INACTIVE AND ABANDONED MINE LANDS—
Young America Mine, Bossburg Mining District, Stevens County, Washington

by Fritz E. Wolff, Donald T. McKay, Jr., Matthew I. Brookshier, and David K. Norman

WASHINGTON DIVISION OF GEOLOGY
AND EARTH RESOURCES
Information Circular 105
July 2007
Revised January 2008
DISCLAIMER
Neither the State of Washington, nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the State of Washington or any
agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the State of Washington or any agency
thereof.

WASHINGTON DEPARTMENT OF NATURAL RESOURCES
Doug Sutherland—Commissioner of Public Lands
DIVISION OF GEOLOGY AND EARTH RESOURCES
Ron Teissere—State Geologist
David K. Norman—Assistant State Geologist
John P. Bromley—Assistant State Geologist

Errata: The last row of Table 4 and Table 7 was missing in the previous version.

Published in the United States of America
TABLES

Table 1. Location and map information ... 6
Table 2. Mine features .. 7
Table 3. Soil analysis ... 8
Table 4. Soil quality standards for unrestricted land use 8
Table 5. Bat habitat information ... 8
Table 6. Surface water field data .. 9
Table 7. Surface water analysis and applicable
 Washington State water quality standards ... 9
INTRODUCTION

The Washington State Department of Natural Resources (DNR), Division of Geology and Earth Resources (DGER), is building a database and geographic information system (GIS) coverage of major mines in the state. Site characterization was initiated in 1999 (Norman, 2000). Work is funded through interagency grants from the U.S. Forest Service (USFS), Region 6. Other agencies sharing in the project are the U.S. Bureau of Land Management (BLM), the U.S. Environmental Protection Agency (EPA), and the Washington Department of Ecology (DOE).

More than 3800 mineral properties have been located in the state during the last 100 years (Hunting, 1956). Many are undeveloped prospects of little economic importance. Therefore, in considering the population to include in the Inactive and Abandoned Mine Lands (IAML) inventory, we have identified approximately 60 sites that meet one of the following criteria: (a) more than 2000 feet of underground development, (b) more than 10,000 tons of production, (c) location of a known mill site or smelter. This subset of sites includes only metal mines no longer in operation.

We have chosen to use the term inactive in the project’s title in addition to the term abandoned because it more precisely describes the land-use situation regarding mining and avoids any political or legal implications of surrendering an interest to a property that may re-open with changes in economics, technology, or commodity importance.

The IAML database focuses on physical characteristics and hazards (openings, structures, materials, and waste) and water-related issues (acid mine drainage and/or metals transport). Accurate location, current ownership, and land status information are also included. Acquisition of this information is a critical first step in any systematic approach to determine if remedial or reclamation activities are warranted at a particular mine. Reports such as this one provide documentation on mines or groups of mines within specific mining districts or counties. The IAML database may be viewed by contacting Fritz Wolff (360-902-1468). IAML reports are posted online at http://www.dnr.wa.gov/geology/pubs/.

SUMMARY

The Young America mine is located in the SE¼SW¼ sec. 28, and NE¼NW¼ sec. 33, T38N R38E, about 2000 feet northeast of and 400 feet above Bossburg, Wash., a small settlement on the east bank of Lake Roosevelt (Fig. 1). DGER personnel performed site characterization work in September 2001, July 2003, and August 2006.

Like the nearby Bonanza and Old Dominion mines, the Young America property was discovered by prospectors in 1885, thus making it one of the first mines to produce lead, zinc, and silver in the Colville–Northport area. Production records prior to 1905 are unknown, but data assembled for the period 1905 through 1954 show cumulative production of 13,389 tons of raw ore containing approximately 940,000 pounds of lead, 771,000 pounds of zinc, 50 ounces of gold, and 70,000 ounces of silver (Fulkerson and Kingston, 1958). All but 561 tons of reported pro-
duction were mined in the years 1945 through 1954.

Development at the Young America mine occurs in the lower unit of the Middle Cambrian Metaline Limestone, a dense, fine-grained, bluish-gray dolomite limestone. This unit strikes N 20° E and dips 12 to 20° E. In the immediate vicinity of the mine, the host rock is highly brecciated and silicified. Production came from two relatively flat-lying mineralized layers ranging from a few inches to 6 feet in thickness. Although attempts were made to find ore from several lower-elevation adits, virtually all production came from five closely connected stopes driven into a cliff band at the point of discovery. The map in Hundhausen’s (1949) report indicates that mining progressed horizontally to a point 240 feet into the cliff face, penetrating and continuing through a post-ore calcite-rich shear zone.

Primary sulfide minerals consist of an intimate mixture of sphalerite, argentiferous galena, and pyrrargyrite. Significant concentrations of geocronite, a rare lead–antimony mineral, were encountered in one stope (Purdy, 1951). Staninite and stibiconite have also been identified (Bunning, 1985).

The U.S. Bureau of Mines (USBM) conducted a diamond-drilling program on the cliff crest to the north, east, and south of the known ore body in the years 1946 through 1948 (Hundhausen, 1949). This report is an excellent description of the property and includes some geologic and metallurgical data from tests conducted at the Bureau’s (then) Albany, Oregon, research station. The program drilled 15 holes totaling 4590 feet. The drilling failed to find extensions of the high-grade sulfide mineralization previously mined, but did discover a low-grade body of highly disseminated lead-zinc mineralization.

Water impounded 36-inches deep behind a wood crib dam at the No. 1 level portal overflowed at a rate of about 1 gpm and infiltrated the waste rock dump. The pH was 8.4. Analyses for cadmium, copper, lead, and zinc met the requirements for ground water, domestic consumption, shown in (WAC 246-290). Analyses for lead and zinc exceeded the hardness-based standards for surface freshwater, chronic effects to aquatic life shown in (WAC 173-201A).

Gregor Mines, Inc., built a 100-ton/day (tpd) flotation mill directly west of the mine on the west shoulder of SR 25 in the late 1940s (Orlob, 1950). The mill and the ore were operated intermittently by various concerns until about 1957, at which time the equipment was moved to the Utahcan mine near Ione, Wash. The tailings were discharged tailinghill from the mill into a one-acre area situated between the highway and the east shore of Franklin D. Roosevelt Lake, a distance of 650 feet. Judging from the tonnage mined during the mill’s operation from 1948 to 1954, the total volume is approximately 9500 cubic yards with an average thickness in the range of 2 to 3 feet. Analyses of a sample taken in 2006 indicates the tailings exceed DOE established standards for arsenic, cadmium, lead, and zinc for both categories (industrial and unrestricted use) shown in Table 4.

The property between SR 25 and the lake was being developed for recreational use at the time the sample was taken (see Fig. 13). A 12-inch-thick mantle of locally available sand and gravel has been spread over the tailings in the past.

The room and pillar stopes in the cliff provide excellent habitat for cave-dwelling wildlife. We observed a cougar (Puma concolor) in the southernmost of the five adits. Four unidentified bats were observed flying between the adits. See Table 5.

ACCESS

The mine is located on BLM-managed land a quarter mile north of Bossburg, Wash., on SR 25. A two-wheel-drive gravel road, crossing private property, leads directly to the No. 1 adit. The mill ruins are located on private property below and adjacent to the west shoulder of SR 25 directly west of the mine.

OWNERSHIP

No active unpatented claims or patented claims were in place at the Young America mine as of June 2006 (Allen Agnew, BLM Land Records, written commun., 2006). The original four claims were named the Sunset, Young America, Bluff, and Cliff (Fig. 2). A BLM cadastral survey monument placed in 1985 is located at the foot of the primary waste rock dump. It is marked “Sunset cor 4/ Ya cor3/ T38N R38E S33”. Digital coordinates for this marker are shown in Table 2. Restaking activity between 1979 and 1997 on and around the original claims has not been kept current.

Figure 2. Location of the original four unpatented claims: Young America, Sunset, Cliff, and Bluff (1994 BLM survey, DGCR map file). The lake shore meander shows current shoreline of Lake Roosevelt, which was impounded behind Grand Coulee Dam in the 1930s.
HISTORY

Like the nearby Bonanza and Old Dominion mines, the Young America mine was discovered by prospectors in 1885, thus making it one of the first mines to produce lead, zinc, and silver in the Colville–Northport area. The mine was operated sporadically by a number of different companies and leaseholders until its last known production in 1954 (Appendix C). Production records prior to 1905 are unknown, but during the period 1905 through 1954, cumulative output amounted to approximately 940,000 pounds of lead, 771,000 pounds of zinc, 50 ounces of gold, and 70,000 ounces of silver from 13,389 tons of raw ore (Fulkerson and Kingston, 1958). Production records prior to 1905 are unavailable. Of the total reported, all but 561 tons were mined during the years 1945 through 1957. Several companies conducted exploration activities in recent years: Silver Hill Mines, Inc. (1990–1992); Conjecture Silver Co. Inc. (1997); and Itex Corporation (1997–2000).

The earliest documented operator of the mine was Young America Cliff Consolidated Mining Co. for the years 1897 to 1905, followed by Robena Land Co. from 1907 to 1915. Cuprite Mining Co., a consortium of Yakima investors, purchased the property in 1916 and held the property until 1948. Ownership by possessory title after 1948 is murky, but it appears Cuprite Mining sold or leased their interest at about that time. An article in the Spokesman-Review (March 2, 1949) stated that “Gregor Mines, Inc. . . . entered the Inland Empire last year and expects to operate throughout the coming season at . . . the Young America [mine] at Bossburg, Wash.” Orlob’s report (1950) credited Gregor Mines with construction and operation of the flotation mill. An agreement dated Oct. 1, 1950, stated that Walter Morris and Perry Leighton of Colville were at that time “owners of the Young America mine and mill” and that the property was under lease and purchase option to Young America Mines, Inc. of Seattle (DGER mine file). The purchase option appears to have been exercised as indicated by an article stating that six men were at work for Young America Mines, Inc. “. . . under the direction of W. Morris, former owner [of the mine]” (Spokesman-Review, May 27, 1951). The Wallace Miner (May 1, 1952) reported that Earl Gibbs and Ira Hunley of Colville, dba Bonanza Lead Co., had begun producing 60 tons per day at the Young America in a profit-sharing agreement with Young America Mines, Inc. The last reported production at the mine was 3600 tons mined by Bonanza Lead Co. in 1953.

GEOLOGIC SETTING

All development at the mine was in the lower unit of the Middle Cambrian Metatine Limestone, a dense, fine-grained, bluish-gray dolomitic limestone that strikes N20°E and dips 12–20°E. In the immediate vicinity of the mine, the host rock is highly brecciated and silicified. Production came from two relatively flat-lying mineralized zones parallel to each other but separated by about 30 feet in elevation. These two zones transgressed bedding planes and have been mined up-dip about 60 feet in elevation to a point 240 feet distant from adits in the cliff face where a post-ore, calcite-rich shear zone was encountered. It dips 72°SE, but the reported displacement is relatively small—“in most places the east side is down only a few feet”—and ore continued on the down-thrown east side of the shear (Hundhausen, 1949).

The ore lenses range in thickness from a few inches to 6 feet. Primary sulfide minerals consist of an intimate mixture of sphalerite, argentiferous galena, and pyrrargyrite. In addition, the upper ore horizon carried a significant concentration of geocronite, a lead-antimony mineral. In metallurgical tests conducted by USBM, the galena and sphalerite fractions were found to range in size from minus 48 to plus 560 mesh (Hundhausen, 1949). Some tetrahedrite and chalcopyrite inclusions appeared in the galena. Bunning (1985) reported that a sample of primary sulfides from the upper mineralized zone contained 1000 ppm tin, probably from the mineral stannite. She also identified the presence of stibiconite, a hydrated antimony oxide. In addition to identifying stibiconite var. schulzite, Purdy (1951) identified microscopic inclusions of cobaltite in euhedral grains of pyrite. The carbonates of lead and zinc, cerussite and smithsonite, were mined from a narrow high-grade zone of oxidation prior to 1905. Although hand-picked specimens are reported in anecdotal accounts as containing bonanza-type assays of lead, zinc, and silver, a 350-pound sample taken by the USBM from the cliff stope is probably the best representation of the kinds of values contained in the sulfide vein material:

<table>
<thead>
<tr>
<th>Zn (%)</th>
<th>Pb (%)</th>
<th>Cu (%)</th>
<th>Fe (%)</th>
<th>Sb (%)</th>
<th>Ag (opt)</th>
<th>Au (opt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.9</td>
<td>5.9</td>
<td>0.09</td>
<td>1.2</td>
<td>0.07</td>
<td>10.6</td>
<td>0.011</td>
</tr>
</tbody>
</table>

The gangue minerals are pyrite, quartz, calcite, and siderite. A feature discovered in 1920 appears to be a pre-ore void filled with post-ore erosional or glacial deposited materials. Patty (1921) reported that a 40-foot inclined shaft sunk at the north end of the No. 4 level stope encountered “. . . ore for the first 20 feet in the shaft, then gravel carrying occasional boulders of ore, and after sinking through 10 feet of gravel the shaft was abandoned”.

The primary mineralization shows some characteristics of a replacement-type deposit and some characteristics of open-
space filling as indicated by observations made by different investigators. It is possible that both processes have taken place at separate times on one or more occasions. On the basis of thin-section studies, Purdy (1951) postulated eight different stages of mineralization at the Young America, beginning with pre-ore fracturing, followed by deposition of sulfides, quartz, calcite, and siderite in different episodes, and ending with post-mineral movement on the calcite-rich shear zone described above.

Hundhausen concluded that the “... ore shoots in the mine consist of replacement stringers, veins and lenses along an irregular, gently dipping zone of movement. The ore is not confined within sharply defined walls. In some places the zone consists of a series of narrow bands of ore separated by unreplaced limestone”.

We observed sharp boundaries above and below the few exposures of sulfides left in place, which lends credence to the role played by open-space filling (Fig. 3). Numerous flexures within the mine, faults both normal and reverse, and a tightly folded syncline on a cliff immediately south of the cliff adits indicate that the area has been the scene of significant tectonic activity in the past. Bunning (1985) examined a piece of dump rock consisting of brecciated limestone clasts cemented with quartz. “The quartz, deposited concentrically around each fragment, suggests passive, open-space filling. The passive breccia filling, sharp contacts of ore with the wall rocks, and variable thickness and pitch of the ore zone, all indicate the ore was deposited in an open zone—most likely a fault—in the otherwise unaltered limestone.”

The USBM diamond-drilling program in the years 1946 through 1948 investigated possible extensions of the known ore bodies. Their report is an excellent description of the property and includes some geologic and metallurgical data from tests conducted at the Bureau’s (then) Albany, Oregon, research station. In the course of the program, 15 holes totaling 4590 feet were completed. Drill sites were located on top of the NE-striking limestone cliff along a line extending 200 feet north of and 1000 feet south of the last-developed stopes. The holes were approximately 200 feet apart. The drilling failed to intersect primary sulfide mineralization of the type and grade previously mined. It did identify a large area of disseminated sphalerite and galena in a “bleached, silicified dolomitic limestone southwest of the mine”. Hundhausen used the term “dolomitic ore” to describe the discovery. This zone starts about 80 feet beneath the surface and “ranges from 30 to 150 feet in thickness. It trends N30E and dips gently to the southeast ... throughout a distance of 200 feet from northeast to southwest and throughout a distance of 200 feet from east to west.” A general assessment of assay data from the recovered core indicates consistent assays of ≤1% Pb, ≤1% Zn, ≤1 opt Ag, and a trace to 0.01 opt Au. Cross sections in Hundhausen’s report show subsurface geology and drill intercepts.

Hundhausen concluded that the “... ore shoots in the mine consist of replacement stringers, veins and lenses along an irregular, gently dipping zone of movement. The ore is not confined within sharply defined walls. In some places the zone consists of a series of narrow bands of ore separated by unreplaced limestone”.

We observed sharp boundaries above and below the few exposures of sulfides left in place, which lends credence to the role played by open-space filling (Fig. 3). Numerous flexures within the mine, faults both normal and reverse, and a tightly folded syncline on a cliff immediately south of the cliff adits indicate that the area has been the scene of significant tectonic activity in the past. Bunning (1985) examined a piece of dump rock consisting of brecciated limestone clasts cemented with quartz. “The quartz, deposited concentrically around each fragment, suggests passive, open-space filling. The passive breccia filling, sharp contacts of ore with the wall rocks, and variable thickness and pitch of the ore zone, all indicate the ore was deposited in an open zone—most likely a fault—in the otherwise unaltered limestone.”

The USBM diamond-drilling program in the years 1946 through 1948 investigated possible extensions of the known ore bodies. Their report is an excellent description of the property and includes some geologic and metallurgical data from tests conducted at the Bureau’s (then) Albany, Oregon, research station. In the course of the program, 15 holes totaling 4590 feet were completed. Drill sites were located on top of the NE-striking limestone cliff along a line extending 200 feet north of and 1000 feet south of the last-developed stopes. The holes were approximately 200 feet apart. The drilling failed to intersect primary sulfide mineralization of the type and grade previously mined. It did identify a large area of disseminated sphalerite and galena in a “bleached, silicified dolomitic limestone southwest of the mine”. Hundhausen used the term “dolomitic ore” to describe the discovery. This zone starts about 80 feet beneath the surface and “ranges from 30 to 150 feet in thickness. It trends N30E and dips gently to the southeast ... throughout a distance of 200 feet from northeast to southwest and throughout a distance of 200 feet from east to west.” A general assessment of assay data from the recovered core indicates consistent assays of ≤1% Pb, ≤1% Zn, ≤1 opt Ag, and a trace to 0.01 opt Au. Cross sections in Hundhausen’s report show subsurface geology and drill intercepts.

OPENINGS

In this report, we have used the same nomenclature as Hundhausen (1949) for the features readily identifiable in the field in 2001 and 2003, the exception being post-1949 development that added minor changes to the landscape.

Most production took place in the four adjacent adits highest on the cliff face (Fig. 4). The opening shown in Figure 5 is probably the No. 2 level identified as the main haulage way by Hundhausen (1949). The other three 8 by 10 foot adits are about 20 feet apart and strike east into a conjoined room-and-pillar stope rising up-dip 12 degrees. The room is approximately 50 feet wide, 60 feet long, and 6 feet high. We discovered a cougar (Puma concolor) resting in the southernmost opening. Bats of an unidentified species inhabit the stope.
We found an extremely hazardous open stope terminating in a steeply inclined unfenced winze. This feature is located on a forested slope near the No. 5 tunnel portal, approximately 120 feet below the cliff adits (Figs. 6 and 7).

About 30 feet below and 100 feet north of the No. 2 level, an 8 by 10 foot opening has been driven east into the limestone and curves around to the southeast beneath the cliff adits. The location of this opening coincides with the No. 4 level, and the band of disseminated sulfide minerals shown in Figure 3 is the near-surface extension of the “lower vein outcrop” (Hundhausen, 1949).

MATERIALS AND STRUCTURES
The assay office and a cabin were still standing in September 2003. A raw-ore storage bunker is located at the foot of the primary waste rock dump. The aerial tram cable and anchoring turnbuckles are still in place (Fig. 8). The mill, described below, is in ruins (Fig. 9).

WATER
Water was impounded 36 inches deep behind a wood crib dam at the No. 1 level portal (Fig. 10). An overflow of ~1 gallon/minute infiltrated the waste rock dump. The pH measured 8.4 (alkaline). Analyses for cadmium, copper, lead, and zinc met the requirements for ground water shown in Table 7. Analyses for lead and zinc exceeded the hardness-based standards for surface water shown in Table 7 and Appendix B. The water was clear; the bed unstained.

Water supporting a thick stand of grass, seeps out and infiltrates near the foot of the primary waste rock dump near the lower tram terminal. The pH measured 8.0 (alkaline).

MILLING OPERATIONS
In 1919, Cuprite Mining Co. attempted to make a separation of lead and zinc fractions in a pilot mill using Wilfley shaking tables to avoid the (then) heavy smelter penalty for zinc content in lead-silver ores. Patty (1921) reported the experiment was unsuccessful because equipment was unavailable to provide a uniform, screen-sized feed.

Gregor Mines, Inc., built a flotation mill of about 100-tpd capacity in the late 1940s (Orlob, 1950). Concrete footings and ruins of the mill lie adjacent to the west shoulder of SR 25 below the mine site. He reported, “Tailings from the mill have, in the past, been discharged onto a flat between the mill and a railroad embankment along the [Franklin D. Roosevelt Lake] shore. A culvert beneath the railroad would normally carry the overflow from the pond into the lake. A long the lake shore below the culvert there is a large deposit of white sludge . . . indicating that the dikes were not properly maintained during mill operations.” We found the ravine under the railroad tracks, but the culvert appears to have been buried, and the deposit of white sludge is no longer visible. The shoreline at this point cannot be safely examined without climbing gear because of the railroad ballast embankment’s high angle of repose.

Hunting (1956) reported that Young America Mines, Inc., shipped a total of 23 tons of lead concentrate and 50 tons of zinc concentrate in the years 1950 and 1951. Zinc concentrates went to the Bunker Hill and Sullivan Company’s electrolytic zinc plant, and lead concentrate to the smelter, both in Kellogg,
Idaho (Hundhausen, 1949). This mill processed approximately 12,800 tons of raw ore, with the last reported operation in 1954. The existing tailings, which date from this time period, inundate trees to a depth of several feet in the immediate area of the mill, and continue west across a flat toward the Burlington Northern railroad tracks (Fig. 11). We estimate the volume at about 9500 cubic yards, with an average thickness of 3 feet. They cover an area of approximately 2 acres as shown in Fig. 1.

The property in the immediate vicinity of the mill site between the Burlington Northern tracks and SR 25 has been subdivided into recreational-type lots. Photos of a utility trench opened in August 2006 show that the tailings underlie a gravel cover for a distance of 200 feet along the development’s access road (Figs. 12 and 13). A grab sample of tailings from this area showed analyses of arsenic, cadmium, lead, and zinc that exceed the standards established by DOE for industrial or commercial use and for unrestricted use. (See Tables 3 and 4.) Backhoe pits indicate there are no tailings south of the impoundment berm shown in Figure 12.

The mill equipment was dismantled and re-erected in 1957 at the Utahcan Company’s lead-zinc discovery 7 miles northwest of Ione, Wash. (Metaline Falls News, Nov. 14, 1957).

Waste Rock Dumps

Three waste rock dumps of less than 500 tons (estimated) lie adjacent to portals No. 1, 4, and 5. The primary waste rock dump lies at a 40° angle of repose immediately beneath the cliff adits (Fig. 4). On the north side of this dump, estimated at 3000 tons, waste rock appears to have slid downhill exposing previously buried limestone bedrock (Fig. 14).

General Information

Names: Young America, Robena
MAS/MILS Sequence Number: 0530650435
Access: two-wheel drive
Status of Mining Activity: none
Claim Status: closed June 2006
Current Ownership: Bureau of Land Management and private
Surrounding Land Status: Bureau of Land Management
Location and Map Information: see Table 1
Directions: Follow SR 25 approximately 15 miles north of Kettle Falls to the settlement of Bossburg. The mine can be accessed by a short unpaved road ¼ mile north of Bossburg that leads to the toe of a nearly vertical limestone cliff in which the mine is established. The access road is ungated but traverses private land.

Mine Operations Data

Type of Mine: underground

![Figure 8. Primary waste rock dump. View is to the east.](image)

![Figure 9. Mill ruins and crusher foundations.](image)

Table 1. Location and map information.

<table>
<thead>
<tr>
<th>Mine Property</th>
<th>County</th>
<th>Location</th>
<th>Decimal Latitude</th>
<th>Decimal Longitude</th>
<th>1:24,000 Quad.</th>
<th>1:100,000 Quad.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young America</td>
<td>Stevens</td>
<td>secs. 28 and 33, T38N R38E</td>
<td>48.75819</td>
<td>118.03586</td>
<td>Bossburg</td>
<td>Republic</td>
</tr>
</tbody>
</table>

Commodities mined: zinc, lead, silver; minor antimony and tin
Geologic Setting: a flat-lying shear zone in the lower unit of the Middle Cambrian limestone or dolomitic limestone (Metaline Limestone) (Hundhausen, 1949)
Ore Minerals: primary minerals: sphalerite (ZnS), galena (PbS), geocronite (5PbS·Sb2S3) (Hundhausen, 1949);
secondary minerals: smithsonite (ZnCO₃), cerussite (PbCO₃), stannite (Cu₂FeSnS₄), chalcopyrite (CuFeS₂), tetrahedrite (complex copper-iron sulfide solid solution containing various amounts of Sb, As, Ag, Te); stibiconite (Sb₃O₆(OH))

Non-ore minerals: quartz (SiO₂), calcite (CaCO₃), siderite (FeCO₃), pyrite (FeS₂)

Host rock: dolomitic limestone

Development: 1500 feet of drifts and adits, and considerable stoping (DGER mine file)

Production: ~940,000 pounds of lead, 771,000 pounds of zinc, 50 ounces of gold, and 70,000 ounces of silver from

Table 2. Mine features. N/A, not applicable; **, data from Hundhausen (1949).

<table>
<thead>
<tr>
<th>Description</th>
<th>Condition</th>
<th>Fenced (yes/no)</th>
<th>Length (feet)</th>
<th>Width (feet)</th>
<th>Height/depth (feet)</th>
<th>True bearing</th>
<th>Elev. (feet)</th>
<th>Decimal latitude</th>
<th>Decimal longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>cliff adits (4), upper vein system stope(s)</td>
<td>open</td>
<td>no</td>
<td>60–240**</td>
<td>10</td>
<td>8</td>
<td>E</td>
<td>1760</td>
<td>48.75838</td>
<td>118.03478</td>
</tr>
<tr>
<td>No. 4 level adit, lower vein system stope(s)</td>
<td>open</td>
<td>no</td>
<td>100**</td>
<td>10</td>
<td>8</td>
<td>S20E</td>
<td>1730</td>
<td>48.75907</td>
<td>118.03471</td>
</tr>
<tr>
<td>N. 5 level adit</td>
<td>caved</td>
<td>no</td>
<td>80**</td>
<td>5</td>
<td>7</td>
<td>N80E</td>
<td>1600</td>
<td>48.75812</td>
<td>118.03465</td>
</tr>
<tr>
<td>BLM cadastral survey monument</td>
<td>brass</td>
<td>no</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>1600</td>
<td>48.75879</td>
<td>118.03523</td>
</tr>
<tr>
<td>No. 1 adit, water level</td>
<td>open</td>
<td>no</td>
<td>170**</td>
<td>5</td>
<td>7</td>
<td>S45E</td>
<td>1580</td>
<td>48.75819</td>
<td>118.03538</td>
</tr>
<tr>
<td>mill site</td>
<td>ruins</td>
<td>no</td>
<td>30</td>
<td>30</td>
<td>N/A</td>
<td>N/A</td>
<td>1410</td>
<td>48.76034</td>
<td>118.03821</td>
</tr>
<tr>
<td>tailings disposal site</td>
<td>dry, partially removed</td>
<td>no</td>
<td>~450</td>
<td>~340</td>
<td>2-3</td>
<td>N/A</td>
<td>1370</td>
<td>48.76031</td>
<td>118.03887</td>
</tr>
</tbody>
</table>
13,389 tons of raw ore (Fulkerson and Kingston, 1958); production prior to 1904 undocumented

Mill data: Ruins of 100-tpd flotation mill built in 1940s are situated a few feet west of SR 25 below the mine access road. It produced separate lead and zinc concentrates.

PHYSICAL ATTRIBUTES

Features: see Table 2
Materials: none
Machinery: none
Structures: assay office, cabin
Waste rock dumps, tailings impoundments, highwalls, or pit walls: Tailings lie on a flat west of the mill between the Burlington Northern railroad tracks and SR 25.
Analysis of waste rock dumps: none
Waste rock, tailings, or dumps in excess of 500 cubic yards: three
Reclamation activity: none
Analysis of tailings: see Tables 3 and 4

VEGETATION

Thick inland fir, larch, cottonwood

VEGETATION

Thick inland fir, larch, cottonwood

WILDLIFE

A cougar (Puma concolor) was observed in the southernmost of the four cliff adits at the 2000-foot elevation. See Table 5 for bat habitat information.

WATER QUALITY

Surface waters observed: Franklin D. Roosevelt Lake
Proximity to surface waters: tailings/mill 100 feet; mine 1400 feet

Domestic use: grazing?

Acid mine drainage or staining: none

Water field data: see Tables 6 and 7

Surface water migration: No. 1 adit discharge infiltrates waste rock dump

ACKNOWLEDGMENTS

The authors thank our editors Jari Roloff and Karen Meyers for helpful suggestions on the layout and content of this report. Lupita Lopez provided information on former owners of the Young America mine from records in the Washington State Corporate Archives.

REFERENCES CITED

Table 6. Surface water field data.

<table>
<thead>
<tr>
<th>Description</th>
<th>Flow (gpm)</th>
<th>Conductivity (µS/cm)</th>
<th>pH</th>
<th>Bed color</th>
<th>Temp. (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>“No. 1” level discharge</td>
<td><1</td>
<td>600</td>
<td>8.4</td>
<td>natural</td>
<td>52</td>
</tr>
</tbody>
</table>

Table 7. Surface water analysis. Metal concentrations are in micrograms/liter (µg/L); hardness is in milligrams/liter (mg/L); USEPA, U.S. Environmental Protection Agency; – – –, no data; **, standards for these metals are hardness dependent; ≤ indicates metal was not detected—the number following is the practical quantitation limit above which results are accurate for the particular analysis method—the metal could be present in any concentration up to that limit and not be detected. Conversion formulae are shown in http://www.ecy.wa.gov/pubs/wac173201a.pdf. Standards calculated for hardness values specific to Part 1 below are shown in Appendix B. Analyses in bold indicate levels that exceed one or more standards in Appendix B.

PART 1: ANALYSIS BY USEPA METHOD 6020, INDUCTIVELY COUPLED PLASMA/MASS SPECTROMETRY

<table>
<thead>
<tr>
<th>Sample location</th>
<th>Arsenic</th>
<th>Cadmium**</th>
<th>Copper**</th>
<th>Iron</th>
<th>Lead**</th>
<th>Mercury</th>
<th>Zinc**</th>
<th>Hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>“No. 1” level portal</td>
<td>– – –</td>
<td>≤2.5</td>
<td>≤5.0</td>
<td>– – –</td>
<td>12.1</td>
<td>– – –</td>
<td>375</td>
<td>345</td>
</tr>
</tbody>
</table>

PART 2: APPLICABLE WASHINGTON STATE WATER QUALITY STANDARDS

<table>
<thead>
<tr>
<th>Type of standards (applicable Washington Administrative Code)</th>
<th>Arsenic</th>
<th>Cadmium</th>
<th>Copper</th>
<th>Iron</th>
<th>Lead</th>
<th>Mercury</th>
<th>Zinc</th>
<th>Hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface water standards (WAC 173-201A, Standard for aquatic life in surface freshwater, chronic level maximums at 100 mg/L hardness)</td>
<td>190</td>
<td>**</td>
<td>**</td>
<td>none</td>
<td>**</td>
<td>0.012</td>
<td>**</td>
<td>100</td>
</tr>
<tr>
<td>Ground water standards (WAC 246-290, Washington State Department of Health, standards for ground water, domestic consumption)</td>
<td>50.0</td>
<td>none</td>
<td>1300</td>
<td>300 (cosmetic only)</td>
<td>15</td>
<td>2.0</td>
<td>5000</td>
<td>– – –</td>
</tr>
</tbody>
</table>
Appendix A. Methods and field equipment

METHODS

We recorded observations and measurements in the field. Longitude and latitude were recorded with a global positioning system (GPS) unit in NAD83 decimal degree format. Literature research provided data on underground development, which was verified in the field when possible.

Soil samples from dumps or tailings were taken from subsurface material and double bagged in polyethylene. Chain of custody was maintained.

Soil samples were analyzed for the metals listed in this report by inductively coupled plasma/mass spectrometry (ICP/MS) following USEPA (U.S. Environmental Protection Agency) Method 6010. Holding times for the metals of interest were observed.

Instrument calibration was performed before each analytical run and checked by standards and blanks. Matrix spike and matrix spike duplicates were performed with each set.

FIELD EQUIPMENT

barometric altimeter
binoculars
digital camera
flashlight
Garmin GPS III+, handheld GPS unit
Hanna Instruments DiST WP-3 digital conductivity meter and calibration solution
Oakton digital pH meter
Oakton digital electrical conductivity meter
Taylor model 9841 digital thermometer
Appendix B. Water quality standards for hardness dependent metals

Chronic standard in micrograms/liter (μg/L)

<table>
<thead>
<tr>
<th>Sample location</th>
<th>Hardness (μg/L)</th>
<th>Cd (μg/L)</th>
<th>Cu (μg/L)</th>
<th>Pb (μg/L)</th>
<th>Zn (μg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>"No. 1" level portal</td>
<td>345</td>
<td>2.5</td>
<td>32.7</td>
<td>9.4</td>
<td>298.4</td>
</tr>
</tbody>
</table>
Appendix C. Mining companies and individuals associated with ownership at the Young America mine

<table>
<thead>
<tr>
<th>Company</th>
<th>Registered in Washington?</th>
<th>Date registered with Sec. of State</th>
<th>Date stricken or dissolved</th>
<th>Comment</th>
<th>Place of business</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young America Consolidated Mining Co.*</td>
<td>yes</td>
<td>Jan. 1886</td>
<td>1923, for non-payment of fees</td>
<td>shipped hand-sorted ore until 1897 prox.</td>
<td>Spokane Falls, Wash.</td>
</tr>
<tr>
<td>Young America and Cliff Consolidated Mining Co.*</td>
<td>yes</td>
<td>1897</td>
<td>1909, for non-payment of fees</td>
<td>mined 1897–1905</td>
<td>Spokane, Wash.</td>
</tr>
<tr>
<td>Robena Lead Co.</td>
<td>no</td>
<td>N/A</td>
<td>N/A</td>
<td>1907–1915</td>
<td>unknown</td>
</tr>
<tr>
<td>Leila Archibald, Frank Riggle, Perry Leighton, W. C. Morris</td>
<td>no</td>
<td>N/A</td>
<td>N/A</td>
<td>exploration activities; possessory title only; lease to Young America Mines, Inc., 1950</td>
<td>Bossburg, Wash.</td>
</tr>
<tr>
<td>Conjecture Silver</td>
<td>no</td>
<td>N/A</td>
<td>N/A</td>
<td>1997 exploration activities, possessory title only</td>
<td>unknown</td>
</tr>
</tbody>
</table>

*, corporate tracking cards from State Archives in DGER mine file; N/A, not applicable