

UW

R emote

S ensing &

G eospatial

A nalysis

aboratory

REMOTE SENSING, LIDAR AND WETLANDS

L. Monika Moskal

Assistant Professor, of Forest Resources, University of Washington

UW-Remote Sensing and Geospatial Analysis Laboratory

Hyper-resolution Remote Sensing Technology

Hypertemporal

Hyperspectral

Land Use/Land Cover Mapping - Key Issues

- Coarse Resolution:Landsat (a) vs. Hi-res:NAIP (b)
- Per-pixel (c) vs. ObjectBased Image Analysis(OBIA) methods (d)
- Myint et al. 2011 –Per-pixel Accuracy67.6% vs. OBIAAccuracy 90.4%
- Implications to field sampling campaigns

Monitoring the spatiotemporal heterogeneity of arid wetlands: A three-tiered approach

PHASE 1

Object Based Image Analysis (OBIA)

- This object based image classification method is fundamentally different form per-pixel-classifier approach because it utilized the spatial association and contextual information associated with the object (class) of interest
- Image analyst training and skills make this method a powerful new analysis tool for high spatial resolution data

Get data, pre-process, georectify...

Segmentation...

Algorithm training...

Thresholding...

Final Hierarchical Classification...

LiDAR

Aerial LiDAR and Imagery for LULC

2001 NLCD Canopy (30m) = 28.5% canopy

2009 RSGAL LULC (1m) 25.7% +/- 1.5 canopy

2009 NAIP and LiDAR Seattle LULC

What about forested wetlands?

Further research funded through the USDA McIntire-Stennis will commence in Fall 2011 Integrating LiDAR and Imagery for Mapping Forested Wetlands: an Object Based Approach

Simplified LiDAR Based Thermal Loading Model

Schematic for obtaining solar energy attenuation from LiDAR. The LiDAR-based terrain model is used in conjunction with canopy density metrics to model solar conditions for 365 days out of the year. The 365 models are combined to produce a thermal loading potential surface. The same technique can be applied on spatial explicit watershed coverage provided by aerial LiDAR and to calibration sites from terrestrial LiDAR.

Source: Moskal and Park 2010

Solar Radiation Model Parameters:

- LiDAR topographic shading
- LiDAR aspect
- LiDAR Vegetation height/canopy density (LAI)
- geographic location (latitude)
- resolution (data dependent)

Model output (watt/m2) is spatially continuous but can be buffered for streams and other features

Ground vs. Aerial DEM Surface

USGS DEMs will only have one value for the whole plot

Ground vs. Aerial Solar Radiation

