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The Relative Accuracy Committee is pleased to present this guidebook and introduce the
surveying community to the relative accuracy subject.

We do not intend this guidebook as a complete discussion of the subject of relative accuracy.  It
is an introduction that hopefully will encourage the reader to pursue additional study.  The
committee members strongly believe that it is in the best interests of the surveying profession,
and the public served by this profession, to incorporate this concept into everyday practice.

The initial impetus for this guidebook came from discussions occurring during the recent
revision of the Survey Standards.  In addition, changes in surveying equipment and procedures
have shown the need for a reevaluation of current practices for analyzing survey work. 
Communications with representatives from other states and from the Land Surveyors'
Association of Washington emphasized the need for a cooperative learning process to make such
a transition successful.

Therefore, the committee views this guidebook as a first step in this interactive, educational
effort.  As such it was intentionally left unfinished at this time with the idea being that review by
the surveying community will help "flesh out" the remaining text.  We encourage your active
involvement in this process.  Please address any comments you may have about this guidebook
or the subject of relative accuracy to:

David Steele, PLS, Survey Manager
Department of Natural Resources
PO Box 47060
Olympia, WA 98504-7060

The committee will greatly appreciate your participation.

                                                                                                                                                
Donald R. Semrau, PLS, PE David L. Steele, PLS
Committee Chair DNR Survey Manager
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Preface

It is in the best interests of the surveying profession for surveyors and their clients to know the
relative accuracy with which the locations of property corners have been identified.  The client
and adjoiners have more interest in the correctness of the location of the points than in the level
of precision with which they were tied together.  High precision does not imply good accuracy;
accuracy involves much more.  The ability to measure with great precision does not remove the
need for thorough surveying procedures.

For example, a professional land surveyor is delighted with the results obtained using a new  1O-
theodolite and EDM.  The 1:61,000 closure for the first survey performed with the new
equipment may have been a fluke, but 1:72,163 for the second survey is very satisfying indeed. 
For years the surveyor had struggled with tape and transit, rarely achieving precise results that
were even close to those in this new "string of successes".  

However, on the second survey, even though an excellent closure is achieved and the computed
property lines match the record bearings and distances, there is a problem with the north and east
property lines.  A recently established rebar found near the surveyor's calculated position for the
northeast corner appears to be the property corner, but is 0.39 ft southwest of the position. 
Additionally, there is a recently placed iron pipe about 1 ft east of the surveyor's calculated
location.

Considering the closure, the surveyor is inclined to set a new monument.  Certainly, the pipe
could be rejected, and in addition, the 0.39 ft discrepancy could be significant to the surveyor's
client.  Yet, the records show that all the surveys used the same controlling monuments.  Is there
some guide that can be used to logically decide how close is close enough before reestablishing a
property corner near an existing monument?

Because of the increased use of radial surveys, analytical photogrammetry, Global Positioning
System technology, and other techniques, surveyors now need a better method for analyzing
traverses than linear error closure used for many years.

This book is a guide for making those analytical decisions.  It is intended as a tool for enhancing
professional judgements.
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1.  Introduction

The professional land surveyor is responsible for selecting and using proper equipment,
procedures, and analytical methods to achieve appropriate survey accuracy.  To meet this
responsibility the surveyor, before beginning a survey, estimates the accuracy expected and, after
completion, computes the accuracy that has been obtained.

WAC 332-130-070 states "The accuracy or precision of field work may be determined and
reported by either relative accuracy procedures or field traverse standards, provided that the final
result shall meet or exceed the standards contained in WAC 332-130-090."  The purposes of
this guidebook are to identify the basic principles of relative accuracy and to guide
surveyors toward analysis of their work by these procedures.  This guidebook is a practical
introduction to analyzing the certainty of survey measurements and is not intended as a complete
or theoretical discussion.

An analysis of survey measurements before and after a survey provides a basis for accuracy
evaluation.  From this knowledge the surveyor is better able to:

N  Select suitable instrumentation and appropriate measurement procedures.
N  Formulate an economic basis for survey designs.
N  Properly locate and preserve the position of property corners.

 N  Show compliance with a standard.
N  Achieve higher accuracy when needed.

The surveyor is an expert in analyzing survey measurements. This is what separates the
professional from the technician.  

Evidence and Procedures for Boundary Location by Brown and Eldridge, 1962, states on page
441: 

"The surveyor should never be so foolish as to represent his measurement as being exact
and without error, for a wise attorney, upon cross examination, will quickly discredit such
testimony.  A frank statement of expected error and the sources of errors must be
presented..."
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2.  General Concepts

A major part of surveying consists of combining the art and science of measuring to determine
the relative positions of existing points, to establish new points, and to reestablish lost and
obliterated points in specified positions.  This section discusses general concepts of the science
of measurements.  (For an indepth study of this subject the reader is referred to the Selected
References.)

 2.1 Errors and Mistakes

The term error describes the difference between an observed or computed value of a quantity and
the true value of that quantity.  Errors are generally classified into two basic categories,
systematic and random.

Mistakes are not to be confused with errors.  Mistakes are blunders and are normally caused by
incorrect readings or defective equipment.

Systematic Errors

A systematic error follows a pattern that will be duplicated if the measurement or calculation is
repeated under the same conditions.  Some examples of systematic errors are:

N  Measuring with a tape that is too short or too long.
N  The personal bias of an observer.
N  Not correcting for the prism offset.
N  Applying the grid factor incorrectly to all distances.
N  Using an unadjusted instrument.

The surveyor should use procedures to detect and correct all possible systematic errors.  If
systematic errors are reduced so that they are negligible, then measures of precision can be used
as measures of accuracy.

Random Errors

Random errors are caused by instrument reading errors, imperfection in instrument design,
instrument wear, and unpredictable natural forces.  They are arbitrary in nature, and the sign and
magnitude are never known.  Although the magnitude can be reduced by using care and proper
procedures, these errors can never be eliminated.  Random errors follow the laws of probability
and tend to compensate, but never completely.

Examples of random errors are: 

N  Pointing instruments.
N  Reading instruments.
N  Setting sights, prisms and instruments.

Definition
Error. The difference between an observed or computed value of a quantity and the true value
of that quantity.
Random errors - unavoidable errors, typically small and as likely to be positive as
negative.
Systematic errors - mathematically determinable errors that conform to known physical
laws.

Definition
Mistakes. Blunders caused by the observer (false reading) or by a defective instrument, or both.
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N  Marking or setting points.

 2.2 Precision and  Accuracy

Precision reflects the degree of refinement in performing an operation and in the quality and
adjustment of the equipment.  The closer the agreement of a series of readings, the more precise
the value will be.  Precision and random errors are closely related.  If random errors are small,
precision should be high, provided no mistakes have been made.

Accuracy is the degree of conformity or closeness of a measurement to the true value and
indicates the extent of attention given to detecting and removing systematic errors and mistakes. 
Accuracy relates to the true quality of a result and is distinguished from precision, which relates
to the quality of the operation.

 2.3 Significant Figures

Because no measurement is exact, the surveyor must properly represent the significant figures in
both reported measurements and computed results.  The definition of significant figures from R.
B. Buckner's 1983 text, Surveying Measurements and their Analysis (p.84) seems appropriate.  

"The number of significant figures in any measured quantity is the number that have
meaning as estimated from the order of precision with which the quantity was measured,
said meaning being limited by the judgment of the person evaluating the observation and
the precision."

The accuracy of a reported value is considered to be plus (+) or minus (-) one-half the last place. 
Let's say the distance between found monuments in a 30-point traverse was calculated to be
5291.84 ft, with an estimated uncertainty of ±0.5 ft.  Showing this distance on a map as 5291.84
ft, in the absence of a qualifying statement of uncertainty, means that it is significant to ±0.005 ft. 
This implies that the actual distance would be between 5291.835 and 5291.845, which, in turn,
implies an accuracy of approximately 1:1,000,000.  This is not true.  Therefore, an appropriate
qualifying statement of accuracy would be 5291.8±0.5 ft which denotes a more realistic accuracy
of approximately 1:10,000.  

A reported direction to the nearest second implies an accuracy of 1:206,200.  A 1O directional
error in 5280.00 ft would give a perpendicular distance error of 0.025 ft to the direction of the
line.  Using the above 30-point traverse example with an uncertainty of ±0.5 ft, the direction
would have an uncertainty of ±20O.  In this case the angular accuracy would be the same as the
distance accuracy (i.e., 1:10,000).  Uncertainties in distance and direction could be compatible
but are not necessarily measured to the same precision.

Definition
Precision. The extent of agreement among measurements of the same quantity. An estimate of
standard deviation is commonly used to indicate precision.

Definition
Accuracy. The agreement of a measurement or (the average of a set of) measurements with the
true value.

Definition
Significant figures. The number of figures that have meaning in any measured quantity as
estimated from the order of precision with which the quantity was measured.
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FIGURE 2.4.1.  A Gaussian or normal probability distribution with
estimated mean and standard deviation.

 2.4 Mean, Standard Deviation, and Standard Error of the Mean

The best estimate of a quantity is the average of the measurements of that quantity.  The standard
deviation is a statistic that describes the range of measured values.  Due to the large number of
measurements required to quantify a length or angle, surveyors will typically approximate the
average or mean µ  by x̄, the estimate of the mean.  Similarly, the standard deviation F is usually
approximated by s  , the estimate of standard deviation.x

The Gaussian, normal, or bell-shaped distribution shown in Figure 2.4.1 is the most common
probability density function used in describing surveying measurements.  Most such observations
follow random error theory, small errors are more likely than large errors and positive errors are
as likely as negative errors.  Any single measurement, selected at random from an entire set of
observations, will fall within (i.e., plus or minus) one standard deviation of the mean for 68.3%
of all observations.  The true value, µ , as shown in the figure is never really known and could fall
anywhere under the bell-shaped curve.

Definition
Mean, arithmetic. The sum of the values of individual measurements of a quantity divided by
the number of measurement repetitions.

Definition
Standard deviation. A statistic indicating the spread of measured values about the mean for a
given quantity.

Definition
Standard error of the mean. The standard deviation of the probability function or probability
density function for a random variable and especially of a statistic, in this case, the mean.
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FIGURE 2.4.2.  Comparison of normal distributions for measurements
using high precision and low precision.

Figure 2.4.2 demonstrates the inverse relation between standard deviation and precision.  A low
standard deviation correlates with high precision.

The equation for estimating standard deviation, s  is: x

Eq.1

where:
n = the number of independent observations within a set of measurements.
x = value obtained by independent observation or measurement.
x̄ = arithmetic mean (average), which is equal to the sum of the independent 

observations or measurements, divided by n.
(x-x̄) = the differences between each of the independent observations and the mean, 

called the residuals.
3(x-x̄)  = (x -x̄) +(x -x̄) + +(x -x̄) , called the sum of the squares of the residual. 2 2 2 2

1 2 n
...

(For a more indepth explanation of the relationship of x̄ to µ  and s  to F, see Table 1)x

Equation (1) results in only an approximation unless there is an infinite number of independent
observations.  An independent observation consists of setting up the instrument, backsighting
and foresighting, reading the angles, and measuring the distance.  The number of independent
observations that must be made for a sample test depends on how many are needed for the
observer to gain a level of confidence that any errors are primarily random in nature.  This is a
matter of professional judgment, although some texts suggest at least 15 to 25 independent
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observations.  To better understand the practical application of determining the procedures to
use and the number of independent observations to be made, see Section 9 of A. Barry's 1978
text, Errors in Practical Measurements in Science, Engineering, and Technology.

The standard error of the mean is an uncertainty statement regarding the mean of a set of
independent observations.  Systematic errors and mistakes must be corrected for, so the mean
can approach the true value with the probability of the standard deviation or a multiple of it
(i.e., 1.64s, 90% probability; 1.96s, 95% probability).  The standard error of the mean is
extremely useful for designing measuring systems because it helps the surveyor select the
appropriate equipment and number of observations needed to achieve a particular desired
resultant.

The equation for the standard error of the mean, s  , is:x̄

Eq.2

where all terms and symbols are as defined previously.  Note that s  , the standard error of thex̄

mean, has a smaller value than s  , the standard deviation of the set of independent observations. x

In other words, the mean of a set of observations should be closer to the true value than one
independent observation and would be reflected in a smaller standard deviation value.

 2.5 Confidence Level or Level of Certainty

Confidence level or level of certainty numerically states the level or degree of confidence
attributed to a particular measurement through analysis of errors.  As with the application of
any concept, professional judgment will be needed.

The statistic that should be used in calculating the range of acceptable values for a given
measurement at a particular confidence level is called "Student's t", or simply the t statistic. 
Table 1 lists theoretically derived t values.  Note that the t values depend not only on the level
of confidence but also on the degrees of freedom.  Statistical degrees of freedom for multiple
measurements of a quantity are established by the number of times the measurement is made. 
Each observation after the first one is called a redundant measurement.  Any measurements
beyond that single measurement increase the reliability of the result and simultaneously
increase the degrees of freedom.   

For example, the angle between two lines can be established by a single measurement.  An
angle measured n or 4 times will produce n-1 or three degrees of freedom for use in establishing
the range of acceptable values for the angle.  One degree of freedom has been removed from the
total of n or 4 measurements to estimate the average or mean value for angle measurement.

Definition
Confidence level or level of certainty. A numerical value representing the acceptable certainty
or desire on the part of the observer that a measurement is correct. For example, a confidence
level of 95% reflects a desire that the observer be correct 95 times out of 100.

Definition
Student's "t" distribution. A sampling distribution used for small samples.
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Example Problem 2.5.1:

A line has been measured twice, resulting in values of 345.67 and 345.65 ft.  With 95%
confidence, what is the estimated length of the line?  (This example is simplified and includes
only random errors in observation.)

First, calculating the mean of the set of observations, where x  = 345.67 and x  = 345.65:1 2

The standard deviation of the set of observations is estimated by:

The standard error of the mean of the set of observations is estimated by:

To be assured with 95% confidence that the mean is correct, the range of expected mean values
must also be determined statistically.  The degrees of freedom are needed to estimate this range
of values.  In this example the two measurements produce n-1 or one degree of freedom.  Using
one degree of freedom and a 95% confidence level, the value for t is 12.7 as obtained from
Table 1.  The resulting 95% confidence interval is:

The range of acceptable values with 95% confidence is 345.66±0.13 or between 345.53 and
345.79. 

Considering the precision with which the line was measured (345.67 and 345.65), most
surveyors would be more certain about the length of the line than this analysis would reveal. 
But in believing that a higher certainty is appropriate, additional information and experience are
inherently assumed.  Many would think: "I've used the same procedure in measuring this line as
I have in hundreds or thousands of similar lines".  If this "experience" can be assumed to be
directly applicable to the measurement of this line, the number of degrees of freedom used in
obtaining a t value will increase tremendously, even approaching an infinite number of degrees
of freedom, resulting in a t value of 1.96.  Statisticians refer to such information as a reference
distribution.  

Definition
Degrees of freedom. The difference between the number of times a quantity has been measured
and the minimum number required to uniquely determine the numerical values in the underlying
mathematical model. For example, a distance measured four times which requires one
measurement to estimate its length produces three degrees of freedom.
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The resulting range of values containing 95% of the estimates of the mean might approach:

or between 345.64 and 345.68.  We caution surveyors that each measurement should be
performed independently.  To consider this approach as valid, certain professional decisions are
necessary regarding the number of times to measure an angle, length, or elevation and how to
decide the number of measurements that can be replaced by "experience".        

What level of confidence or level of certainty should be used for a measurement or established
position of a corner?  Each confidence level has a confidence coefficient.  The most commonly
used are 1s for 68.27% confidence, 1.64s for 90%, 1.96s for 95%, and 3s for a 99.7%
confidence level.  Although higher levels of confidence may be appropriate for certain
applications, we recommend 2s (95.5% probability).  This is consistent with the Standards and
Specifications for Geodetic Control Networks, published by the Federal Geodetic Control
Committee in 1984.

 2.6 Propagation of Random Error

Each set of n observations results in a single mean quantity x̄, but it may consist of many
operations, each of which has random errors.  The mean value of an angle measured by
repetition is derived from the process of setting two targets, setting up a theodolite, pointing the
instrument multiple times, and reading the corresponding values.  While pointing and reading
the instrument can contribute to the observation error for the angle, setting the targets and
theodolite have random errors independent of the observed angle.  The measurement of
distances also consists of many operations, each of which can have independent random errors.

The mathematical determination of the sum of these errors as they accumulate, cancel,
decrease, or otherwise behave is termed the propagation of random errors.  The general
formula, shown below, is simply the square root of the sum of the squares of the individual
errors.

Eq.3

where , , etc., are random errors of any independent observation or measurement that

would affect the final compiled value.

Definition
Propagation of random errors. A mathematical formulation by which accumulated errors can
be quantified or pre-analyzed when originating from a variety of sources--e.g., cumulative errors
in a measurement of the length of a line as a result of errors in temperature determination, tension
determination, marking the line endpoints, etc.
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The formula for the propagation of random error in a series is:

Eq.4

where:
s  = random error of any independent observation or measurement that occurs x

  more than once in a measurement system.
n = number of times the above random error has an opportunity to occur.

The six general concepts of the science of measurements should provide you with the
foundation to further study the analysis of survey measurements.
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3.  Analysis of Survey Measurements

In the previous chapters we described error analysis in broad terms.  Now we need to be more
specific and look at the actual errors that can occur in measurement systems (i.e., distance,
direction, and the resulting position).  The following discussion and examples provide some
basic concepts.

Example: 

A surveyor has completed all field work and office computations for a resurvey of a one-acre
lot in a previously filed plat.  The purpose of the survey was to find or reestablish all lot corners
and stake the east line so the client can build a garage with the appropriate setback.

All controlling block corners were found; they were marked with the original monuments.  The
only original lot corner found was the northwest corner.  The northeast and southeast lot corners
were monumented by a private surveyor during a resurvey of the adjoining lot.  A record of this
survey had been filed at the county auditor's office.  However, this survey map did not identify
what controlling corners, if any, were used to set the lot corners.  Both surveys determined the
original corners on this east line had been lost.  Ties to the previous surveyor's corners indicate
an overlap of 0.23 ft on the east line.

The surveyor, knowing that the overlap and the found corners will have to be shown, wonders
which survey is more accurate.

 3.1 Errors in Distance

The error in measuring any distance depends on many factors.  These errors may be systematic
and/or random.  Systematic errors should be identified and eliminated, or corrections should be
applied to reduce them to an insignificant value.

Taped Measurements - The following primary sources of taping errors are all systematic errors:

N  Calibration
N  Temperature
N  Tension
N  Slope
N  Sag 
N  Alignment

Reading precision and other procedures can cause random errors in the determination of each of
these systematic errors.

Definition
Error. The difference between an observed or computed value of a quantity and the true value
of that quantity.
Random errors - unavoidable errors, typically small and as likely to be positive as
negative.
Systematic errors - mathematically determinable errors that conform to known physical
laws.
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The following primary sources of taping errors are all random errors:

N  Reading the temperature.
N  Reading the tension.
N  Plumbing and reading the tape.
N  Marking a point.
N  Reading the vertical angle.

These must be computed according to the rules of random error propagation to determine their
effect on surveying measurements.

Example Problem 3.1.1: 

A 200-ft calibrated steel tape has been used to measure the distance between two block corner
monuments, A and B.  The measurement was done in four segments by setting three points, each
at a distance of 200.00 ft, then measuring the last segment to monument B.  The sum of the four
measurements is 779.86 ft.  The tape was standardized, unsupported, at 65EF with 25 lb tension,
and calibrated at 200.00 ft under those conditions.  The measurement between A and B was made
with the tape unsupported, with plumb bobs, but without a tension handle.  From practical
observations and testing results on the procedures used by your survey crew you know that:

N  Tension is within ±5 lb.
N  Temperature reading is within ±10EF.
N  Alignment error is within ±0.5 ft.
N  Plumbing and reading of the tape is within ±0.01 ft.
N  Marking a point is within ±0.01 ft.
N  Vertical angle is within ±2N.

The following data are from your field book:

From monument A:
Segment 1: 200.00 ft; vertical Ê: -1E56N; set intermediate point.
Segment 2: 200.00 ft; vertical Ê: -4E09N; set intermediate point.
Segment 3: 200.00 ft; vertical Ê: -3E22N; set intermediate point.
Segment 4: 179.86 ft; vertical Ê: -13E41N; to monument B.
Temperature = 80EF.  Tension = 25 lb.

What is the corrected horizontal distance between monuments A and B, and with what certainty
should the distance be reported?

The corrected horizontal distance is determined by making adjustments for vertical angle and
temperature difference.  Applying these corrections to the measured slope distance yields a
horizontal distance between monuments A and B of 773.85 ft.
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The computation of the uncertainty of the computed horizontal distance is more involved.  Each
individual source of error can be isolated and computed for its total effect by taking into
consideration the repetition within the measurement system.

For example, the plumbing and reading of the tape is repeated twice for each of the four taping
segments, which totals eight repetitions of plumbing and reading errors.  Using the equation for
the propagation of random error in a series, Eq.4, the total expected error for this procedure is
equal to ±0.028 ft (see page 3-5 for the calculations).

The surveyor must determine whether each source of error will be derived independently from
each measurement task or can be distributed throughout the length of the distance taped.  The
surveyor must also note whether the errors compensate according to the law of compensation or
accumulate directly with the number of observations.  Errors in plumbing and readings, applying
tension, and marking of points accumulate according to the law of compensation.  Temperature
errors may compensate or accumulate depending on whether the temperature is taken as a daily
average or at the time of each measurement.  Alignment errors, which randomly fall on either
side of the correct alignment, accumulate directly with the number of observations and always
make the measurement longer.

But, to keep the calculations within perspective, let's go through the process systematically.

N Tension errors - Applying a tension that is inconsistent with the standardization of the
tape will result in measurement errors due to both the expansion and sag characteristics of
a tape.

Expansion: Using averages for the dimensions and modulus of elasticity of steel tapes,
the tension error related to expansion, for the total length, is ±0.011 ft.

Eq.5

where:
A = cross-sectional area of the tape (0.0064 in  (assumed))2

E  = modulus of elasticity for steel (29,000,000 lb/in  (assumed))m
2

R  = nominal tape length
e  = error in tension (±5 lb)p

For the tension error calculations:
R  = 200 ft
R  = 179.86 ft (last segment)s
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Sag: Using the sag correction equation, Eq.6, and propagating the error for sag in each
measurement segment by the law of compensation, the tension error related to sag, for the total
length, is ±0.251 ft.  (Using the derivative with respect to tension.)

Eq.6

where:
W = weight of the tape between supports
R = length of the tape between supports

P = tension on the tape
e = error in tensionp 
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N Temperature error - Using Eq.7 the total temperature error is ±0.050 ft.  Remember, this
error accumulated directly with the total measured length.

Eq.7

where:
K = coefficient of thermal expansion
L = total measured length
e  = error in temperature reading (±10E)t

N Plumbing and reading errors - These errors occur twice for each taping segment and
accumulate according to the law of compensation.  Therefore, the frequency, n, is 4 times. 
The total propagated random error is ±0.028 ft.

Eq.8

N Alignment errors - These are not random errors and do not compensate; they accumulate
and always make the measurement longer.  Do not include these in random error
calculations.  Perform field procedures to eliminate this systematic error.

Eq.9

where:
E  = alignment error on tape lengtha

d  = lateral displacementa

R  = length of tape 
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N Marking the chaining points - This task occurs at the end of each full tape length; the
fractional taping segment to monument B does not require the setting of a point. 
Therefore the frequency, n, is 3 times. The total marking error is ±0.017 ft.

Eq.10

N Vertical angle reading errors - Each vertical angle reading was stated as having an error of
±2N.  Using the error propagation formula from Surveying Measurements and their
Analysis, the four segments produce errors of ±0.004, ±0.008, ±0.007, and ±0.025 ft,
respectively.  Then, using the standard formula for propagation of random errors, Eq.3,
the total vertical angle error is ±0.027 ft.

Eq.11
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Using Eq.3 the result is:

Once you have determined the independent effect of each measurement task or procedure, you
can calculate the total error uncertainty on the measured line between monuments A and B.  The
total error is calculated using the individual errors previously determined by equations (5), (6),
(7), (8), (10), and (11).

Therefore, using the general propagation formula, Eq.3, the total error uncertainty is:

The best estimate of the distance, with its uncertainty, would be 773.85±0.26 ft, or possibly,
773.8±0.3 ft depending on the confidence you have in the precision of your procedures,
observations and standard errors.  

The relative accuracy of this error uncertainty between points A and B is 1:2,976.  If the client or
project specifications required a higher positional accuracy, e.g., 1:5,000, then procedures would
have to be modified so this higher accuracy could be achieved.  With respect to the previous
example, the following steps would be appropriate: 

N Compute the desired level of error uncertainty from the specified accuracy.  The total
allowed error for 1:5,000 is 0.15.

N By applying the error propagation theory in reverse, compute the desired procedure
change to produce an uncertainty error of 0.15 ft.  The largest error in this taping problem
is associated with the sag of the chain as affected by the 5 lb tension error.  Working the
total error uncertainty propagation formula (see above) with the desired resultant of 0.15
ft and having the sag error as the unknown will produce a desired sag error of ±0.135 ft.

N Then, using the formula to compute the total error for sag, Eq.6, with 0.135 ft as the
desired result and the error in tension as the unknown, the error in tension computes to ±3
lb.  Adding a tension handle to the taping procedure will provide the desired result.  

N Increasing the repetitions of plumbing and reading, marking the points, or reading the
vertical angles will yield about the same uncertainty because they are constrained by 
the systematic effect of the procedures and will produce little gain in the resultant error.

Definition
Relative accuracy. The calculatable uncertainty, for a given level of probability (e.g., 95%), in
the location of any point or corner relative to other points or corners set, found, established, or
reestablished.

Definition
Positional accuracy. The comparison of the position of a surveyed point with the true location of that point. The statistical analysis of survey measurements shows the probable position of a
point relative to a selected base point and line. See Relative Accuracy; the terms are often used
interchangeably.
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EDM measurements - WAC 332-130-100 (2) requires that all distance measuring instruments be
compared and adjusted annually, at a minimum, to a National Geodetic Survey calibrated
baseline.

The following primary sources of EDM errors are systematic:

N  Manufacturer's instrument centering error
N  Vertical tilt axis
N  Prism constant
N  Uncorrected atmospheric corrections
N  EDM/theodolite/prism height relation
N  Uncorrected refraction and curvature of Earth (long distances)

The following primary sources of EDM errors are random:

N  EDM instrument centering error
N  Prism centering error
N  Manufacturer's accuracy specifications; (e.g., ±(5 mm + 5 ppm))
N  Reading of atmospheric conditions
N  Reading the vertical angle

These random errors must be computed according to the rules of error propagation to determine
their effect on surveying measurements.

The random errors that will have the largest effect on the level of uncertainty of EDM
measurements are EDM and prism centering errors and the manufacturer's accuracy
specifications.  Uncertainties from misreadings of atmospheric conditions would normally be
negligible if properly corrected at each measurement.  Refer to the vertical angle discussion on
taped measurements, Eq.11, for the general effect on EDM measurements.  Remember; the
longer the measured distance and the steeper the vertical angle, the less certain is the horizontal
measurement if care is not taken in the reading of the vertical angle.

If an EDM manufacturer's accuracy specification of ±5 mm is a constant for any measurement,
then EDM measurements over short distances may not be precise enough to obtain a desired
accuracy.  For example, if the desired accuracy was 1:10,000, then 0.016 ft (5 mm) divided by
the shortest distance possible to meet the desired accuracy should equal 0.0001 (1:10,000).  The
proportional error in parts per million is negligible for this example.  The shortest distance
computes to 160 ft.  A distance of 50 ft measured with this EDM would have a relative accuracy
of 1:3,125.
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Example Problem 3.1.2:

A measurement is needed from point A to lay out a horizontal distance of 4000.00 ft to establish
a required point B on an airport runway extension for flight clearance purposes.  The ground is
level for all practical purposes, so there is no vertical angle, and the distance to point B can be
measured directly.  The EDM manufacturer's specification is ±(5 mm + 5 ppm).  The instrument
and prism centering errors are ±0.01 ft and ±0.02 ft, respectively.  The prism offset has been
corrected for and is zero.  Atmospheric readings have been entered in the EDM correctly and are
negligible for this exercise.

What is the uncertainty of the position of point B with respect to point A?

The uncertainty of the measurement will be affected by the EDM manufacturer's specifications,
the instrument centering error, and the prism centering error.  Each one will occur once and will
accumulate by the general rule of propagation of random errors.  The total error uncertainty as
computed using the general propagation formula, Eq.3, is:

The reported uncertainty of the distance to point B with respect to point A is 4,000.00±0.04 ft. 
Therefore, the positional uncertainty of point B with respect to point A is ±0.04 ft.  The relative
accuracy between the two points will be 1:100,000.

 3.2 Errors in Direction

The following discussion focuses on instrument and procedure errors.  Direction errors can also
be caused by other factors such as, astronomical observations, positional errors on existing
backsights and foresights that are used to determine beginning and closing azimuths, Earth
curvature, and meridian convergence.

The measurement of a horizontal angle with a theodolite is influenced by many sources of error,
some instrumental, some personal, and some from natural causes.  Detailed discussions are
presented in Chapter 6 of Surveying Measurements and their Analysis and Section 7.2 of Mikhail
and Gracie's (1981) Analysis and Adjustment of Survey Measurements.

Most instrument errors are systematic.  They can be compensated for by proper procedures,
maintaining the instrument in proper adjustment, and performing an equal number of direct and
inverted observations.

Definition
Uncertainty. Because all measurements have associated random errors, there is uncertainty that any particular measurement represents the true value of the quantity being measured. More
commonly called precision, uncertainty can be expressed mathematically using standard
deviation to determine the range within which (positive or negative random) errors are expected
to fall at a given level of probability (e.g., 95%). One might mathematically describe precision as the range within which the true measurement lies with 95% probability or certainty. The terms
certainty and uncertainty are commonly used interchangeably in surveying literature.
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The primary sources of instrument errors are misalignment of the:

N  Collimation axis
N  Vertical axis
N  Horizontal axis
N  Optical plummet axis

Most personal errors are characteristically random.  If standard procedures are developed and
adhered to, then standard deviations can be used for each task throughout the survey.  The
primary sources of personal errors are inaccurate:

N  Focusing
N  Reading
N  Pointing
N  Centering the theodolite
N  Centering the target
N  Centering the bubble

Most natural errors are caused by the weather, and they influence most personal errors.  The
effects of these errors are difficult to quantify.  The best way to deal with natural errors is to be
constantly aware of them so as to minimize their effects.  Some examples are:

N  Pointing errors caused by wind, haze, heat waves, or refraction (when the line of
sight passes too close to objects),

N  Centering and leveling errors caused by the thawing of frozen ground,
N  Reading errors caused by poor lighting.

To determine the final random error associated with the angle measurement, close attention must
be given to each measurement task.  Some tasks, such as reading and pointing, will each give
some expected resultant error and, in general, are not affected by the length of the measured line. 
In contrast, standard centering errors for the theodolite and targets will result in  varying sizes of
errors in the resultant angle, depending on the length of the line measured and size of the interior
angle.

Example Problem 3.2.1:

Two interior angles of approximately 180E each, were turned with the same precision,
equipment, and procedures.  One angle had backsight and foresight distances of 200 ft, and the
other angle had distances of 1,000 ft.  The following derived standard errors in this example are
the same for each angle.  Not all random errors are considered.
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Given (experimentally derived values):

Reading: ±3.5O
Pointing: ±2.0O
Target centering: ±0.02 ft
Instrument centering: ±0.015 ft

What is the expected angular error at each set-up?

N Reading (2 angle sets with directional theodolite):

Each set consists of two angle measurements, one with the telescope direct and one with
it inverted.  The error in reading is equal to the standard error in reading, ±3.5O, times the
square root of the number of sets, 2, divided by the square root of the number of angle
measurements, 4.  See Eq.4 in Section 2.6 for the basic formula.

(This result is the same for both set-ups.)

N Pointing:

Because both the reading and pointing errors occur with each pointing, you can use the
same formula and values as for the reading computations.  The error in pointing is equal
to the standard error in pointing, ±2.0O, times the square root of the number of sets, 2,
divided by the square root of the number of angle measurements, 4.

(This result is the same for both set-ups.)

N Target centering:

The maximum angular error would occur when the target centering error is perpendicular
to the direction of each pointing of the theodolite.  Each target centering error for the
backsight and foresight will affect the angular error and will have to be propagated by the
law of addition of random errors.  Once the target has been set over the point, no number
of repetitions will change the effect of the target centering error.  The target centering
errors are random in nature, but they are systematic in effect, unless the targets are
recentered with each pointing.
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Because the backsight and foresight distances are equal, the angular error in target
centering of the backsight will equal the angular error in target centering of the foresight. 
This would not be true if the backsight and foresight distances were not equal.  The
maximum angular error in target centering for the mean horizontal angle is equal to the
square root of the sum of the squares of the angular errors from the backsight and
foresight targets.  The value of 206265O/radian is used to convert the answer from radians
to seconds.

For sights of 200 ft:

For sights of 1,000 ft:

N Instrument centering:

Instrument centering errors are similar in nature to target centering errors: systematic in
effect, but random in nature.  Once the instrument has been set over the point, no number
of repetitions will change the effect of the instrument centering error.  Refer to Figure
6.11 on page 177 of Surveying Measurements and their Analysis for a good depiction of
the effect of theodolite centering errors on angles.

Because the backsight and foresight distances are equal, the following formula will be
used.  See page 178 of Surveying Measurements and their Analysis for the formula and
the definition of terms:

For sights of 200 ft:
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For sights of 1,000 ft:

N Combined set-up error (uncertainty of angle):

The combined angular error follows the law of addition of random errors.  See Section
2.6, Eq.3, for the basic formula.

For sights of 200 ft:

For sights of 1,000 ft:

Comparing the errors for the different sight distances shows the need for care when centering
targets and instruments on short sight distances.  If standard procedures were followed
throughout a survey and lengths of traverse legs were varied as in the above example, then
weighted adjustments to the angles based on the individual uncertainties would be appropriate
and justifiable.  After analysis, as a means of increasing final accuracy, you may consider
modifying procedures to reduce uncertainties for short sight distances.

A combined angular error of ±36.5O or ±7.8O represents one standard deviation; that is, 68.3% of
the time the results of the survey and analysis will fall within the calculated ranges.  Typically,
the surveying profession demands that the level of certainty be 90% or 95% instead of 68.3%. 
To obtain the corresponding range of acceptable values, the standard error (one standard
deviation) should be multiplied by 1.64 for a 90% confidence level or 1.96 for a 95% level of
certainty.  In this example, multiply ±36.5O and ±7.8O, respectively, by 1.96 to obtain ±71.5O and
±15.3O for the corresponding acceptable range of values for sights of 200 and 1,000 ft with 95%
confidence.  If these values are unacceptably large, the surveyor should use the methods for
controlling error magnitudes as described in Section 9-4, Surveying Measurements and their
Analysis.

 3.3 Errors in Position

An error in position is the combined effect of the uncertainty in distance and in direction.  This
uncertainty will continue to increase through a traverse as the errors accumulate in accordance
with random error theory.  Error in position is not the same as error of closure.  An error of
closure may fall anywhere from zero to the full amount of the expected uncertainty of the final
position.  Only the accepted theories on probability and errors can  help estimate the uncertainties
in expressed positions (coordinates).

Definition
Standard deviation. A statistic indicating the spread of measured values about the mean for a
given quantity.
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FIGURE 3.3.1B.  Error ellipse at C with
respect to B.

FIGURE 3.3.1C.  Error ellipse at C with respect to A.

FIGURE 3.3.1A.  Error ellipse at B with
respect to A.

The previous discussions dealt with random errors of measurement in one dimension only.  A
random error in distance measurement will cause an uncertainty in position along the direction of
the measurement, creating one axis of an error ellipse.  A random error in angle measurement
will cause an uncertainty in position perpendicular to the direction of the measured line, creating
the other axis of the error ellipse.  The combination of these two random errors creates the shape
and direction of the error ellipse.  In a normal traverse, rarely will the axes of the ellipse be of the
same magnitude.  The larger error will be the major axis of the ellipse and the smaller error will
be the minor axis.  The real world of boundary surveying controls the resultant precision of the
measurements and, therefore, the size, shape and direction of the ellipse.  These error ellipses
will change in direction and magnitude as the random errors accumulate.

In most instances the station error ellipses will be related to a particular point in a survey as
chosen by the surveyor.  Figure 3.3.1A shows the error ellipse at B with respect to A; Figure
3.3.1B shows the error ellipse at C with respect to B.  Figure 3.3.1C shows the combined error
ellipse at point C with respect to point A as a result of combining the relative errors of courses
AB and BC.

Definition
Error ellipse. The enclosed region contains the most probable location of a surveyed point at
the center of the ellipse and all the other acceptable locations for the point at a given level of certainty. The higher the required level of certainty that the true point be contained in an error ellipse, the larger the dimensions of the ellipse will be.
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FIGURE 3.3.2.  Typical error ellipse.

In general, progression through a traverse will combine errors; the axes of the error ellipses for
the second and succeeding courses are not likely to be parallel with and perpendicular to the
measured lines.  The position of the major and minor axes of the error ellipses are located by a
rotation angle 2 with respect to the coordinate axes.  

The region inside each error ellipse
represents probable positions, statistically
determined at predetermined levels of
certainty, for each corresponding point
along the traverse.  For example, if the
surveyor wishes to know the region within
which the position of a point is likely to
be found with 95% certainty, the
corresponding error ellipse will be larger
than one that reflects a certainty of only
50%.  Table 2 provides multipliers
showing the ratio of ellipse dimensions
for various probabilities that the point
being considered lies within the error
ellipse.  With reference to that table, the
lengths of the major and minor axes of the
95% error ellipse will be 2.447/1.177 =
2.079 times those of the 50% error ellipse.

A typical error ellipse is shown in Figure 3.3.2.  In general, the principal axes of the ellipse, xN
and yN, do not coincide with the survey coordinate axes, x and y.  The direction of the error
ellipse is represented by angle 2 rotated from the survey axis x.  Typically, a positional error of a
traverse point is represented as F  , F  and rotation of the axes, 2.xN yN

The error analysis of an individual point relative to some beginning point is just one way to
examine your work.  The further comparison of the relative errors between adjacent property
corners is of more importance and will be the subject of the next chapter.
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4.  Relative Accuracy Analysis

Surveying is "The science and art of making such measurements as are necessary to determine
the relative position of points above, on or beneath the surface of the earth, or to establish such
points in a specified position."   The science of surveying involves the application of
mathematics and physics.  The art of surveying involves the judgment and logical thinking that
goes into pre-analysis and post-analysis.  Pre-analysis includes the planning and laying out of a
project and proper selection of equipment, methods, and procedures.  Post-analysis includes
analysis of data and making correct decisions and appropriate adjustments.

Science and art must be properly combined to derive the relative positions of points to other
points or a specified position on the earth.  The accuracy of a position's location or measurement
is directly related to the surveyor's understanding of systematic and random errors, direct and
indirect measurements, significant figures, the difference between precision and accuracy, the
method and procedures employed, and the analysis of the data.  Control is evident if the surveyor
can, with confidence, state the probable numerical range of each measurement along with the
level of certainty (percent of probability) related to this range.

If every measurement has a certain degree of uncertainty, then how does the surveyor recognize
and control the uncertainty of those measurements?  If a client needs a property line established
so that a 50-story building can be built at zero setback, how can the surveyor design the survey
measurement system that will assure the building is not built over the line?  Many surveyors
would arbitrarily select equipment and methods, then merely hope that the accuracy was achieved
by relying on the least count and other elementary precision concepts.  Furthermore, a surveyor
might certify to the accuracy in the absence of any quantitative support.  Pre-analysis can help in
determining the equipment and traverse configuration that will attain the desired accuracy.  Post-
analysis provides the basis for quantitative evaluation.

 4.1 Selection of Survey Equipment

Surveyor's today have a vast array of instrumentation available to measure angles and distances. 
They must know the limits of equipment selected for the job, and they are charged with selecting
instrumentation and procedures that will attain the accuracy demanded for a particular project. 
The choice of such instrumentation and procedures must withstand statistical tests and the
scrutiny of fellow professionals.  

Instrumentation available to the surveyor today includes the following:

N  Staff compass and cloth tape
N  Compass theodolite (Wild T-0) and steel tape
N  Transit and steel tape (30O-transit, 1N-transit)
N  Theodolite and EDM
N  Theodolite/EDM total station
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N  Inertial positioning systems
N  Global positioning systems (GPS)
N  Photogrammetric systems
N  Various combinations of the above

A prudent surveyor will not choose a compass and tape and probably not a 1N-transit and chain to
locate a property line for the 50-story building.  Appropriate pre-analysis of the relative accuracy
capabilities of this equipment would show error ellipses larger than the accuracy required. 
Surveyor's should be aware of the differences in the relative accuracy of a point set using a 1N-
transit, 30O-transit and various theodolites.  They should also be aware of the precision range for
a variety of angular readings, both direct and reversed.  

Surveyor's should know the manufacturer's stated precision for the equipment used or should
make tests to determine its capabilities and limitations (manufacturers' instrument
specifications/precisions are regularly published in P.O.B. magazine).  For example, a surveyor
might use an EDM instrument to measure a line that is to be 300.00 ft.  The EDM manufacturer's
published standard deviation for that distance is ±0.02 ft.  The surveyor can be 68.3% sure that
the measurement is between 300.02 and 299.98 ft.  There is also a 99% certainty that the
measurement is between 300.05 and 299.95 ft.

Instruments must be maintained in close adjustment according to the manufacturer's
specifications and shall be compared and adjusted at least annually to a calibrated base line (see
WAC 332-130 and the Technical Memorandum, Use of Calibration Baselines, published by the
National Oceanic and Atmospheric Administration in 1977).

 4.2 Selection of Procedures for Using Surveying Equipment

The public expects a professional surveyor to provide appropriate accuracy at a reasonable cost. 
Few surveying projects are alike.  Therefore, surveyors will not always use the same equipment
and procedures.  Analytical thinking and professional judgement are always involved.  The
number of repetitions for the selected equipment, level of care taken in making readings and
handling of equipment, and manner of making independent checks affect the time required for
the survey, which affects cost.  The challenge to a surveyor is in choosing the methods that
satisfy the accuracy requirements.

Surveyors must analyze anticipated survey procedures to ascertain that they meet the precision
requirements of the project.  For surveys of a similar nature, a proven procedure may be used
repetitively.  In more complex surveys or where procedures have not been established, it is
prudent to develop a plan for equipment use and analyze its effect throughout the survey.  If the
predicted precision is satisfactory, the procedure is acceptable; if too low, the procedure must be
improved; if too high, certain steps of the plan may be moderated.  Several attempts may be
necessary before deriving a plan for equipment use that provides the desired result.
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The procedures you chose should:

N  Help avoid mistakes.
N  Be designed to produce the desired accuracies.
N  Spell out what to do in a given situation; however, specific procedural guidelines

will seldom cover all situations.
N  Be modified with the use of different equipment.
N  Be developed by each professional, based on their own unique situation, for use by

technicians.
N  Include calibration of the instruments to be used.

You may need to vary procedures and methods due to the scope of a job, weather, terrain,
equipment, and differing traits of survey personnel.

As stated in Surveying Measurements and their Analysis, making a measurement can be reduced
to a five step procedure:

N  Selecting the method or technique to use for a specific measuring task.
N  Deriving and adopting specifications and standards.
N  Executing the measurements and recording the data.
N  Employing various checks and controls during execution.
N  Analyzing and reducing the data.

 4.3 Configuration of the Survey

Authors of many texts and surveying articles have stated that an expression of lineal error of
closure is invalid as an indicator of accuracy and is only a statement about precision.  The
American Congress on Surveying and Mapping (ACSM), in its publication Classification and
Specifications for Cadastral Surveys, states that its procedures assure only precision.  The
configuration of the project scheme, number of traverse legs, steepness of the terrain, line
lengths, measurement intervals and closure points all affect the accuracy of the survey.

Many factors, such as the weather, method of doing backsights and foresights, ability to measure
accurately on steep slopes, and instrument reading, pointing, and set-up errors  influence the
expected traverse closures.  These sources of errors and many others tend to accumulate as the
opportunity to occur increases.  The configuration of the traverses as determined by the direction,
length, and number of traverse legs in each survey project, when combined with the random
errors determined from the procedures, will result in a wide variety of positions (error ellipses;
see Section 3.3) for the set corners.  It is not necessary to go through an actual mathematical
analysis to know this will happen.  But it is necessary to do the analysis to determine the
magnitude of the probable errors.

Once the magnitude of probable errors is known, appropriate questions can be asked:  What will
the positional relationship be between different surveys?  How far apart will two surveys be? 



4-4

FIGURE 4.3.1.  Traverse layout with error ellipses.  (Not to scale)

Are the public's and the profession's interests best served by multiple monumentation of a
corner?  Or maybe the more pertinent question is, "Is one survey any more correct than the
other?"

Computer software is available to assist the surveyor in answering these questions.  We now
consider an actual survey in which a commercial software package is used to identify relative
accuracies of the contained points.

Example Problem 4.3.1:

An analysis of an actual job will show the magnitude of probable errors and how they may affect
the position of set corners.  Figure 4.3.1 shows a section subdivision survey in a rural forest
location that was done with a 10O total station with an EDM specification of          ±(5 mm + 3
ppm).  Standard defaults were used (10O for the angles and 0.005 ft for tribrach centering errors). 
The least squares program of STAR*NET, version 3.06, from Starplus Software, Inc. was used
for the analysis.  The results are reported at the 95% confidence level.  Three individual traverses
were looped and connected together and have unadjusted traverse closures of 1:10,280, 1:37,207,
and 1:49,349.
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  Station Pt #. Major Axis Minor Axis Azimuth of
Major Axis

W 1/4 cor 2   0.022 ft   0.021 ft      95E03N
NW cor SS39   0.987 ft   0.283 ft     101E08N
N 1/4 cor 38   1.623 ft   0.285 ft     147E13N
E 1/4 cor 107   2.577 ft   0.824 ft      12E58N
NE'ly point 109   6.450 ft   0.550 ft     168E00N
SE cor 110   3.127 ft   1.308 ft      40E49N
S 1/4 cor SS31A   2.165 ft   0.739 ft      61E03N
C 1/4 cor 17A   1.294 ft   0.114 ft       3E46N

TABLE 4.3.1

Stations  
   From   To Distance Precision

W 1/4 cor C 1/4 cor 2597.63 ft   1:2007
N 1/4 cor C 1/4 cor 2578.37 ft   1:1303
S 1/4 cor C 1/4 cor 2761.84 ft   1:1194
E 1/4 cor C 1/4 cor 2658.95 ft   1:923
W 1/4 cor NW cor 2580.64 ft   1:2613
NW cor N 1/4 cor 2649.84 ft   1:1476
N 1/4 cor NE cor 2647.86 ft   1:843
NE cor E 1/4 cor 2673.49 ft   1:923
E 1/4 cor SE cor 2672.38 ft   1:676
SE cor S 1/4 cor 2589.04 ft   1:688

TABLE 4.3.2

The station coordinate
error ellipses in Table
4.3.1 have been selected
from the complete
computer printout to
provide a feel for the
accuracy of the survey. 
The error ellipses are
relative to the traverse
point of beginning near
the west 1/4 corner.

This program also
provides relative error
ellipses between
preselected points on the
project.  This allows the
surveyor to analyze the
relative accuracy
(precision) between
found and set corners
throughout the survey. 
The software provides
this information when
key corners are selected
(See Table 4.3.2). 

Version 3.06 of the STAR*NET program analyzes in the worst case scenario which is based
upon distance only and disregards the direction of the semi-major axis.  While the new versions
will analyze in a way that will provide more realistic relative precision values, the above
information is still quite useful.  It still tells us that linear error closures have no bearing on the
ability to place corners accurately and that a survey has varying degrees of relative accuracy
throughout the project.

The configuration of the survey plays a more important role in determining the position of
corners than do good linear error closures.  Long indirect traverses combined with long radial ties
to corners will have a major effect on the surveyor's ability to accurately position corners.  See,
for example, points 109, 110, and 111 in Figure 4.3.1.  An analytical least squares program can
provide the data necessary to show the real results of the survey, the relative position of the
corners.  For a complex traverse survey, such a program may be the only way to obtain these
results.
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FIGURE 4.3.2.  Original
traverse of city block.

FIGURE 4.3.3.  Error analysis considering only manufacturer's
specifications.

Example Problem 4.3.2:

This example is taken from a boundary survey control traverse performed in a typical rectangular
city block with a monument at each of four centerline intersections (Figure 4.3.2).  It was not
possible to sight down two of the centerlines due to left-hand turn pocket lanes and truck traffic,
so traverse points were set over on the sidewalks.

Points 61, 62, 65, and 66 are found monuments.  A total station
(5O) was used for angles and distances ±(3 mm + (3 ppm x D)). 
The raw data were quickly calculated in the field to check for
closure; the closing error ratio was a surprisingly high 1:296,000. 
Knowing the difficulties with traffic and other influences, we
suspected that the high closing error ratio was a fluke; we expected
a traverse analysis would tell a different story.  One might be
tempted, after computing the closing error ratio, to think that any
point on the traverse would be within 0.01 ft of the calculated
coordinate.

An analysis was made using only the instrument manufacturer's
specified standard deviations for angle and distance measurements. 
The coordinate for point 62 was fixed (zero error).  The resulting
error ellipse for point 66 is shown in Figure No. 4.3.3.  

Notice that at the far
end of the traverse, at
point 66, there is an
error ellipse with  major
and minor axes
measuring 0.04 ft by
0.03 ft respectively
(relating to zero at point
62), quite an
enlargement over the
0.01 ft closing line
measurement.
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FIGURE 4.3.4.  Error analysis considering manufacturer's
specifications and centering errors.

FIGURE 4.3.5.  Retraverse
of city block with point
ellipses.

There are other unaccounted for
sources of random error in this
traverse.  These errors, when
accounted for, will have the effect
of enlarging the error ellipses even
more and must be part of the
overall analysis.  When
considering the random error
expected from centering the
instrument and centering the
backsights/foresights, calling on
our experience with and
knowledge of the traverse methods
and equipment used, we suspected
that both centerings were probably
no closer than 0.015 ft.  We ran an
analysis accounting for the
instrument errors (above) and
centering errors of 0.015 ft.  The results are shown in Figure
4.3.4; the larger error ellipse around point 66 is now 0.21 ft by
0.08 ft.  We elected to reevaluate potential instrument error and
returned to the field to retraverse the same control points.

First, the total station EDM was checked on an NGS baseline
(see Use of Calibration Baselines).  The optical plumbs on the
tribrachs were carefully adjusted insuring better instrument
centering as well as better centering for the backsights and
foresights.  We estimated that we could now center the
instruments and backsights/foresights to within 0.01 ft.  We
retraversed the points at a time of day when traffic and
heatwaves were less of an influence.

Again, the raw data for the second traverse (see Figure 4.3.5)
were calculated in the field to check for major blunders.  We
found a closing line length of 0.02 ft and a closing error ratio of
1:102,000.  Comparing closing error ratios, the quality of the
second traverse seemed to be less than that of the first, even
though we had taken greater care with the second.  But an
analysis of the second traverse revealed that the second traverse
was indeed much better than the first.
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FIGURE 4.3.6.  Error ellipses of retraverse of city block.

FIGURE 4.3.7. 
Retraverse of city block
with relative ellipses.

  Stations       Axes          Azimuth of
From To      Major     Minor    Major Axis

  62 63     0.051 ft   0.040 ft         79E
  63 64     0.064 ft   0.040 ft         75E
  64 65     0.061 ft   0.039 ft         63E
  65 66     0.056 ft   0.042 ft        172E

TABLE 4.3.3

Figure 4.3.6 shows that the
error ellipse around point
66 is substantially smaller
than shown on Figure 4.3.4
indicating that the quality
of the second traverse is
statistically better than the
first traverse.  We are
uncertain where in the
region described by the
boundaries of the ellipse
the coordinate falls, but we
are 95% certain it falls
somewhere within those
boundaries.  This example
shows that closing error
ratios are no indication of
traverse quality--they may
only be used to indicate
major blunders.

The second traverse was used to set point 69.  Note the ellipse
around point 69 on Figure 4.3.6.  We are 95% certain that the
point was set within the region described by the 0.10 ft by 0.07 ft
error ellipse.

Figure 4.3.7 shows an error ellipse on the line between points 65
and 66, as well as on other lines.  The error ellipses shown in
Figure 4.3.5 were around points, relating each point to point 62,
which we chose to fix with no error.  The relative error ellipses
in Table 4.3.3 and in Figure 4.3.7 show the relative accuracy of
point 65 with respect to point 66 and the other point pairs.  By
knowing the relative accuracy of any two points in a traverse, it
will be easier to predict and control the quality of work
performed from those points in the future.
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In review, the traverse analysis included more than just linear error of closure.  We have shown
that considering and including all errors is necessary in an analysis.  The analysis should provide
realistic knowledge of the probable errors at each point.  If only standard manufacturer's
specifications are considered, the associated error ellipses will be unrealistically small.  Error
ellipses can be made acceptable only by selecting, adjusting, and calibrating equipment and
adopting better procedures.  Any monument set from a traverse will fall within the region of the
associated error ellipse.

Before we learned about relative accuracy and the type of traverse analysis discussed in this
guidebook, we readily accepted very high closing error ratios without question.  Yet, if we
continued to use the traverse and extend it, we would experience difficulties.  Today we know
why.

Once you have informed your field and office personnel about your new system of quality
control, which includes analysis software, the time spent processing raw data for an analysis and
for adjustment is no more than for any other data entry system.  You will soon find that an
analysis program is a tool you can rely on for the short simple traverses as well as the extensive
traverse network.

 4.4 Adjustment of Surveys

Before any adjustment begins, you need to detect and remove all systematic errors and mistakes. 
Only random errors should remain.  The actual closure normally should not exceed the expected
closure.  If it is greater, you may need to examine the survey measurements and network design
to locate any problems.  The expected closure is determined by pre-analysis of the survey system
as computed by random error theory.  The expected closure error depends on the accumulation of
errors in individual distance and angle measurements, as well as general traverse configuration,
number of set-ups in the traverse, and the lengths of the traverse lines.

Adjustments are not part of an analysis.  They simply make the values close mathematically.  The
final adjusted values are no freer from error than the original field data, but they do provide a
more probable value (coordinates) for the position of the points.  The most important thing to
remember is that the adjustment should not shift the position of any point more than the
theoretical uncertainty.

The adjustment method should be chosen with reason and logic to suit the surveying conditions. 
Generally, a simultaneous least-squares adjustment for direction and distance will be satisfactory,
though it is not justified in many cases.  If the uncertainty has been caused by direction and
distance in equal proportions and is a function of the distance, the compass rule will be
satisfactory.  Multiple interconnecting traverses (crossed lines and junction points) also add
complexity to the calculations and are normally approached one loop at a time until the last
traverse is adjusted.  This "last traverse adjustment" always brings anxiety to the error closures
and usually causes reductions in reported precision.  In reality the last traverse's precision is
probably similar to the other traverses.
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The compass rule could be an appropriate adjustment method for a single loop traverse closing
on itself or a traverse between two known points, when the directions and distances have been
measured with comparable precision.  However, the compass rule method is not adequate for
analyzing a survey.  Least-squares adjustment is helpful for surveys that have redundancy,
contain varying precision or field conditions (weight factors), have multiple interconnecting
traverses, or require greater precision.  An analytical least-squares adjustment program can give
you an itemized breakdown of your survey, showing exactly how each of your field observations
fits into the overall survey.  The adjustment will be a simultaneous best-fit solution and will
eliminate the "last traverse adjustment" problem.

Several tools have been provided for your use in Relative Accuracy Analysis.  Equipment
selection, procedures and traverse configuration all play key roles in the end product and the
adjustment process utilized.  How you use this analysis in your survey practice has not been
covered by the proceeding chapters.  The practical daily analysis of a property corner’s relative
position is the focus of upcoming chapters.  You have been provided with a foundation from
which to move forward.
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 5. Use of Relative Accuracy in Surveying Practice  (This chapter will be
completed in future supplements.)

You may be thinking that the analysis procedures are laborious and will add substantially to the
cost of your surveys.  There is no question that they add time to the process and that suitable
software is necessary.  The bulk of the input data, however, is easily and quickly recorded by the
field personnel.  After the procedures are in place, the impact on your operation time will be
minimal, and your results will be both predictable and sound.

 5.1 Acceptance or Rejection of Existing Corners

With these analysis procedures surveyors have an additional and powerful tool to use when
accepting or rejecting existing monuments.  Although a monument is a physical object intended
to mark a corner location, it may not represent the true position.  Accepting existing monuments
depends upon the verification of their authenticity or their falling within the acceptable range of
relative accuracy.  Verified original corners should not be analyzed for acceptability through
relative accuracy procedures.  The basic legal principles of surveying are not affected by these
procedures.  Depending on the equipment and procedures used, an analysis of the measurements
should reveal the mathematical reliability behind a decision to accept or reject the found point.

Surveyors daily compute coordinates of points from record data in order to traverse to them.  The
traverse coordinates versus the record data coordinates are useful in determining whether to
accept the found evidence or reject it and set another point.  But how reliable are your traverse
coordinates?  For example, if you find a nonoriginal monument 0.9 ft from the computed
position, you may be tempted to reject it.  If you compute the relative position error of your
traverse at that location, you may find the monument is within the perimeter of your error ellipse. 
You may be left with two choices: accept the monument, or review your traverse analytical data
to find possible areas of improvement.  A smaller ellipse may make your decision making a bit
easier.  It would be helpful to know that the previous surveyor used standard prudent care in
establishing the monument.  If both surveys complied with the standard practices of the times,
the monument probably should be accepted.

The need for professional judgement is not removed by having followed the procedures
described in this guide.  These analysis procedures are tools to be added to those you are using
now.  These tools, however, furnish you with a sound foundation for decision making.  The
relative accuracy analysis is probably more admissible as evidence in court than your instinct. 
Accepting or rejecting a monument on the basis of this type of statistical analysis is a masterful
approach for the Professional Land Surveyor.
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 5.2 Future Considerations

The remainder of this chapter will be completed as a supplement for future distribution.  The
following proposed topics and questions will be addressed by the Relative Accuracy Committee
to provide guidance in the use of relative accuracy in actual surveying practice.  After reviewing
this initial publication, please send questions and ideas that you believe should be addressed to
any member of the Relative Accuracy Committee or DNR staff (see list on the inside of the front
cover). 

Determining encroachment through relative accuracy - If your survey shows an
encroachment of 0.1 ft on a line controlled by corners that have an error ellipse of 0.2 ft, do you
have an encroachment?

What to do with old and recent work - How far does a surveyor have to go to retrace old
work?  Does it have to be recomputed?  If old work is retraced and found to be out of limits with
the standards of that time, should it be rejected without question?  If recent work is found to be
out of limits with current standards, should it be rejected?  What is the standard of rejection?

Reporting of relative accuracy - What would you want to know to adequately evaluate another
surveyor's work?  "If good measurement accuracy is achieved, part of its value is lost unless the
estimated uncertainties are expressed in some way"  (See Section 9-6, Surveying Measurements
and their Analysis).  What type of statement or data should appear on the map in relation to the
uncertainty of the bearings and distances or corner positions?  How will reporting of the
uncertainty of measurements affect the writing of land descriptions?

How will relative accuracy be applied to a calculated corner? - What is the degree of
uncertainty of a calculated corner?  How does one compute this uncertainty?

Procedural changes resulting from relative accuracy - What changes, if any, need to be made
to field and office procedures regarding implementation of relative accuracy?

Can there be an unacceptable error ellipse on a found and tied original monument?  If so, does
this unacceptable error ellipse have anything to do with the decision to accept the monument
position?

Should positional tolerance ever replace closure as the standard for Washington State surveys?
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Glossary

Accuracy.  The agreement of a measurement or (the average of a set of) measurements with the
true value.  

Blunders.  See mistakes.

Confidence interval.  The range of measurement values that are acceptable at a given level of
confidence or certainty.

Confidence level or level of certainty.  A numerical value representing the acceptable certainty
or desire on the part of the observer that a measurement is correct.  For example, a confidence
level of 95% reflects a desire that the observer be correct 95 times out of 100.

Degrees of freedom.  The difference between the number of times a quantity has been measured
and the minimum number required to uniquely determine the numerical values in the underlying
mathematical model.  For example, a distance measured four times which requires one
measurement to estimate its length produces three degrees of freedom.

Error.  The difference between an observed or computed value of a quantity and the true value
of that quantity.

Random errors - unavoidable errors, typically small and as likely to be positive as
negative.
Systematic errors - mathematically determinable errors that conform to known physical
laws.

Error ellipse.   The enclosed region contains the most probable location of a surveyed point at
the center of the ellipse and all the other acceptable locations for the point at a given level of
certainty.  The higher the required level of certainty that the true point be contained in an error
ellipse, the larger the dimensions of the ellipse will be.

Law of compensation.  The principle that random errors tend to cancel, but never do so
completely; errors accumulate in proportion to the square root of the number of opportunities for
their occurrence.  This also applies to an error in a series.

Mean, arithmetic.  The sum of the values of individual measurements of a quantity divided by
the number of measurement repetitions.

Mistakes.  Blunders caused by the observer (false reading) or by a defective instrument, or both.

Population of data.  All of the potential measurements of a particular quantity.  The surveyor
typically samples from the population of a data set when measuring a line or angle several times,
determining only a small finite number of the infinite number of potential observations.
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Positional accuracy.  The comparison of the position of a surveyed point with the true location
of that point.  The statistical analysis of survey measurements shows the probable position of a
point relative to a selected base point and line.  See Relative Accuracy; the terms are often used
interchangeably.

Positional error.  The difference between the location of a point determined by surveying and
the true position of the point.  The error may never be known because in many instances the only
way to determine the true position is by an infinite number of measurements.  The true position
of the point is then approximated as the mean position of a finite number of measurements, and
error is correspondingly approximated by the difference between a surveyed position and the best
estimate through all available measurements.

Positional tolerance.  The precision required for the known, acceptable position.  A tolerance
standard that requires a 99% certainty of knowing the position of a point can require more precise
measurements and greater expense than a 90% certainty of position.

Precision.  The extent of agreement among measurements of the same quantity.  An estimate of
standard deviation is commonly used to indicate precision.

Propagation of random errors.  A mathematical formulation by which accumulated errors can
be quantified or pre-analyzed when originating from a variety of sources--e.g., cumulative errors
in a measurement of the length of a line as a result of errors in temperature determination, tension
determination, marking the line endpoints, etc.

Redundancy.  See degrees of freedom.

Relative accuracy.  The calculatable uncertainty, for a given level of probability (e.g., 95%), in
the location of any point or corner relative to other points or corners set, found, established, or
reestablished.

Residual.  The difference between an independent observation or measurement in a set of
observations and the mean of those observations.

Significant figures.  The number of figures that have meaning in any measured quantity as
estimated from the order of precision with which the quantity was measured.

Standard deviation.  A statistic indicating the spread of measured values about the mean for a
given quantity.

Standard error of the mean.  The standard deviation of the probability function or probability
density function for a random variable and especially of a statistic, in this case, the mean.

Student's "t" distribution.  A sampling distribution used for small samples.
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True value.  The actual value existing in nature.  Due to the existence of random errors in
measurement, the true value can usually only be estimated (as the mean of multiple
measurements).

Uncertainty.  Because all measurements have associated random errors, there is uncertainty that
any particular measurement represents the true value of the quantity being measured.  More
commonly called precision, uncertainty can be expressed mathematically using standard
deviation to determine the range within which (positive or negative random) errors are expected
to fall at a given level of probability (e.g., 95%).  One might mathematically describe precision as
the range within which the true measurement lies with 95% probability or certainty.  The terms
certainty and uncertainty are commonly used interchangeably in surveying literature.
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_________________________________________________
Confidence Level

Degrees of       50         70        90          95       98           99
Freedom       (percent)
_________________________________________________
                             

1 1.000 1.963 6.314 12.706 31.821 63.657
2 0.816 1.386 2.920 4.303 6.965 9.925
3 0.765 1.250 2.353 3.182 4.541 5.604
4 0.741 1.190 2.132 2.776 3.747 4.604
5 0.727 1.156 2.015 2.571 3.365 4.032
6 0.718 1.134 1.943 2.447 3.143 3.707
7 0.711 1.119 1.895 2.365 2.998 3.499
8 0.706 1.108 1.860 2.306 2.896 3.355
9 0.703 1.100 1.833 2.262 2.821 3.250
10 0.700 1.093 1.812 2.228 2.764 3.169
11 0.697 1.088 1.796 2.201 2.718 3.106
12 0.695 1.083 1.782 2.179 2.681 3.055
13 0.694 1.079 1.771 2.160 2.650 3.012
14 0.692 1.076 1.761 2.145 2.624 2.977
15 0.691 1.074 1.753 2.131 2.602 2.947
16 0.690 1.071 1.746 2.120 2.583 2.921
17 0.689 1.069 1.740 2.110 2.567 2.898
18 0.688 1.067 1.734 2.101 2.552 2.878
19 0.688 1.066 1.729 2.093 2.539 2.861
20 0.687 1.064 1.725 2.086 2.528 2.845
21 0.686 1.063 1.721 2.080 2.518 2.831
22 0.686 1.061 1.717 2.074 2.508 2.819
23 0.685 1.060 1.714 2.069 2.500 2.807
24 0.685 1.059 1.711 2.064 2.492 2.797
25 0.684 1.058 1.708 2.060 2.485 2.787
26 0.684 1.058 1.706 2.056 2.479 2.779
27 0.684 1.057 1.703 2.052 2.473 2.771
28 0.683 1.056 1.701 2.048 2.467 2.763
29 0.683 1.055 1.699 2.045 2.462 2.756
30 0.683 1.055 1.697 2.042 2.457 2.750

 % 0.674 1.036 1.645 1.960 2.326 2.576
_________________________________________________

Table 1 
Values of the t Statistic to be Used in Calculating Confidence Intervals.

It is unlikely that the surveyor will ever
know the true values with total certainty
for measured distances, angles, and
differences in elevation.  However, the
observer's willingness to accept a value
for the quantity should increase with the
number of times a measurement is
repeated using consistently good
techniques and adjusting for systematic
errors.  The true value µ  is best estimated
as x̄, the average of the measurements. 
Each additional measurement is likely to
change that best estimate somewhat,
although there is a practical limit to the
number of times a surveyor can measure
any quantity.  Nevertheless, an
appropriate range of acceptable values
will be helpful when professional
judgements are made regarding the
relationship of a surveyor's measurements
to those made by other surveyors.

Just as the best estimate x̄ of a surveyed
quantity is pragmatically accepted 
in place of the true value µ , so the
standard deviation of a measured quantity,

, is estimated by,

to quantify the spread of

the measured values, x, obtained in
measuring the quantity n times.  (The

expression for true standard deviation is only correct when the total population containing N
values is known.)

If in considering the acceptability of measurements by other surveyors, the surveyor chooses to
be right 68.3% of the time (i.e., within one standard deviation), the range of acceptable values
would include the best estimate of the mean plus or minus the estimate of the standard deviation 

of the mean,  .



x̄&(sx̄)(t) x̄%(sx̄)(t) sx̄ '
sx

n

x̄ ± (sx̄)(t)

x̄ ± (sx̄)(t)
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FIGURE T1.1.  Probability distribution for two observations, one degree
of freedom.

Alternately, if the situation required a higher level of certainty, say 95%, the corresponding range

of values or the confidence interval reaches from   to,  , where    and t

is the tabularized value for the 95% confidence level and the corresponding degrees of freedom
n-1.  The confidence level is numerically equivalent to the proportion of area under the normal
curve which falls between .

The 90% confidence interval for a measured quantity, , diminishes to 2.92/6.31 = 46%
when the surveyor increases from two measurements (n-1=1), as demonstrated in Figure T1.1, to
three measurements (n-1=2) of a quantity, as demonstrated in Figure T1.2.  These figures also
show that the 95% confidence interval decreases to 4.30/12.71 = 33.8% of its range if the same
number of measurements occur.  The reader could show a corresponding decrease in range for
the 99% confidence interval to 15.6% of its range.  

These dramatic changes occur in the range of statistically acceptable values when more
replications are made, effectively reducing the error limits.  Similarly, the interval decreases to
15.4% of its value when changing from two measurements (one degree of freedom, t=12.71) to a
very large number of independent measurements (t=2.04 for thirty degrees of freedom). 
Application of these calculations through surveying "experience" is described in Section 2.5.
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FIGURE T1.2 Probability distribution for three observations, two degrees of freedom.
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____________________

Probability    c
____________________
0.393 1.000
0.500 1.177
0.632 1.414
0.683 1.516
0.865 2.000
0.900 2.146
0.950 2.447
0.989 3.000
0.990 3.035
0.998 3.500____________________

FIGURE T2.1.  Calculated position uncertainty in x and y based on angle and
distance measurements.  (Not to scale)

Table 2
Coefficients for Comparison of Error Ellipse Sizes at Selected Levels of Confidence.

The range of values describing the measurement of a distance, angle, or difference in elevation
between two points can be described by a single probability density function.  Likewise, the
result of two simultaneously measured entities can be represented by a joint probability density
function.

Figure T2.1 demonstrates the result of combining traverse measurements (distances and angles)
and related error estimates to determine the probable position of a point in x and y coordinates.  
For a given probability, the size of the related error ellipse can be described with semimajor and
semiminor axes, multiplying the corresponding estimates of standard deviation s  and s  by thex y

probability dependent coefficient c found in the table.

The joint or bivariate normal distribution presented here describes the region that a point might
occupy at the end of a line or series of lines for which the lengths were measured and the
directions determined by angular measurement from a base line.  Our best estimate x̄, ȳ of the
position of our point is the mean of calculated coordinates from multiple measurements of the
distances and angles.  The spread in calculated positions is described in the x and y directions by
the estimates of standard deviation s  and s  for the single normal probability density functionsx y

shown as projections above the x and y axes, respectively.  
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FIGURE T2.2.  Error ellipses showing the
positional uncertainty in the coordinates of a
point.

While single and joint probability density functions theoretically include possible values out to
infinity, the values of practical significance include a very small region dependent upon the
precision with which the distance and angular measurements are made.  Based upon arbitrary
volume units, the volume under the joint normal distribution is 1.0.  If we were to contain 0.95 of
that volume above a plane parallel with the x-y axis, the intersection of this plane and the joint
normal distribution function would be an
ellipse, such as the lowest one in the figure. 
Correspondingly, lesser percentages of the
volume could be isolated by higher planes
with correspondingly smaller ellipses. 
Projecting these ellipses onto the x-y plane
results in concentric ellipses, each
surrounding a region within which the
position of the point might be found with the
corresponding level of certainty (see Figure
T2.2).  The best estimate is the value at the
center x̄, ȳ, but the ellipse describes the
region within which the true position of the
point can be found with increasing levels of
certainty.

For further implications, see Section 3.3.


