front (Thompson, 1978) ahar runout In the Coqway quadrangle that contains these Fe-Mg
| " Qs t7 mlnlerals as detrlta! grains or distinct phenocrysts in the abundant
5 Qp ts t6-8 conventional radiocarbon ages from peats or paleosols dacite detritral grains
5 | 8 Qag within unit Qas (Dragovich and others, 2000c)
5 Qls Qag
N = Qaf Qn Everson Interstade ages
_ GLACIAL DEPOSITS, FRASER GLACIATION «1  conventional radiocarbon wood ages (Dragovich and others, 1998)
‘ | «2  conventional radiocarbon shell ages (Dragovich and others, 1998)
| «»3  conventional radiocarbon shell ages (Pessl and others, 1989)
«»4-8 conventional radiocarbon age of marine shells (Dragovich and others, 2000c, unpub. data)
E Interstad . . A ; S . L
i verson Tnterstade ‘ Vashon Stade ‘ «»9  conventional radiocarbon age of peat overlying silty clay of Vashon Stade, Bay View Ridge (Siegfried, 1978)
10 —
: : Sumas Stade age constraints (Whatcom County)(Easterbrook, 1962, 1969, 1971, 1976a,b)
_ | . . .
| : Qgoe Qgdm, <—:% <—*i S . . <—— Qgom, conventional radiocarbon wood ages (Dragovich and others, 1998)
m ggome Qgte | |Qgdmeg <7'I;25 x5 ! ¥ «<—— Qgdm, conventional radiocarbon shell age (Dragovich and others, 1998)
gOM e
— Qgode Qgdme,g <—:g
i hmltm§ ag}sz ) advance outwash radiocarbon ages near Issaquah —— | Qgty
15 —| suggest unit Lgay (Porter and Swanson, 1998)
Qgtv deposition P OLYMPIANONGLACIAL SEDIMENTS
| in study area two conventional ages of wood in unit Qgay in the — e AND OLDER GLACIAL DEPOSITS
15,000-16,000 Chilliwack valley east of Vancouver, B.C. (Clague e \ \
— yr B.P. and others, 1988; Porter and Swanson, 1998) <—— radiocarbon age of organic matter-rich sediments directly overlying gravel of
Qgay Olympia beds in Tacoma area (Borden and Troost, 2001)
- peat at base of unit Qgty at Marrowstone Island —
(Easterbrook, 1969); radiocarbon age of wood under —— e e
- advance outwash in Skagit Valley (D. P. Dethier, e e
Williams College, written commun., 1999) 4 /
20 —
unit Qgay age on southern Whidbey Island (Stoffel, 1980)
7 (Note: This age appears to be significantly older than
advance outwash ages reported by Porter and Swanson
] [1998] and may be somewhat errant) radiocarbon age of wood pieces in nonglacial deposits in Indian Cove
| on Shaw Island (San Juan Islands)(Dethier and others, 1996)
25 —
<—— radiocarbon age of log in nonglacial deposits near Anacortes (Pessl and others, 1989)
= <—— radiocarbon age of peat and wood in nonglacial deposits, Skagit Valley (Pessl and others, 1989)
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<—— radiocarbon age of wood, Alger 7.5-minute
40 — quadrangle (Pessl and others, 1989) Radiocarbon ages greater than approximately
Qc 35,000 yr B.P. are suspect and may be infinite ages
_ © radiocarbon age of peat in nonglacial deposits contaminated with younger organic material. For
<— | in the Anacortes South 7.5-minute quadrangle example, S. Johnson (USGS, written commun.,
N (Dragovich and others, 2000c, unpub. data) 2000) obtained infinite radiocarbon ages from
) ) o — organic layers on Whidbey Island that are near our
7 radlocarbon age 9f orgamc material in radiocarbon age sample sites. Mapping by Johnson
nonglgmal deposits in the Anacqrtes South and others (2001) suggests that our Olympia
7 7.5-minute quadrangle, (Dragovich and nonglacial sediments may locally include the older
others, 2000c, unpub. data) Whidbey (nonglacial) Formation and Possession
45 | ) . L L glacial drift.
—radiocarbon age of organic material in
- nonglacial deposits in the Anacortes South
7.5-minute quadrangle, (Dragovich and
N others, 2000c, unpub. data)
50 —f
55 —
n suggested minimum age of Olympia nonglacial sediments
60 —| _-7 (Deeter, 1979; Mullineaux and others, 1965)
i approximately 60,000-80,000 yr B.P. age for Possession Drift
ot (Easterbrook and Rutter, 1981, 1982)(see units ot and 00)
- 00
Qow approximately 96,000-151,000 yr B.P. age for Whidbey units on cross section only
n oot Formation (Easterbrook, 1994)(see unit Qcy)
000
B approximately 111,000-320,000 yr B.P. age for Double Bluff
65— Drift (Easterbrook, 1994)(see units oot and ooo) -
Ages of Cretaceous stage boundaries are from Obradovich (1994)
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LATE TERTIARY SEDIMENTARY AND VOLCANIC DEPOSITS
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366 — | | “]«— Approximate time of deposition of the rocks of Bulson e T
LATE : ! Creek upper lithofacies of Marcus (1981), based on : |
40 — | | : occurrence of Potamides, P. pacardi, Corbicula, Callista, | |
[ S Pitar, Solen, Mytilus, Tellina, Terebratalia, and Transversa X !
! I
z |
% | : Approximate time of deposition of the rocks of Bulson Creek lower Range of zircon fission track ages of rhyolite (Lovseth, 1975;
E - I I lithofacies of Marcus (1981), based on inclusion of rhyolite clasts written commun. from Naeser to Whetten and others, 1979;
& z MIDDLE : : that are inferred to have originated from Eocene rhyolite intrusions Evr 1980; Whetten and others, 1988)
Q | | (unit Evr) within the Chuckanut Formation that are dated at
= : Ecp | 43 £3.4 m.y. (Marcus, 1981)
|
50 — T~ Approximate time of deposition of the rocks of the Bellingham Bay
520 — Member of the Chuckanut Formation (Johnson, 1985; Evans and | L
Ristow, 1994). Detrital zircon fission track ages from the Coal | |
EARLY Mountain unit are also consistent with an early Eocene age | |
|
—  (Whetten and others, 1979) b————
57.8 — Near Mount Vernon, the Coal Mountain unit contains a tuff
. with a revised zircon fission-track age of 52.6 +4.8 Ma (R. W.
60 — Z LATE Tabor, personal commun. to Evans and Ristow;, 1994), and the
= unit is also cut by a variety of unit Evr dikes with ages ranging
636 —| E from 41 to 50 Ma (Whetten and others, 1988)
: o
= FARLY LOW-GRADE METAMORPHIC
< 654 ROCKS OF THE DARRINGTON-
S MAASTRICHTIAN DEVILS MOUNTAIN FAULT .
s ZONE (DDMFZ) Stacking of NWCS nappes; for example, Tabor and others (1988),
= ‘ Tabor (1994), Dragovich and others (1997¢), and Brown (1987)
@ LATE CAMPANIAN
“i SO Rocks of the Goat - _, Helena-Haystack mélange
E TURONIAN Island terrane NWCS _, Shuksan nappe
= .
E CENOMANIAN «——— major thrust , Welker Peak nappe
98.5 — — 7?7 nappes .
T LOW-GRADE LAYERED METAMORPHIC ROCKS -+ ', Excelsior nappe
| ! OF THE NORTHWEST CASCADE SYSTEM (NWCS)
" ALBIAN I : | | autochthon
|
3 | '
M2 — 3 | |
£ APTIAN : : blueschist facies
§ EARLY BARREMIAN | | Rocks of the Helena—Haystack mélange, of Tabor (1994) metamorphism
O | ! and Haystack terrane of Whetten and others (1980, 1988), of the NWCS
HAUTERIVIAN : : Dragovich and others (1998, 1999, 2000b)
|
VALANGINIAN : : | |
|
BERRIASIAN | :
142 | R i
TITHONIAN : |
LATE | Kdmsg :
KIMMERIDGIAN | |
: | Jhmey, | T
63 OXFORDIAN | : Jmvy, U-Pb zircon metabasite age
CALLOVIAN : | Juy and U-Pb zircon metagabbro
| I ages of the Haystack of
BATHONIAN | : Jup Whetten and others (1980,
o MIDDLE : | 1988) and Dragovich and
z BAJOCIAN I : others (1998)
|
é AALENIAN | e T o
187 — B | |
TOARCIAN : |
|
|
EARLY | PUENSBACHIAN | |
SINEMURIAN : :
HETTANGIAN Lo !
208
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BEDROCK CROSS SECTIONS A, B, AND C

Darrington—Devils Mountain fault zone (DDMFZ)
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OPEN FILE REPORT 2002-5; REVISED 2004
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Darrington—Devils Mountain fault zone (DDMFZ) B’
— 440
Blakely and others (1999) show distinct magnetic anomaly highs north of the main strand of the DDMFZ over the fault-
bounded unit Jup, in both profile and map views. Serpentinite atop Devils Mountain and Scott Mountain is associated with 400
positive (100150 nT) east-west-trending anomalies caused by the magnetite in the serpentinite matrix of the mélange
(Dragovich and others, 1998, unpub. data; Whetten and others, 1980). This provides evidence that the Helena—Haystack \
mélange is associated with ultramafite of limited vertical extent (R. Blakely, USGS, written commun. to Dragovich, 1999). — 360
B — 320
cataclasites, protomylonites and rare o~ N MSCO? . z
- mylonites along Johnson Creek portion S ountain V -
SOUTH of DDMFZ; left lateral kinematic indicators N . - \ Jun E = NORTH 280 ]
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Darrington—Devils Mountain fault zone (DDMFZ) — EXPLANATION FOR CROSS SECTIONS A, B, AND C
C _— N NORTH [ 360
_ < 320 —— ——-—-- Contact; dashed where inferred
)
800 —| 3 280 —L——  Overturned fold axis
N 2 L 240 2 O — == - - Fault, dashed where inferred, dotted where projected;
400 S o ® arrows indicate relative dip-slip motion; circled dot indicates
] B 200 i relative strike-slip motion toward viewer, circled x away
(e}
-3
"3 e —— —— —— —— Inferred bedding trace; locally projected above erosional surface
& 160 2
= S
g 120 < Total magnetic field anomaly cross section (Blakely and others, 1999)
H 60 3
2
= % Sample 15D-1: Mineralized subarkose forming a &i scale 1:12,000; no vertical exaggeration
penetratively deformed protomylonite with systematic — 40 & )
veins and fracture pattern indicating thrust deformation; 0 5 1 mile
petrographic relations indicate that mineralization —0 | | |
forming unit Jup locally effects unit Ecy, and partially
accompanies thrusting 40 0 1000 2000 3000 4000 5000 feet
\ \ \ \ \ |
-80 0 5 1 kilometer
\ \ |
GLACIAL UPLANDS CROSS SECTIONS D, E,F, G H, I, AND J
(See Fig. 5 in text for cross section K)
EXPLANATION FOR CROSS SECTIONSD,E,E G H,I, AND J
Dr
NORTH Geological Units on Cross Sections Only Well Log Information
[ 300 Possession Glaciation Double Bluff Glaciation Material Bedrock
S sand ss sandstone
Older outwash (Pleistocene)—Pre-Fraser glacial Till (Pleistocene)—Compact till and diamicton ¢ clay Density
L 200 or nonglacial sediments interbedded with sand and silt h  hardpan H hard
b boulders
3 Older till (Pleistocene)—Clay, silt, sand, and gravel Outwash (Pleistocene) —Gravel and rx rocks CSZL zgfrtlented
ng ¥, stib, ’ & moderately well-sorted, cross-bedded sand I loam )
3 si silt Example: sfc,si,s,g
- ~ 100 . . g gravel denotes soft clayey silty
S Whidbey Nonglacial Interval t sandy gravel (diamicton)
e§ e Whidbey nonglacial deposits (Pleistocene)—Mostly o
) w sand with interbeds of silt, clay, sandy clay, and silty clay 467 number type indicating water well
- CB4 letter prefix indicates geotechnical boring
scale 1:24,000; vertical exaggeration 10x
- -100 0 1 2 miles
l | J
-200 0 2000 4000 6000 8000 feet
\ \ \ |
0 1 2 kilometers
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