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- R E S o U R c E S V If the Doty fault zone (DF) and nearby faults accommodate most of the relative motion
Rebeca Becerra’ Conner TOth’ Cat Samson’ Alex Steely’ Michael Polenz 3 WASHINGTON between the TACO and PORT blocks of McCaffrey and others (2013; two arrows below),

Washington Geological Survey, Olympia, WA GEOLOGICAL SURVEY we expect major reverse and minor left-lateral displacement on the DF, major right-lateral

and minor reverse displacement on the Fall River fault (FRF), and significant reverse
displacement on the Scammon Creek (SCF) and Kopiah faults (KF), which broadly fits our
interpretation below. Box shows location of lidar in Section 4. All faults here are shown
simplified in red on the map below with additions from 2019 data collection.
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