Research on Human Exposure to Pesticides

Edward J. Kasner, PhD, MPH

August 2, 2019

Overview

- 1. Pesticide Exposure Pathways: Forestry Applications
- 2. Drift Exposure Assessment Study Design
- 3. Previous Studies
- 4. Herbicide Health Considerations

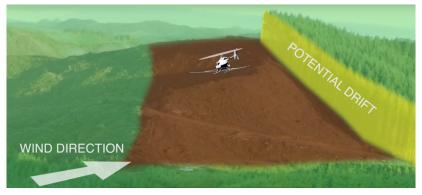
Pesticide Exposure Pathways: Forestry Applications

1. Source

- Aerial application: helicopter, airplane
- ► Bark injection: hack/squirt
- Backpack spraying: spots/strips by young trees

2. Medium

- ► Air
- Water
- Soil


3. Route of Exposure

- Dermal
- Inhalation
- Ingestion

4. Receptor

- ► Handler: mix, load, or apply
- Worker: in/near treated area during/after spray
- Bystander: outside treated area (drift, take-home, watershed)

Pesticide Exposure Pathways: Forestry Applications

Credit: Pesticides in Forestry, A Workers' Guide to Safe Practices. Oregon Department of Agriculture, Oregon OSHA, and US EPA Region 10.

Previous Pesticide Exposure Studies

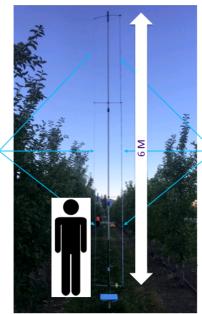
1. Non-drift studies

- Dermal: patch, handwash, wipe
- Inhalation: air pump + filter
- ► Ingestion: duplicate diet
- Biological monitoring: urine samples

2. Drift studies

- ► Field sampling: ASABE S561.1 or ISO 22866 protocols
 - Orchard-based studies (sprayer technology)
- Mechanistic modeling: exposure not measured directly
 - US Forest Service: AgDISP
 - ► UK Silsoe Spray Applications Unit
- Incident tracking: exposure estimated after-the-fact
- Proximity: pesticide use and health outcomes
- WA Aerial Spray Drift Study
 - Measure and model spray event
 - Measure community air and surface levels
 - Measure and model children's activities and exposures

Drift Exposure Assessment Study Design


- 1. Passive field sampling
 - Cards: deposition in horizontal plane, gravitational settling
 - Strings: airborne in vertical plane, interception
- 2. Active field sampling
 - Air pumps and filters
 - Real-time instruments
- 3. Factors during application
 - Meteorology (wind direction)
 - Application method
 - Droplet size (nozzles)
 - Canopy structure
 - Technology (electrostatic spot-spraying drones?)
- 4. Factors after application
 - Volatilization
 - Resuspension

Deposition and Airborne Sampling

Low-density polyethylene

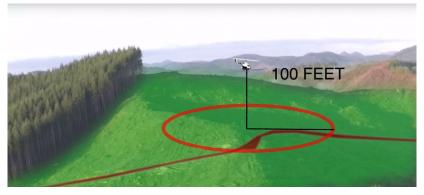
"LDPE line"

- Three 2 m lengths
- 4 mm diameter

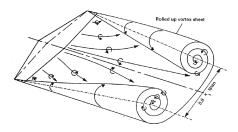
Polyester with cotton core

"PE line"

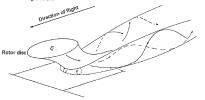
- Three 2 m lengths
- 12 mm diameter


Vertical String Matrices

Low Cost Real-time Monitors



Application Exclusion Zone



Credit: Pesticides in Forestry, A Workers' Guide to Safe Practices. Oregon Department of Agriculture, Oregon OSHA, and US EPA Region 10.

Trailing Vortices of Fixed- and Rotary-wing Aircraft

A. Fixed-wing aircraft.

B. Rotary-wing aircraft.

Credit: Riley C, Wiesner C. 1999. Chapter 2: On-target and Off-target Deposition. Occupational Hazards of Pesticide Exposure: Sampling, Monitoring, and Measuring. p.19

Drift Exposure Assessment Considerations: Forestry

- 1. Important to measure exposure in the field not just lab
- 2. Aerial applications
 - Can be well-controlled resulting in low drift exposure
 - Rotary-wing applications in forestry have larger droplets
 - ► Application technology has improved since early 2000s
- **3.** Focus on practical solutions for pesticide safety

Herbicide Health Considerations

- 1. Level of:
 - Exposure
 - Dose
 - Toxicity
- 2. Acute: WA State Tracking (WSDA; DOH; L&I)
- 3. Chronic: Ag Health Study (crop-based studies)
- 4. Glyphosate: IARC vs. EPA determinations
- 5. Dicamba: Environmental fate and transport

Additional Resources

- 1. National Pesticide Information Center (NPIC)
- 2. Herbicide Use in Western Washington Reforestation
- **3.** Forest Practices Application Review System (FPARS)
- 4. Harold Thistle's work with USFS
- 5. Pesticides in Forestry, A Workers' Guide to Safe Practices