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INTRODUCTION

This report is a companion document to the recently published
“Geologic Map of Washington—Northwest Quadrant” (Wash-
ington Division of Geology and Earth Resources publication
GM-50, Dragovich and others, 2002b). That map, published at a
scale of 1:250,000, portrays Washington geology on the basis of
units defined by age and lithology. The map of this report (Fig.
1, scale=1:625,000) mostly follows the geologic contacts and
structures of GM-50. The map differs from GM-50 in that we
have attempted to group rocks that have experienced the same
tectonic evolution, aspects of which are described under each
unit listed below. Many units so defined are allochthonous and
fault bounded and thus fit the definition of ‘terranes’. However,
the degree to which units of different regional map areas or of
slightly different tectonic setting and age are related or were
once contiguous is poorly known. Thus we have referred to
these units as ‘tectonic assemblages’ rather than terranes so as to
invite efforts to understand correlations and pre-orogenic con-
nections. Units given the same color in this report have enough
lithologic and tectonic features in common that they are consid-
ered to be directly related to each other.

Two terranes of regional extent long recognized as defining
a tectonic context for northwest Washington are Wrangellia, un-
derlying Vancouver Island, and Quesnellia, lying east of the
Methow Valley and comprising part of the North American con-
tinent since the Middle Jurassic (for example, Monger and oth-
ers, 1982). The tectonic map of this report nudges into the edge
of Quesnellia (QN) at the northeast corner, but does not reach
Wrangellia. The relation of Wrangellia and Quesnellia to north-
west tectonics is portrayed in the cartoon drawings of Figure 4.

A difficult problem in assessing the tectonic evolution of the
region is a paucity of radiometric ages for blueschist facies
rocks of the Northwest Cascades and San Juan Islands thrust
systems. Because Early Cretaceous mineral ages are known for
the Easton Metamorphic Suite and Lopez Structural Complex,
we tentatively consider blueschist minerals in other units of
these thrust systems to be of similar age.

TECTONIC ASSEMBLAGES

(Arranged approximately from younger to older)

Volcanic rocks of the Cascade arc (CA)

Protolith: Basalt to rhyolite volcanic rocks and volcanic derived
sediments. Tectonic setting: Andean arc. Protolith age: Oligo-
cene to present. References: Ford, 1959; Tabor and others,
2000, in press; Hildreth and others, 2003.

Volcanic rocks of the Challis arc (CL)

Protolith: Basalt to rhyolite volcanic rocks and volcanic-lithic
clastic sedimentary rocks. Tectonic setting: Igneous rocks of
this age range are widely distributed across the Pacific North-

west. Typical calc-alkaline compositions in western Washing-
ton are the basis for assigning these rocks an arc origin.
Protolith age: Eocene to Early Oligocene. Tectonite fabric: Ab-
sent except in fault zones. References: Vance, 1957, 1982; Ta-
bor and others, 2000, 2002.

Plutons (P1, P2, P3, P4, P5)

Cascade plutons are mostly diorite, quartz diorite, and tonalite.
These rocks are derived from calc-alkaline magmas interpreted
to be generated by subduction-related processes. Separation of
plutons based on age (P1–P5) is somewhat arbitrary, but reflects
natural breaks in clusters of radiometric ages. Fabrics of P1
through P4 plutons range in different places from being entirely
igneous, commonly showing magmatic foliation, to completely
metamorphic, exhibited as orthogneiss. Large plutons are com-
posites of multiple injections, dominantly sheets. The depth ge-
ometry of some P1 through P3 plutons can be inferred (as shown
in cross sections of Fig. 2) from down-plunge views of the coun-
try-rock structure with which they are concordant. For other
plutons, there is no direct evidence of the depth structure. Rela-
tively shallow floors are tentatively inferred for P5 batholiths
shown on the cross sections, based on comparison with the
known depth-geometry of similar batholiths elsewhere on earth
(for example, Benn and others, 1999; Brown and Tryggvason,
2001). Pluton fabrics serve as useful markers of strain and age
of deformation. Pluton aureoles bear pressure sensitive meta-
morphic minerals that coupled with pluton ages give a depth-
time relation for the orogen. References: Tabor and others,
1987, 2002, in press; Haugerud and others, 1991; Brown and
Walker, 1993; Paterson and Miller, 1998; Brown and McClel-
land, 2000; Miller and others, 2000; Miller and Paterson, 2001a.

Olympic Subduction Complex (OS)

Protolith: Deep marine lithic sandstone, siltstone, and shale.
Turbidites are common. Tectonic setting: Accretionary prism.
Protolith age: Lower Eocene to Pliocene, based on fossils and
fission track ages. Metamorphic facies: Ranges from zeolite
facies in the western part to prehnite-pumpellyite and locally
greenschist facies in the east. Metamorphic age: Eocene to Mio-
cene. Tectonite fabric: Diapiric mélange and broken formation
are notable in the western part, slaty cleavage and imbricate
thrust structure in the eastern part. References: Stewart, 1974;
Tabor and Cady, 1978a,b; Brandon and Vance, 1992.

Olympic Peripheral Rocks (OP)

Protolith: Tholeiitic basalt (Crescent basalts) and continent-
derived marine sediments. Tectonic setting: Forearc rift zone in
a forearc sliver translated north relative to the continent. Proto-
lith age: Lower Eocene to Pliocene, based on Ar-Ar ages in
basalt and fossils in sedimentary units. Metamorphic facies:
Mostly unmetamorphosed, local prehnite-pumpellyite facies.



Tectonite fabric: Minimal. References: Rau, 1981; Tabor and
Cady, 1978a; Babcock and others, 1992, 1994.

Chuckanut and Swauk Formations,
Puget Group (CN)

Includes other related units. Protolith: Arkosic and lithic sand-
stone, siltstone, conglomerate, and coal. Mostly fluvial deposi-
tion, locally marine near Seattle. Tectonic setting: Intra-
continental rift zones, likely strike-slip pull-apart basins. This
unit is transitional to and partly overlaps OP across the Coast
Range Boundary and Southern Whidbey Island faults. Protolith
age: Early Eocene to Oligocene from fossils and fission-track
ages of zircons. Metamorphic facies: Zeolites occur locally.
Tectonite fabric: Absent except in fault zones. References:
Gresens and others, 1981; Tabor and others, 1984; Johnson,
1984, 1985; Evans and Ristow, 1994.

Nanaimo Group (NA)

Protolith: Mostly marine, deep-water sandstone, siltstone and
mudstone; local conglomerate, coal. Tectonic setting: Intra-
continental basin near the edge of North America. Possibilities
for basin formation include strike-slip pull-apart, forearc in
front of the Coast plutonic complex, or (less likely) foreland de-
pression in front of west-vergent thrusts emanating from the
Cascade core. Protolith age: Late Cretaceous (90–65 Ma),
based on fossils. Metamorphic facies: Insignificant to very low-
grade burial metamorphism. Tectonite fabric: Slaty cleavage
related to Cowichan fold and thrust system is broadly developed
along the southwestern flank of the Nanaimo belt in Canada, but
is generally absent except in fault zones in Washington. Refer-
ences: Pacht, 1984; England and Calon, 1991; Mustard, 1994.

Methow Stratigraphic Sequence (MT)

Protolith: Jurassic and Early Cretaceous rocks are dominantly
marine volcanic-lithic clastic sedimentary rocks and lesser an-
desitic-dacitic volcanic rocks. Provenance of sediments is east
of the basin. The mid-Cretaceous part of the sequence is marked
by the appearance of chert-lithic clastic rocks with a western
provenance. Tectonic setting: During the Jurassic and Early
Cretaceous, the Methow sequence is interpreted to have formed
along the continental margin outboard of an Andean arc to the
east and with open ocean to the west. Sedimentary facies begin-
ning late in the Early Cretaceous (~110 Ma) indicate develop-
ment of a foreland basin setting caused by thrust loading in the
Cascade core on the western flank of the Methow sequence. The
depositional basin changes from marine to subaerial in the early
Late Cretaceous (100–90 m.y.a.). Protolith age: Middle Juras-
sic to Late Cretaceous, based on fossils in sedimentary rocks
and U-Pb ages of 87–100 Ma for igneous components of the se-
quence and 88–90 Ma for cross-cutting plutons. Metamorphic
facies: Zeolite to prehnite-pumpellyite facies in the Methow
Valley, increasing to amphibolite facies at the margin of the
Cascade crystalline core. Metamorphic age: Cretaceous. Tec-
tonite fabric: No pervasive tectonite fabric through the Methow
Valley area. Rocks are phyllitic to schistose along the flank of
the crystalline core. References: Tabor and others, 1968; Barks-
dale, 1975; Tennyson and Cole, 1978; Dragovich and Norman,
1995; Haugerud and others, 1993, 2002.

Chiwaukum Schist (CS)

Includes Tonga Formation, banded gneiss, and Nason Ridge
migmatitic gneiss. Protolith: Mostly sandstone and mudstone
with volcanic-arc provenance; turbidite bedding is preserved in
lower grades. Limestones, oceanic basalts, cherts, and ultramaf-

ic rocks comprise lesser components, presumed to be structur-
ally intercalated with the clastic rocks. A broad zone of
migmatite of dominantly injection origin is developed through
the central part of the Chiwaukum unit (see migmatite on map).
Tectonic setting: Accretionary wedge. Protolith age: No reli-
able direct information on the protolith age is available. Indi-
rectly and with considerable uncertainty, the age of the Chiwau-
kum Schist protolith is suggested to be Late Jurassic to Early
Cretaceous. This interpretation is based on: 1) correlation with
the Settler Schist in British Columbia and 2) inference by Mon-
ger and Journeay (1994) that the Settler Schist is the metamor-
phic equivalent of the Late Jurassic to Early Cretaceous
Cayoosh Formation. Metamorphic facies: Greenschist to upper
amphibolite facies. Metamorphic age: Mid-Late Cretaceous,
based on radiometric analysis of metamorphic minerals. Tec-
tonite fabric: Pervasive recrystallization and development of
phyllitic, schistose, and gneissic fabrics. References: Getsinger,
1978; Plummer, 1980; Evans and Berti, 1986; Magloughlin,
1986; Tabor and others, 1987; Duggan and Brown, 1994; Miller
and Paterson, 2001b.

Constitution Formation (CO)

Protolith: Mostly massive siltstone and volcanic-lithic sand-
stone. Interlayered rocks include conglomerate, mudstone,
oceanic pillow basalt, and dacitic tuff. Lithic clasts include
metamorphic detritus and fossiliferous rocks that resemble
older units in the San Juan Islands. Tectonic setting: Trench
marginal to arc and North America. Protolith age: Radiolaria in
cherts give approximate ages of Late Jurassic to Early Creta-
ceous. Metamorphic index minerals: Prehnite, lawsonite, and
aragonite. Metamorphic age: No direct evidence. Tectonite fab-
ric: Fine-grained rocks show slaty cleavage; metagraywackes
lack penetrative foliation except in fault zones. References:
Vance, 1975; Brandon and others, 1988; M. C. Blake, Western
Wash. Univ., written commun., 2003.

Helena–Haystack Mélange (HH)

The Helena–Haystack mélange of Tabor (1994) is a complex
structural zone consisting in part of rocks derived from other
nearby tectonic units, but also of rocks not known elsewhere in
the region. Protolith: This mélange is characterized by a volu-
minous serpentinite matrix. Tectonic blocks embedded in the
matrix range up to several kilometers in extent and are of many
types, including: 1) abundant metamorphosed oceanic basalt,
gabbro, and diabase, 2) minor tonalite, 3) moderate amounts of
metamorphosed graywacke, mudstone, and chert, 4) a signifi-
cant tract of metamorphosed volcanic rocks ranging from basalt
to rhyolite, and 5) minor amphibolite. Protolith age: U-Pb zir-
con ages of blocks are 150 to 170 Ma in tonalite and 168 Ma in
dacite of the Deer Peak unit. Metamorphic facies: Metamorphic
grade varies from epidote-blueschist to amphibolite in different
blocks. Metamorphism associated with the cataclastic mélange
fabric is not well described but reported to be of low grade,
lower than in the blocks. Metamorphic age: K-Ar dates repre-
senting metamorphic ages of blocks are 90 Ma for muscovite
from meta-rhyolite and 141, 128, and 114 Ma for hornblende in
amphibolites. Tectonite fabric: Fabric of the matrix is brittle-
ductile. Textures of the blocks range from unfoliated to phyllitic
and schistose. Tectonic setting: Basalts and gabbros of oceanic
affinity make up a large component of the HH. Significant
amounts of chert also indicate an oceanic setting. Sedimentary
clastic rocks likely represent a trench setting. The Deer Peak
basalt-rhyolite suite is of arc origin. Juxtaposition of these tec-
tonic elements suggests an accretionary wedge, but the hetero-
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geneity of rock types and disparity in metamorphic grade among
blocks and between blocks and matrix indicates that at least part
of the mélange assembly represents tectonic mixing after ter-
rane accretion. Tabor (1994) suggests that the HH formed as a
zone of deformation along the contact between the Easton suite
and Western and Eastern mélange belts. Age brackets for devel-
opment of the mélange are provided by 90 Ma metamorphic
mica in a mélange block, and Eocene sedimentary and volcanic
rocks deposited across mélange structure. The abundant serpen-
tinite matrix invites correlations with the ultramafic-rich Fidal-
go or Ingalls ophiolite complexes, but other lithologies and
metamorphic grade present difficulties for making such connec-
tions. References: Whetten and others, 1980; Cruver, 1983;
Reller, 1986; Miller and others, 1993; Tabor, 1994; Dragovich
and others, 1998, 2002a.

Lopez Structural Complex (LS)

Protolith: This unit is a tectonically mixed rock assemblage
consisting of sheets, blocks, and phacoids of mostly of gray-
wacke sandstone and mudstone, but also oceanic pillow basalt,
chert, gabbro, tonalite, and other rocks. Tectonic setting: Ocean
floor and trench. Protolith age: Jurassic to mid-Cretaceous
based on fossils. Metamorphic index minerals: Aragonite, law-
sonite, pumpellyite. Metamorphic and deformational age: Ar
ages of metamorphic mica derived from volcanic glass and de-
fining foliation are 125 Ma. Tectonite fabric: Imbricate struc-
ture with elongate tectonic lenses of more competent rocks;
penetrative foliation in less competent rocks. References: Cow-
an and Miller, 1981; Brandon and others, 1988; Bergh, 2002;
Brown and Lapen, in press.

Lummi Formation (LM)

Protolith: Mostly mudstone and lithic sandstone, lesser chert
and oceanic basalt. Outcrop relations suggest a stratigraphic
succession, now disrupted, of pillow basalt overlain by chert
that is in turn overlain by clastic rocks. Tectonic setting: Ocean
floor and trench. Protolith age: Middle to Upper Jurassic radio-
laria occur in older parts of the stratigraphic succession. Meta-
morphic index minerals: Aragonite, lawsonite, pumpellyite.
Metamorphic age: No direct evidence. Tectonite fabric: Perva-
sive slaty to phyllitic cleavage in metasediments, but relict clas-
tic textures visible. Metabasalts lack internal fabric. References:
Vance, 1975; Carroll, 1980; Garver, 1988a; Blake and others,
2000; Burmester and others, 2000.

Easton Metamorphic Suite (EA)

Protolith: The Easton Metamorphic Suite includes a variety of
rock types grouped on the basis of structural continuity and de-
gree and age of metamorphism, parameters that in this region
are not perfectly definitive. The map pattern shown in this report
is more inclusive than that preferred by some workers (for ex-
ample, see below). The eastern part of the EA is dominated by
large tracts of metabasite with MORB chemical composition
and by siliceous carbonaceous phyllites derived from muds;
metagraywacke and metaperidotite occur locally. The western
part north of the Skagit River contains much carbonaceous phyl-
lite similar to that in the east, but metagraywacke is more abun-
dant, metabasalt is less abundant, and gabbro-tonalite plutons
and metatuffs occur locally. Tectonic setting: Ocean ridge,
trench, transitional area to island arc. Protolith age: Intrusive
age of metaplutonic rocks in the western part is 163 Ma deter-
mined from U-Pb in zircons. Metamorphic facies: Regional epi-
dote-blueschist facies, local amphibolite and eclogite facies as-
sociated with ultramafic rock. Metamorphic age: Metamorphic

age measured by Rb-Sr and K-Ar in micas and amphiboles is
144 to 160 Ma in local amphibolite/eclogite and 120 to 130 Ma
in regional blueschists. Tectonite fabric: Throughout most of
the eastern part of the EA meta-igneous and metasedimentary
lithologies are thoroughly recrystallized to phyllite and schist.
An exception is a band of slate and semischist south of the
Skagit River, termed the “Slate of Rinker Ridge” by Tabor and
others (2002), who suggest that this rock is not part of the EA
but correlates with the Chilliwack Group. In the western part of
the EA, recrystallization and development of foliation are gen-
erally less intense than in the east. Phyllites, greywacke semi-
schists, and weakly deformed to undeformed pillow basalts and
gabbro-tonalite plutons are the prevalent rocks. Some of this
rock was considered to be part of the Haystack assemblage by
Dragovich and others (1998, 1999). References: Misch, 1966;
Haugerud and others, 1981; Dungan and others, 1983; Brown,
1986; Armstrong and Misch, 1987; Gallagher and others, 1988;
Dragovich and others, 1998, 1999; Tabor and others, 2002.

Ingalls Tectonic Complex (ING)

Protolith: This unit is a metamorphosed dismembered ophiolite,
the structure in part characterized as mélange. The dominant
protolith rock is peridotite. Also in the complex are lesser
amounts of gabbro, diabase, pillow basalts, mudstone, chert,
and graywacke. Tectonic setting: The Ingalls complex is inter-
preted to be a composite of rocks formed in part as Lower Juras-
sic ocean floor and in part in an Upper Jurassic supra-subduc-
tion zone setting. Protolith age: A discordant U-Pb zircon from
gabbro gives an age in the range of 164 to 155 Ma. Radiolaria
range from Early to Late Jurassic. Metamorphic facies: Prehn-
ite-pumpellyite to amphibolite facies. Metamorphic age: Am-
phibolite facies metamorphism is Mid- to Late Cretaceous.
Prehnite-pumpellyite facies age is bracketed by the Jurassic
protolith age and the overprinting amphibolite facies. Tectonite
fabric: Penetrative foliation in the complex is associated with
mélange structure. This fabric predates juxtaposition of the
Ingalls complex with the Chiwaukum Schist along the Windy
Pass thrust. Fabric is also developed in the Ingalls complex in
the vicinity of the Windy Pass thrust. References: Miller and
others, 1993; Miller and Paterson, 2001b; Metzger and others,
2002.

Western Mélange Belt (WM)

Protolith: Mostly lithic sandstone, siltstone, and mudstone;
lesser gabbro, tonalite, diabase, and chert; sparse limestone and
ultramafic rock. Tectonic setting: Rock components bear lithol-
ogies suggestive of trench and island arc settings. Origin of the
mélange structure is uncertain, but is most likely related to post-
accretionary displacements. Protolith age: U-Pb zircon ages
from tonalite are in the range of 150 to 160 Ma. Fossils in meta-
sedimentary rocks are mostly Late Jurassic to earliest Creta-
ceous in age, but some limestone blocks are Permian. Metamor-
phic facies: Prehnite-pumpellyite. Metamorphic age: No direct
evidence. Metamorphism post-dates Early Cretaceous fossils
and pre-dates Eocene intrusive rock. Tectonite fabric: Pervasive
foliation, foliated sandstone, phyllite, and semischist. Mélange
structure may be in part olistostromal, in part tectonic. Refer-
ences: Frizzell and others, 1987; Tabor and others, 2002.

Fidalgo Complex (FC)

Protolith: Ophiolite occurring as a partially disrupted strati-
graphic sequence that from older to younger parts consists of
peridotite, gabbro, quartz diorite-tonalite intrusive complex,
coarse sedimentary breccia, radiolarian argillite, and volcanic-
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lithic sandstone. Tectonic setting: Island arc or forearc. Proto-
lith age: U-Pb zircon ages from tonalite are 160 to 170 Ma. Ages
of radiolaria are Late Jurassic. Metamorphic facies: Slight re-
crystallization to prehnite, pumpellyite facies; rare aragonite
identified with uncertainty. Metamorphic age: Broadly brack-
eted as Late Jurassic to mid-Cretaceous. Tectonite fabric: Pene-
trative fabric is absent through much of the complex, but clastic
sedimentary rocks are foliated near fault zones. References:
Whetten and others, 1978; Gusey, 1978; Brown and others,
1979; Dragovich and others, 2000.

Nooksack Formation (NK)

Protolith: Marine volcanic-lithic sandstone, siltstone, and local
conglomerate. Local andesitic-dacitic volcanic member. Tec-
tonic setting: Island arc. Protolith age: Middle Jurassic to Early
Cretaceous, from Oxfordian to Valanginian fossils and a discor-
dant U-Pb age of zircon from dacite interpreted to represent for-
mation between 174 to 180 Ma. Metamorphic facies: Prehnite-
pumpellyite, possible lawsonite. Metamorphic age: No direct
evidence. Tectonite fabric: Variably developed pervasive slaty
cleavage. Rock relatively undeformed compared to overlying
nappes. References: Misch, 1966; Sondergaard, 1979; Brown
and others, 1981; Franklin, 1985; Tabor and others, in press.

Haro Formation and Spieden Group (HS)

The Haro Formation and Spieden Group are lumped together
here because they appear to have a similar tectonic history, and
for simplicity, although the units are not contiguous and it is un-
known whether they represent a single tectonic element. Proto-
lith: Andesitic to dacitic sedimentary clastic and pyroclastic
rocks. Tectonic setting: Island arc. Protolith age: The Haro For-
mation has Upper Triassic fossils. The Spieden Group bears Up-
per Jurassic to Lower Cretaceous fossils and yields K-Ar ages of
volcanic rocks in that same time span. Metamorphic facies:
Zeolite. Tectonite fabric: Minimal. References: Vance, 1975;
Johnson, 1978, 1981; Brandon and others, 1988.

Deadman Bay Volcanics (DB)

Protolith: Interbedded ocean-island pillow basalts, pelagic
limestones with Tethyan fusulinids, and radiolarian ribbon
cherts. Tectonic setting: Ocean floor. Protolith age: Fossils in-
dicate Permian through Triassic depositional ages. Metamor-
phic index minerals: Lawsonite, aragonite. Metamorphic age:
Likely Early Cretaceous. Tectonite fabric: In local shear zones.
References: Danner, 1966; Vance, 1975; Brandon and others,
1988.

Orcas Chert (OC)

Protolith: Mostly ribbon chert, with lesser mudstone, pillow ba-
salt, and limestone. Tectonic setting: Ocean floor. Protolith
age: Fossils indicate Triassic to Early Jurassic age. Metamor-
phic index mineral: Aragonite. Metamorphic age: Likely Early
Cretaceous. Tectonite fabric: Pervasive slaty cleavage in meta-
mudstone. Chert layers are stretched and broken. References:
Vance, 1975; Brandon and others, 1988.

Bell Pass Mélange (BP)

Protolith: The Bell Pass mélange of Tabor and others (in press)
represents a tectonic assemblage of a number of unrelated rock
units. A major component is the Elbow Lake formation of
Blackwell (1983), a highly disrupted assemblage of chert, oce-
anic basalt, and volcanic lithic clastic rocks. Less competent
sedimentary rocks of the Elbow Lake formation, as well as ex-
otic serpentinite, serve as a high-strain matrix in which more

competent blocks of Elbow Lake rock and exotic rocks are em-
bedded. The competent blocks occur as lenses up to many kilo-
meters across aligned in the fabric of the matrix. Exotic blocks
include the Yellow Aster Complex (YA), the Vedder Complex
(VC), and the Twin Sisters Dunite (TS), the larger fragments of
which appear as separate map units. The structurally overlying
Easton suite and underlying Chilliwack Group are also imbri-
cated within this complex. Tectonic setting: The Elbow Lake
Formation bears ocean floor and trench lithologies. The exotic
blocks include previously accreted oceanic rocks (Vedder Com-
plex) and rocks of probable continental origin (Yellow Aster
Complex). A two-stage process is envisaged for development of
the mélange: 1) tectonic mixing of Elbow Lake components in
an accretionary wedge, then 2) subsequent mixing of the Elbow
Lake structural complex with exotic rocks picked up by trans-
port along the continental margin to the final emplacement site.
Protolith age: The Elbow Lake Formation has yielded radiolar-
ia ranging in age from Triassic to Middle Jurassic. Metamorphic
index minerals: The mélange matrix fabric contains pumpelly-
ite, lawsonite, aragonite, and rare Na-amphibole. Metamorphic
age: Not directly dated. Tectonite fabric: The mélange matrix
fabric is a brittle-ductile flow fabric wherein pre-tectonic grains
occur in various stages of flattening, elongation, and size reduc-
tion. Also defining the fabric are aligned, newly crystallized
minerals, mostly chlorite and muscovite. This fabric is penetra-
tive through less competent metasedimentary rocks and is de-
veloped in the margins of, but absent inside, more competent
blocks. References: Misch, 1966; Haugerud, 1980; Blackwell,
1983; Brown, 1987; Brown and others, 1987; Smith, 1988; Ta-
bor and others, in press.

Hozameen Group (HZ)

Protolith: Predominantly basalt and chert and lesser argillite,
graywacke, limestone, and gabbro. Tectonic setting: Ocean
floor, distal fan. Protolith age: Pennsylvanian to Early Jurassic
based on fossils. Metamorphic facies: Partial development of
prehnite-pumpellyite facies. Tectonite fabric: Phyllitic cleav-
age in meta-argillites, other rocks have only spaced cleavage or
lack fabric. References: Haugerud, 1985; Tabor and others, in
press.

Eastern Mélange Belt
and Trafton Mélange (EM)

Protolith: Tectonic blocks, up to several kilometers long, con-
sist predominantly of metamorphosed basalt and chert; also oc-
curring are blocks of ultramafic rock, gabbro, tonalite, migma-
titic gneiss, graywacke, argillite, and limestones with Tethyan
fusulinids. Tectonic setting: Tectonic fragments are of domi-
nantly oceanic materials. Protolith age: U-Pb zircon ages of two
gabbro and tonalite blocks are 165 and 190 Ma respectively.
Fossils range from Devonian to Middle Jurassic. Metamorphic
facies: Mostly prehnite-pumpellyite facies; amphibolite facies
in some blocks. Metamorphic age: K-Ar age of hornblende
from an amphibolite block is 121 Ma. Tectonite fabric: Texture
is static in some blocks, phyllitic and schistose in others. Refer-
ences: Danner, 1977; Frizzell and others, 1987; Tabor and
others, 1993, 2002.

Napeequa Schist (NP)

Protolith: Ocean island and ocean ridge basalt, chert, abundant
siliceous argillite, gabbro, ultramafic rock, limestone, and rare
granitic intrusive bodies. Tectonic setting: Ocean floor and dis-
tal fan. Protolith age: Broadly known as pre-middle Cretaceous.
Beyond that, correlation with the Cogburn rock unit in British

6 GEOLOGIC MAP 52



Columbia, which is intruded by a 225 Ma pluton, suggests that
at least part of the Napeequa Schist may pre-date that age. Meta-
morphic facies: Greenschist to upper amphibolite facies. Meta-
morphic age: Mid-Cretaceous. Tectonite fabric: Well recrystal-
lized, schistose to gneissic foliation. References: Bryant, 1955;
Cater and Crowder, 1967; Dragovich, 1989; Brown and others,
1994; Brown and others, 2000; Miller and Paterson, 2001b;
Tabor and others, 2002; Valley and others, 2003.

Chilliwack Group and Cultus Formation (CH)

Protolith: Volcanic lithic sandstone and siltstone, basaltic to da-
citic volcanic rocks, fossiliferous reefoidal limestones. Tectonic
setting: Island arc. Protolith age: The Chilliwack Group is De-
vonian to Permian. The Cultus Formation is Triassic to Early Ju-
rassic and lies unconformably over the Chilliwack. Metamor-
phic index minerals: Aragonite, lawsonite, pumpellyite, and
rare crossite. Metamorphic age: No direct evidence. Tectonite
fabric: Strong phyllitic foliation in metasediments near fault
zones, elsewhere slaty foliation. Volcanic rocks are massive to
somewhat flattened. References: Danner, 1966; Monger, 1966;
Misch, 1966; Smith, 1988; Christianson, 1981; Sevigny, 1983;
Sevigny and Brown, 1989; Tabor and others, in press.

Cascade River Complex (CR)

Includes Marblemount–Dumbell plutonic belt and Holden as-
semblage. Protolith: An intact but strained stratigraphic section
in the Cascade River area displays, from older to younger—a
plutonic complex ranging from gabbro to tonalite, andesitic to
dacitic volcanic rocks, a conglomerate/sandstone clastic facies,
and a mudstone-siltstone facies. Marbles occur locally in the
sedimentary section. The map unit as a whole contains similar
rocks, but the stratigraphy is obscured by deformation. Tectonic
setting: Island arc. Protolith age: Concordant U-Pb zircon ages
of 220 Ma have been obtained from the plutonic and volcanic
rocks. Metamorphic facies: Greenschist, albite-epidote-am-
phibolite, and amphibolite facies. Metamorphic age: Mid- to
Late Cretaceous, based on sparse isotopic mineral ages and rela-
tion to plutons of known age. Tectonite fabric: Pervasive phyl-
litic, schistose, and gneissic foliation. References: Misch, 1966;
Cater and Crowder, 1967; Mattinson, 1972; Dragovich, 1989;
Cary, 1990; Brown and others, 1994; Miller and others, 1994;
Tabor and others, 2002, in press.

East Sound Group (ES)

Protolith: Mostly andesitic to dacitic pyroclastic rocks, with
lesser limestone lenses, shale, argillite, graywacke, and con-
glomerate. Tectonic setting: Island arc. Protolith age: Devonian
to Early Permian based on fossils. Metamorphic index minerals:
Aragonite and lawsonite. Metamorphic age: No direct evi-
dence. Tectonite fabric: Foliated rocks restricted to fault zones.
References: Danner, 1966, 1977; Vance, 1975; Brandon and
others, 1988.

Vedder Complex (VC)

Protolith: Basalt and siliceous mudstone. Tectonic setting:
Ocean floor. Protolith age: No direct evidence. Age is probably
not much greater than that of the Permian subduction zone meta-
morphism that has affected the unit. Metamorphic facies: Al-
bite-epidote amphibolite with barroisitic amphibole; partial
blueschist overprint. Metamorphic age: Ages determined by
Rb-Sr of minerals and whole rocks and K-Ar of minerals span a
range of 196 to 285 Ma, but a preponderance of ages are in the
range 260 to 285 Ma. Tectonite fabric: Schistose, completely re-

crystallized. References: Bernardi, 1977; Rady, 1980; Arm-
strong and others, 1983; Armstrong and Misch, 1987.

Garrison Schist (GA)

Protolith: Oceanic basalt and chert, minor limestone. Tectonic
setting: Ocean floor. Protolith age: Pre-dates Permian meta-
morphism, see Vedder Complex. Metamorphic facies: Albite-
epidote amphibolite (barroisite) partially overprinted by blue-
schist; late veins of aragonite. Metamorphic age: K-Ar mineral
ages are 167, 242, and 286 Ma. The two older ages are regarded
as best representing peak metamorphism. Tectonite fabric: Well
recrystallized, phyllitic, and schistose, but fine-grained. Refer-
ences: Danner, 1966; Vance, 1975; Armstrong and others,
1983; Brandon and others, 1988.

Yellow Aster Complex (YA)

This unit consists of an older gneissic part and a younger intru-
sive complex. It occurs as tectonic blocks a few meters to kilo-
meters in breadth. Protolith: The older part consists of siliceous
garnet-pyroxene gneiss (possibly metasandstone), calc-silicate
rock, and marble (metalimestone). The younger part, intrusive
into the older part, is a suite of gabbro-tonalite plutonic rocks
and basalt-andesite hypabyssal rocks. Tectonic fragments of
ultramafic rock are commonly associated with this assemblage.
Tectonic setting: The older part likely formed in a passive conti-
nental margin rift zone, based on protolith materials of lime-
stone and possibly quartz sandstone. The younger plutonic suite
is interpreted to be roots of an arc, possibly the Chilliwack vol-
canic arc. Protolith age: Discordant U-Pb analyses of zircons
from the older part suggest a Proterozoic protolith, but with un-
certainty about whether the zircons are detrital. Zircons from the
younger intrusive suite give middle Paleozoic ages (mostly in
the range 410–320 Ma) but are also discordant and therefore not
definitive. Metamorphic facies: Foliated rocks have amphibo-
lite facies metamorphism. Static greenschist facies metamor-
phism and a sparsely developed subsequent prehnite-pumpelly-
ite facies metamorphism partially overprint rocks of the Yellow
Aster Complex. Metamorphic age: A concordant U-Pb sphene
age of 415 Ma represents the metamorphic age of a gneissic
rock. The lower grade metamorphic assemblages are undated.
Tectonite fabric: The older part has a strong mylonitic to
gneissic foliation. The younger rock is part foliated, part not fo-
liated. References: Misch, 1966; Mattinson, 1972; Sevigny,
1983; Rasbury and Walker, 1992; Tabor and others, in press.

Turtleback Complex (TB)

Protolith: This unit is dominated by a gabbro-diorite-tonalite
suite. Intrusive into the plutonic rocks are dikes ranging from
basalt to dacite. Tectonic setting: Arc roots, possibly basement
to the East Sound Group volcanic arc. Protolith age: K-Ar horn-
blende ages and discordant U-Pb zircon ages are interpreted to
indicate intrusive ages of 550 to 400 Ma. Metamorphic facies:
Static greenschist facies minerals are partially overprinted by
prehnite-pumpellyite facies assemblages associated with shear
zones. Metamorphic age: No direct evidence. Tectonite fabric:
Localized in fault zones. References: Mattinson, 1972; Vance,
1975; Whetten and others, 1978; Brandon and others, 1988.

Swakane Biotite Gneiss (SW)

Protolith: Most of this unit is homogeneous quartzo-feldspathic
gneiss, variously interpreted to have been derived from arkose
or silicic volcanic rock. Rare intercalated amphibolite, marble,
quartzite, and ultramafic rock also occur. Tectonic setting: Not
well constrained. Protolith age: Work in progress by Matzel
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and others (2002) finds U-Pb ages of zircons considered to be
detrital ranging from Proterozoic to 73 Ma. An intrusive granitic
body yielded a 68 Ma zircon. Thus, the protolith age would be
between 73 and 68 Ma. Previous workers have suggested a Prot-
erozoic protolith age. Confirmation of this anomalously young
age of Cascade core protolith material awaits completion of the
Matzel study. Metamorphic facies: Middle to upper amphibolite
facies. Tectonite fabric: Pervasive gneissic and schistose fabric.
References: Waters, 1932; Mattinson, 1972; Rasbury and
Walker, 1992; Sawyko, 1994; Tabor and others, 1987; Miller
and Paterson, 2001b; Valley and others, 2003.

Twin Sisters Dunite (TS)

This unit consists primarily of unaltered dunite, with lesser
amounts of harzburgite. Serpentinite is marginal to the body.
The rock is a metamorphic tectonite lens within the Bell Pass
mélange. It contains a penetrative fabric apparently inherited
from the mantle. References: Ragan, 1963; Christensen, 1971;
Thompson and Robinson, 1975; Onyeagocha, 1978.
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