Modeling the Effects of DNR Forest Management Alternatives on Marbled Murrelets in Washington: A Population Viability Analysis Approach

Zach Peery and Gavin Jones

Department of Forest and Wildlife Ecology

University of Wisconsin-Madison

Population Viability Analysis (PVA)

What is a PVA?

There is no standard definition, most scientists favor a definition that explicitly requires a mathematical model.

"We define PVA as an analysis that uses data in an analytical or simulation model to calculate the risk of extinction or a closely related measure of population viability..." (Ralls et al. 2002)

Why use a PVA?

To *help* make management *decisions* about species of conservation concern.

Common PVA Applications

- Assessing extinction risk for a population or species
- Determine "MVP" needed to achieve the desired level of protection
- Informing population recovery is the species still imperiled?
- Identifying key life stages or threats that should be managed (sensitivity analyses)
- Evaluating risks or benefits associated with different management options

PVAs: Panacea or Wishful Thinking?

Panacea?

"Population Viability Analyses represent the flagship technology of the field of Conservation Biology....

Michael Soule (2002)

Wishful Thinking?

Challenges to Strong Inference from PVAs

- Insufficient data to "parameterize" model
- Little information on species-environment relationships
- Little ability to test model-based predictions of risk

Reality

"All models are wrong, but some are useful..."

Box and Draper (1987)

Absolute vs Relative Risk

- Absolute projections of extinction risk are generally considered unreliable
- Assessment of risk should instead be made on a relative basis (e.g. among management alternatives)

For example, Akçakaya and Atwood (1997. Cons. Bio) ranked management options for California Gnatcatchers based on relative risk of extinction

Management Option

Biology of Small Populations

Small populations are more likely to go extinct than large populations

Richard Primack (2010) Essentials of Conservation Biology, 5th edition

Small Populations affected by both Deterministic and Stochastic Factors

- Deterministic factors: factors that change population size in a relatively predictable manner such as habitat loss.
- Stochastic factors: factors that result in less predictable changes in population size (e.g., genetics, "random" demography, weather, food supplies)

Deterministic and Stochastic Factors can Interact

 PVAs can measure risk during the "bottleneck" (small population) phase

Uncertainty, Threat, and Assessment Method

Population Viability Analysis

PV-what?

- Simplest PVAs are based only on numbers of individuals in a population
- Need estimates of historic population growth rates, current population size, and effects of stochasticity
- Use mathematical model (equations) to "project" simulated populations in forward in time

Risk Metrics

Extinction probability: proportion of simulated populations where N becomes zero

Expected change in population size: average difference in beginning and ending N

Incorporating Environmental Effects with Model Parameters

Modified from: Dennis et al. (2000) Journal of Wildlife Management

Effect of rain on Effect of coyotes foxes on foxes

Change in fox abundance = x

Amount of rainfall

Coyote abundance

How Do We Estimate Model Parameters?

Preferably with data!

Applying PVA methods to Marbled Murrelets and Forest Management in Washington

- Developed a demographic, metapopulation PVA model that projects murrelet populations forward in time
- Estimates risk under various Basic model structure forest management alternatives.
 - developed previously for a corvid-based murrelet PVA in California

Contents lists available at ScienceDirect

Biological Conservation

journal homepage: www.elsevier.com/locate/biocon

Recovering marbled murrelets via corvid management: A population viability analysis approach

M. Zachariah Peery a,*, R. William Henry b

Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA

b Ecology and Evolutionary Biology, University of California, Santa Cruz, Center for Ocean Health, 100 Shaffer Road, Santa Cruz, CA 95060, USA

A "Meta-population" Model

- A metapopulation consists of a group of spatially separated subpopulations "linked" by the dispersal of individuals.
- Dispersal of individuals influences local population dynamics
- The murrelet PVA model assumes two simplified populations (DNR and non-DNR)

A "Demographic" PVA Model

- The model projects the WA murrelet population forward in time based on demographic rates reproductive and survival rates within subpopulations
- Quiz: how do we incorporate stochasticity?

Estimating Survival Rates

- Non-juvenile survival rates estimated based on a markrecapture study of murrelets in California (Peery et al. 2006)
- Estimates ranged from ca.
 0.87 to 0.90
- Juvenile survival rates assumed to be 70% of nonjuvenile survival rates (Beissinger 2005)

- Habitat quality (6 Pstages) affects max nesting density
 - Platform density, canopy layers, stand origin, forest type

Pstage: 0 0.25 0.36 0.47 0.62 and 0.89 1

Increasing Max Nesting Density

For example, max nesting density in pstage 1 is 4x greater than in pstage 0.25

Edge conditions affect max nesting density

- Nesting habitat area affects nesting carrying capacity in a 1 to 1 manner
- Nesting carrying capacity = nesting habitat area x max nesting density (Pstage and edge)

Relationship between Murrelets Numbers and Nesting Habitat

Raphael (2006). Conservation Biology.

Raphael et al. (2002). Condor.

Edge conditions also affect nest success

Habitat Conditions and the Landscape Scale

- Current habitat conditions were aggregated across each landownership to determine:
 - Nesting carrying capacity
 - Nest success
- Habitat conditions on DNR lands projected forward in time (50 years) using the Forest Vegetation Simulator
- Assumed no change in habitat on non-DNR lands

A Conceptual Representation of the PVA Model

Demographic Submodel

Some Additional Model Rules and Assumptions

- New breeders do not preferentially select high-quality habitat
- Breeders stay in the same landownership unless they are displaced by habitat loss
- Displaced breeders become nonbreeders for at least one year
- Displaced breeders become breeders again if nesting habitat becomes available

Matching the Model to Reality

The Reality

 At-sea monitoring indicates ~5% annual declines in WA from 2001 to 2014

The Problem

 Using values for survival and reproductive rates that yielded 5% declines resulted in little ability for recruits to "fill into" potential new nesting habitat

The Solution

 Conduct parallel "Population Risk" and "Enhancement" analyses with different capacities for murrelets to fill into new nesting habitat

Risk vs Enhancement Analyses

Risk analysis:

- How do the alternatives differ in their effects on **risk** to regional (WA) and local (DNR) murrelet populations?
- Assumes both nesting habitat loss and chronic environmental stressors caused murrelet population declines
- Uses a relatively "pessimistic" values for adult survival (0.87)
- Less capacity for new recruits to fill into new nesting habitat
- Assumes number of breeders > nesting carrying capacity

Enhancement analysis:

- How do the alternatives differ in ability to enhance regional (WA) and local (DNR) murrelet populations?
- Assumes nesting habitat loss is the primary factor cause of murrelet population declines
- Uses a relatively "optimistic" values for adult survival (0.90)
- Greater capacity for new recruits to fill into new nesting habitat
- Assumes number of breeders > nesting carrying capacity

Deterministic Expectations under the "Risk" and "Enhancement" Analyses

Incorporating Stochasticity

- Estimated amount of annual variation in population size from atsea monitoring
- Used this variation to determine how much survival and reproductive rates should vary from year to year

Falxa et al. (2014), Lance and Pearson (2015)

Parameters Used (non-reproductive)

Parameter	Risk	Enhancement
Annual non-juvenile survival rate	0.87	0.90
Annual juvenile survival	0.70 x non-juvenile	
Annual dispersal rate	DNR \rightarrow non-DNR = 0.91 non-DNR \rightarrow DNR = 0.09	$\frac{\text{WA:}}{\text{DNR}}$ → non-DNR = 0.91 non-DNR → DNR = 0.09 $\frac{\text{DNR:}}{\text{DNR:}}$ 0
Initial female population size	DNR: 311 non-DNR: 3,129	
Initial nesting carrying capacity	40% > Initial number of females of breeding age	
Variance in reproductive rates	0.012	
Variance in survival rates	0.003	

Management Alternatives Considered (DNR-managed Lands)

Years into the Future

Risk Analysis – State of Washington

Risk Analysis – DNR Lands Only

Enhancement Analysis – State of Washington

Enhancement Analysis – DNR Lands Only (no dispersal)

Proposed Sensitivity Analyses

- What are the most important habitat conditions?
 - Habitat amount
 - Habitat quality
 - Edge-interior configuration
- How sensitive are result to model uncertainties?
- What are the consequences of less nesting habitat development than predicted?

(for illustration purpose only, analyses in progress)

Preliminary Thoughts on PVA Results

- Differences in state-level risk were small among the four alternatives considered
- While differences were small, Alternative E reduced state-level risk the most
- The ability to contribute to state-level
 enhancement was very similar among alternatives
- Alternative E led to "somewhat more" murrelets on DNR lands than other alternatives under the enhancement analyses
- Greater risk was estimated for the "no change" scenario than for other alternatives under some assumptions and at some scales

Next Steps

- Model Alternatives C and D
- Formalize and conduct sensitivity analyses
- Write report and manuscript for publication
- Peer review both documents

